Automated Quality Model Management Using Semantic Technologies

Keywords:

Abstract:

Reinhold Plgsch!©?, Florian Ernst' and Matthias Saft*
L Business Informatics-Software Engineering, Johannes Kepler University Linz, Austria

2Siemens AG - Foundational Technologies, Garching, Germany

Quality Models, Semantic Quality Models, Quality Model Tailoring, Query-Based Quality Model Tailoring,
Al Based Metric Classification.

The starting point for this paper and service for the query-based generation of quality models was the require-
ment to be able to manage software quality models dynamically, as detailed domain knowledge is usually
required for this task. We present new approaches regarding the query-based generation of software quality
models and the creation of profiles for quality analyses using the code quality tool SonarQube. Furthermore,
our support for the automatic assignment of software quality rules to entries of a hierarchical quality model
simplifies the maintenance of the models with the help of machine learning models and large language models
(HMCN and SciBERT in our case). The resulting findings were evaluated for their practical suitability using
expert interviews. The results are promising and show that semantic management of quality models could help

spreading the use of quality models, as it considerably reduces the maintenance effort.

1 INTRODUCTION

Software quality models (QMs) are typically used
for examining, improving and forecasting the over-
all quality of a software product (Deissenboeck et al.,
2009; Wagner et al., 2015; Wagner et al., 2012a).
There is no universal guideline for defining such mod-
els. The ISO/IEC 25010 provides a fixed structure,
while the Quamoco meta-model (Wagner et al., 2015;
Wagner et al., 2012a) offers a more flexible approach
that addresses the standard’s limitations.

However, as (Wagner et al., 2012a) state, most
of the concepts provided by ISO/IEC 25010 are not
objective enough to be measurable and to assess the
actual quality of a software product. Furthermore,
the ISO/IEC 25010 does not state how the individual
quality properties should be assessed and how the re-
sults of these measurements should be aggregated to
get a final result (Wagner et al., 2012a). The Quamoco
meta-model has been selected and, therefore, all fur-
ther steps are going to be performed using this specific
QM.

As large QMs are difficult to maintain due to the
required knowledge of the model’s specific applica-
tion domain, a tool for effortless tailoring to support
the QM expert is needed. The models we developed
and that are applied for embedded system develop-

(12 https://orcid.org/0000-0002-4659-2385

Plosch, R., Ernst, F. and Saft, M.
Automated Quality Model Management Using Semantic Technologies.
DOI: 10.5220/0013502900003964

ment typically contain 1000+ metrics and rules. With
our approach, a QM expert should be able to automat-
ically generate new quality models based on already
stored QMs, considering the specific quality require-
ments of a project.

As a novelty of our approach, we do not only con-
sider metrics and rules as provided by SonarQube,
but also so-called dynamic project related data, which
can be seen as usages of certain metrics within a pre-
defined set of projects in SonarQube. This data is
called dynamic as it changes relatively fast compared
to more static-like data in SonarQube-like metrics and
rules. Examples of these dynamic data would be the
number of rule violations in relation to all rules of the
same type of severeness, the number of violations per
100 lines of code, and the won’t fix and false positive
rate. Additionally, the relevancy of a metric or rule
could be measured by looking at a fixing factor, to
identify whether violations of this metric are increas-
ing, decreasing or relatively steady.

Furthermore, it should also be feasible to generate
so-called Quality profiles for SonarQube based on the
aspects described above. A quality profile can be seen
as a collection of metrics and rules which are grouped
into a profile. These profiles are then associated with
projects.

In order to be able to answer these queries for QM
tailoring, the static-like, dynamic and QM-related

223

In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 223-232

ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

ICSOFT 2025 - 20th International Conference on Software Technologies

data need to be stored to answer queries fast. It was
decided that QM-related aspects should also be stored
in RDF along with other software quality aspects.

With new SonarQube updates and new plugins for
new languages, the number of new rules and metrics
which need to be assigned manually to an already-
existent QM increases. Therefore, a machine-learning
(ML) model should be used for the automatic clas-
sification of these new metrics into the hierarchical
structure of a QM. Furthermore, the developed soft-
ware component should also be able to manage the
ML model and semi-automatically re-train the model
if necessary.

Based on this context, the following RQs were de-
fined:

* RQ 1: How suitable are query-based quality
model tools for tailoring and generating software
quality models?

* RQ 2: Is the automatic categorization of soft-
ware metrics based on machine learning algo-
rithms suitable?

— RQ 2.1: How suitable are machine learning al-
gorithms according to typical evaluation met-
rics based on the available data?

— RQ 2.2: How suitable is the automatic catego-
rization from a quality model expert’s view?

RQ 1 and RQ 2.2 will be assessed by using survey
guided interviews of software quality model experts
with a resulting analysis. For RQ 2.1, an experiment
of ML models that are found alongside the hierarchi-
cal text classification is going to be performed and
evaluated.

The reminder of this paper is structured as fol-
lows. First, relevant literature regarding this topic is
reviewed in Section 2. Afterwards, the concepts be-
hind the proposed tailoring approach are described in
detail in Section 3. Section 4 provides an overview
of the QM tailoring service’s components. Similar to
the previous section, Section 5, highlights the ML ser-
vice’s core modules. Both service approaches are then
reviewed and evaluated in Section 6. Finally, Sec-
tion 7 concludes this paper.

2 RELATED WORK

Pressman (Pressman, 2010) gives the following work-
ing definition for software quality: “An effective soft-
ware process applied in a manner that creates a useful
product that provides measurable value for those who
produce it and those who use it.”” (Pressman, 2010, p.
400).

224

(Pressman, 2010) also summarizes other software
quality concepts. For example, (Garvin, 1987) devel-
oped a multidimensional approach regarding quality
in general, and according to (Pressman, 2010), these
eight dimensions are also capable of analyzing soft-
ware quality. The dimensions are performance qual-
ity, feature quality, reliability, conformance, durabil-
ity, serviceability, aesthetics and perceptions. One
problem with these dimensions is that most of them
can only be measured subjectively. The “hard” fac-
tors — measurable factors — can also be divided into
two sets, namely into factors that can be directly (e.g.,
software defects) or indirectly (e.g., usability) mea-
sured (Pressman, 2010).

McCall (McCall et al., 1977) groups factors into
product activities, namely product revision (change
of a product), product transition (adaption to new do-
mains), and product operation (the operation) (Mc-
Call et al., 1977). E.g., within the activity product
revision, which is related to software changes, the fac-
tors with the corresponding questions are as follows:
maintainability (Is the software fixable?), flexibility
(Is the software changeable?) and festability (Is the
software testable?) (McCall et al., 1977). Again, one
drawback of using these factors is that, according to
(Pressman, 2010), most of the proposed factors can
only be assessed indirectly.

Nevertheless, these factors provide a solid base for
evaluating the quality of a software product (Press-
man, 2010). In software QMs, per definition, these
software quality attributes are typically brought into a
hierarchical order. This decomposition has no univer-
sal meta-model, so it is performed without any pattern
on these quality attributes (Deissenboeck et al., 2009).
Therefore, according to (Deissenboeck et al., 2009),
any further decompositions on large models are dif-
ficult to understand and might lead to repetition, as
quality attributes might overlap.

While there is still ongoing work in how to struc-
ture the abstract term Software Quality, there are no
approaches known from the scientific literature that
support systematic tailoring of quality models to the
quality requirements of a software project.

3 QUALITY MODEL TAILORING
CONCEPTS

In this section we describe how we relate the quality
model concepts to semantic models and we describe
in more details which static and dynamic data can be
used for quality model tailoring.

3.1 QMs and Knowledge Graphs

QMs represent important knowledge on software
quality and knowledge graphs are used for represent-
ing them in a semantic way (see Figure 1 and Fig-
ure 2). The first part of the knowledge graph contains
information about the quality model hierarchies. The
resource that represents a QM is called QualityModel.
For each QM, an identifier and several hierarchies are
stored. Each hierarchy that belongs to a QM, repre-
sented through the class QualityModelHierarchy, also
consists of an identifier and property that connects the
hierarchy to its root element through the property hi-
erarchyld. An entry of a QM hierarchy in which no
distinction between leaf and inner nodes is made, is
defined by the class Hierarchyltem, which can also
contain zero or more hierarchy items that are the par-
ticular node’s child nodes. Additionally, with each
QM hierarchy item, a name, a description, and an
identifier is stored. Besides these directly attached lit-
erals, connections to the classes QualityProperty, En-
tity, Rule, and Impact exist.

Quality
Model
Hierarchy

Figure 1: Fragment of the knowledge graph for QMs show-
ing the model-related relationships.

A quality property expressed by the class Quali-
tyProperty contains a property name combined with
a value and optional a so-called extra property which
provides additional information for a quality property
like coverage, importance, trustworthiness, and effort.

The next class represents an entity and is also
named after it. In the original Quamoco QM, each
factor has an associated entity that describes a certain
fragment of a software product or a resource involved
during its lifetime (Wagner et al., 2012b). Examples
for entities are class, interface, or method. In the data
model, the name of an entity is associated with the

Automated Quality Model Management Using Semantic Technologies

rdfs:label property. Optionally, it is possible to con-
nect each hierarchy item with various rules expressed
with the Rule class.

Impacts are represented by their eponymous class.
Each impact denotes an impact of one hierarchy’s en-
try into another hierarchy. The connection is made
via a source and a target property that both reference
hierarchy items. As an example, the factor complex-
ity@Class typically has a negative impact on the qual-
ity factor maintainability. Technically, an impact’s
effect is stored as a number which might either be -
1 (negative), O (no effect), or 1 (positive). Addition-
ally, each impact has also an optional description. The
overview of the mentioned resources and their rela-
tionships are shown in Figure 1.

3.2 Static Data

In this paper, static data refers to rule-related data for
rules that do not regularly change. In contrast, dy-
namic data, described in the next section, contains in-
formation about the usage of rules in actual projects
with their related issues over time. As already men-
tioned before, metrics and rules are central elements
of static data. SonarQube (depending on the configu-
ration) provides e.g. 1.000+ metrics and rules for the
programming language Java.

It should be noted that in RDES, it is not possible
to enforce that, e.g., each rule must have an associated
SonarQube repository. Nevertheless, with Shapes
Constraint Language (SHACL) shapes (Knublauch
and Kontokostas, 2017), it is possible to validate
knowledge graphs and hence, to ensure that the con-
straint mentioned above is fulfilled. Otherwise, the
knowledge graph is not valid. Additionally, SHACL
also provides so-called SHACL rules (Knublauch
et al., 2017) that are used for inferencing new triples

Quality
Profile
Version

Figure 2: Fragment of the knowledge graph for QMs show-
ing the rule related connections of static and dynamic data.

225

ICSOFT 2025 - 20th International Conference on Software Technologies

from the provided data.

Besides the repository, a rule is also associated
with various quality profiles using the RuleAssign-
ment class. However, not every rule must be asso-
ciated with a quality profile. Furthermore, a severity
and rule type is set in every rule assignment, which
overwrites the default severity and rule type from a
rule’s default values. A class of type QualityProfile-
Tool is used to represent the rules’ source tool. Qual-
ity profiles are a concept of SonarQube and might,
therefore, not be available in other tools, which is also
the case for repositories. Each quality profile and also
each repository is associated with a certain language
class that represents the corresponding programming
language of both types.

A version of a software quality tool is described
with the class QualityProfileVersion, which is associ-
ated with a quality profile tool and contains references
to those rules that are available in the specific ver-
sion. Rules are represented through the eponymous
classes. For each individual rule, an identifier, a de-
fault severity, tags, a default rule type, default and ac-
tual remediation costs, an HTML description, a sta-
tus, the name, and the creation time are stored. The
remediation costs are represented using one class of
the remediation cost’s hierarchy that is modeled us-
ing multiple inheritance. The base class Remediation-
Costs contains a time unit representing the unit of the
remediation cost’s time. Remediation costs can either
be a single constant, represented by the ConstantRe-
mediationCosts class. This linear function only con-
sists of a coefficient (class LinearRemediationCosts),
or finally, a combination of both types, i.e., a linear
function with an offset provided by a constant (class
LinearRemediationCostsWithOffset).

3.3 Dynamic Data

The idea behind the dynamic aspects is to collect us-
age data of rules’ issues in projects within SonarQube
which then can be further used for tailoring QMs. One
example could be to exclude rules where the ratio of
related issues that are marked as won’t fix to the total
number of issues of the corresponding rule is larger
than x%. This could make sense as it is an indica-
tor that the related rule is not suitable for a specific
application domain.

These measures are stored in a time series
database, and the latest values are persisted in the
RDF storage to imitate a materialized view and to
speed up querying. Together with a software quality
expert from academia, the following dynamic aspects
were identified:

* Open issues in total and as a ratio with all issues

226

of the same severity

e Total number of issues that are marked as won’t
fix and as a ratio based on the total number of is-
sues of the specific metric

* Total number of issues that are marked as false
positive and as a ratio based on the total number
of issues of the specific metric

e Usages of a rule as absolute value and as ratio
based on the pre-configured list of projects that
should be taken into consideration

¢ Issues per 100 lines of code (LOC)

* Fixing factor, which indicates whether the number
of open issues is increasing, decreasing, or steady

For each defined metric, the operators <, >, <=,
>=, ==, and ! = are supported. As mentioned, these
measures are calculated for every rule available in
SonarQube. In the configuration section of this ser-
vice, it is possible to define several project sets that
will be used for calculating the previously defined
measures. This makes sense, as quality managers
want to use the data of similar projects for tailoring
of the QMs.

The class ProjectData represents a current dy-
namic aspect entry for a single project set identified
by the data property projectDataldx, i.e., an entity
is created for every rule and project set combination.
This property is simply the project index set from this
service’s configuration part. All other properties (the
absolute value or ratio) are computed beforehand and
stored in the entity of class ProjectData.

3.4 Quality Profile Generation and Rule
Export

In this section, the process of generating quality
profiles which can further be directly imported into
SonarQube without any additional changes is ex-
plained. Moreover, the export of rules is also pre-
sented. Both operations are performed using the ser-
vice’s REST interface.

Currently, the possible query parameters for the
rule export are entries of a quality model, i.e., hier-
archy items including their child items on which cer-
tain rules are associated can be used, including the
entity tag separated by the @ tag, so if no tag is used,
all hierarchy items regardless their corresponding en-
tity will be taken into consideration. The next query
parameter filters according to a given list of severity
types on which the rules should be filtered. Next, it is
possible also to exclude rules by their corresponding
identifier.

Additional, so-called extra values can be attached
with the — sign. It is also possible to include
more quality properties, separated by a comma. The
following query parameter allows the rule selection
by one or several quality profile tools, presented in
the format tool name:tool version. It should be
noted that the tool version is optional in this context.
A comma again separates the different tools. Next,
it is possible to filter rules by a provided program-
ming language. Finally, the last query parameter al-
lows users to filter rules by a quality profile’s name.
All of the mentioned query parameters are optional.
Hence, if no parameter is defined, all rules will be
used.

1| PREFIX : <http://www.w3.0rg/1999/@2/22-rdf-syntax-ns#>
2| PREFIX : <http://www.w3.0rg/2000/01/rdf-schema#>

3| PREFIX sqm: <http://siemens.com/sqmif>

4| PREFIX : <http://www.w3.org/20@1/XMLSchema#>

6| SELECT DISTINCT ?repository_key ?rule_key ?severity
7| WHERE {

?language sqm:languageId "{language}”

9 ?language a sqm:Language.

10 ?repo sqm:language ?language.

n ?repo a sqm:Repository.

13 ?repo sqm:repositoryKey ?repository_key.
?rule sqm:fromRepository ?repo

15 ?rule a sqm:Rule.

1] ?rule sqm:ruleld ?rule_key.

17 ?rule sqm:defaultSeverity ?severity.

o ?tool a sqm:QualityProfileTool;

19 :label "Sonarqube”;

20 sqm: toolVersion ?toolVersion

2 ?toolVersion sqm:containsRule ?rule.

2
7 {{where_clause}}
2 }

Figure 3: Query fragment for exporting quality profiles
from the knowledge graph.

The rules’ query is based on the SPARQL frag-
ment presented in figure 3. This query selects the
repository keys and the rule identifiers of all rules
that match the WHERE clause. Before the query
is issued to the SPARQL endpoint, the placeholder
{{where_clause}} is replaced with the dynamically
built query part that is based on the query parame-
ters presented before. This allows the query to be
built dynamically and to allow the variation of param-
eters. After the query is issued to the server and the re-
sult has been received, the given tuples are converted
into the data transfer object class RuleExportEntry,
which is then serialized into the corresponding JSON
format using the pydantic library, which is included
in FastAPI.

Based on this general rule query model, typical
tasks like generating a new quality profile or gener-
ating a new quality model can be executed automati-
cally. This allows to regenerate these quality profiles
or quality models after changes of a SonarQube in-
stallation on the fly. Changes to the installation could
result in new or changed metrics and rules.

Automated Quality Model Management Using Semantic Technologies

4 QUALITY MODEL TAILORING
SERVICE

The quality model tailoring service imports software
quality rules from SonarQube and quality models
from Quamoco XML files. Besides the incremen-
tal import part, the service also supports the required
query-based rule, quality profile, and quality model
export features as described in the previous section. In
the following paragraphs, selected modules and com-
ponents are described.

SQMDB Manager Component: The Software
Quality Model Database manager component, which
is represented through a regular Python class, is used
to separate the business logic from the REST interface
by abstracting all operations that are callable from the
REST interface.

Repository Module: The repository module cur-
rently only consists of the RDFRepository class. It
could be argued that within this module, also all dy-
namic aspects-related storage classes should be lo-
cated. Nevertheless, as the InfluxDBStorage is only
used within the dynamic aspects importer, it was de-
cided that it should be placed within the dynamic as-
pects module.

Import Module: The import module contains
various components for importing quality rules from
different sources; currently SonarQube and cppcheck
are supported. Additionally, this module also contains
classes for importing quality model hierarchies. Cur-
rently, the hierarchy import from Quamoco XML files
is supported.

Export Module: Within the export mod-
ule, Python functions containing the correspond-
ing logic are grouped into adequate components re-
spectively Python files, namely QuamviewExporter,
RuleExporter and SonarQubeExporter. Each
component computes the result classes of the
particular export use case. For example, the
SonarQubeExporter consists of a single Python
function, called export_quality_profile whose
output is an XML document containing the quality
profile, which can then be imported into a SonarQube
instance without any additional modification.

Dynamic Aspects Module: The dynamic aspects
module contains a base class for storages of dynamic
aspects and a Python file containing all relevant model
classes that correspond to dynamic data besides the
DynamicAspectsImporter and InfluxDBStorage
components. Within the DynamicAspectsImporter,
the data from the configured SonarQube instance is
queried, transformed, and finally stored in the corre-
sponding storage.

227

ICSOFT 2025 - 20th International Conference on Software Technologies

S MACHINE LEARNING
SERVICE

The machine learning service is a separate Python-
based service that assigns rules to corresponding QM
hierarchy entries. The source of the rules does not
matter, as only a unique identifier of a rule, its name,
and description is transferred to this service using
the provided REST API. Currently, this service sup-
ports the Multi-label Classification Network (HMCN)
(Wehrmann et al., 2018) and the SciBERT model
(Beltagy et al., 2019).

Database Module: As the imported or predicted
rules need to get persisted, a SQLite DB has been
chosen as a simple local database for tabular data.
The database module contains the base class for
all database operations, namely BaseDAL. Currently,
only a data access layer for the SQLite database,
namely SQLDAL, is implemented. However, in the fu-
ture, if a new data storage is needed, only the abstract
base class BaseDAL needs to get extended. In this
module, also an importer is implemented, which pro-
vides helper functions for importing training and test
data from pandas’ data frames.

Model Module: The module for the models con-
tains two major components, namely the classifier
component, which contains all classifiers that were
implemented for this service, and the dataset com-
ponent, which contains a PyTorch-based dataset to-
gether with helper functions that are needed for the
training process as well as for the construction of the
dataset that is used for prediction.

The basic functionality of a classifier is imple-
mented in the abstract base class BaseClassifier,
which also contains data classes for the interim re-
sults. Each classifier that should be supported in
this service has to implement this abstract base class,
which is later used in the dependency injection part
to map the actual implementation to this abstract base
class. As mentioned before, a SCIBERT and HMCN
implementation are supported in this service.

Configuration Component: The classes for the
environment-config serialization package are imple-
mented in the configuration component.

With the help of the Mode1Type enum, the user is
able to choose between the HMCN and the SciBERT
model. For each of these two model types, a sepa-
rate class is created. The serialization library allows
to have nested configuration classes while only hav-
ing environment variables with flat values. This fea-
ture is used as follows: the root class Config captures
the model type, which is the enum mentioned before.
Additionally, the configuration classes for both mod-
els are included using a group from the environ pack-

228

age. Both model configurations are marked as op-
tional, whilst the enum class is set to mandatory and
selects which model should be used in this service.

Migration Component: The migration compo-
nent contains the code that is needed in order to per-
form the database migrations using alembic. There-
fore, this component mainly consists of two parts that
are required by the library, namely, the versions which
represent the actual migrations and the environment
configuration that can be used to fine-tune the migra-
tion process. This command creates, based on the de-
fined sqlalchemy models, the corresponding migra-
tions to create and alter the database tables accord-
ingly. In addition, it is also possible to downgrade a
migration.

Routing Component: Within the routing compo-
nent, all routes for the web API are defined. These
routes are then used in FastAPI to provide the cor-
responding REST interface. Each route is again an-
notated with an API version which is currently set to
1. It was decided to use API versioning to provide
better backward compatibility in the future when this
service is used in production. To decouple the web
interface from the actual implementations, the depen-
dency injection library pythondi is used.

Preprocessing Component: The prepro-
cessing component consists of two prepro-
cessing services, one for SciBERT named
BERTPreprocessingService and the class
PreprocessingService for the HMCN model.

Both services extend the abstract base class
BasePreprocessingService, which acts like an in-
terface and is used in the dependency injection library
for binding the correct preprocessing service based on
the model used according to the service’s configura-
tion.

The BERTPreprocessingService uses the class
BertTokenizerFast from the transformers library
to prepare the input text into the format that is re-
quired from BERT, whilst the preprocessing service
for the HMCN model uses a “classical” preprocess-
ing pipeline starting with the tokenization and the re-
moval of stop words, i.e., words that often occur and
do not deliver any useful information, then followed
by a simple preprocessing pipeline provided by the
natural language library gensim. Then, the words
are lemmatized using the wordnet lemmatizer from
the NLTK library. Finally, the individual tokens are
mapped to the corresponding indices of the word em-
bedding matrix.

Main component: The main component is the
main entry point of this service and first loads the con-
figuration and, based on the provided configuration,
the final ML model. If no model is currently saved,

the main component will initiate the model learning
process by loading the provided test and training data
from the given CSV files shipped within this service.
Afterward, the FastAPI library is initialized, and the
corresponding routes are registered.

6 EVALUATION

As mentioned before, in this section, the general pro-
cedure of the evaluation that was performed to eval-
uate the usefulness of both services from a software
quality expert’s viewpoint is elaborated. With regard
to the experience level of each individual software
quality expert, it was ensured that experts with ex-
perience spanning several years from both academia
and industry related software quality products were
selected.

6.1 Questionnaire and Participants

The overall evaluation process consists of two parts,
namely an interactive presentation with the intervie-
wee, which demonstrates the usage of both services
as well as pre-defined use cases, and a questionnaire
that is built upon this presentation which is further
used for the evaluation.

The idea behind this whole process is to provide
the interviewee with an interactive presentation rather
than just offering an explanatory video with the ques-
tionnaire due to the highly abstract topic.

Thus, the interviewee is enabled to ask specific
questions in real time and possible questions or mis-
understandings can be clarified right away. In general,
the interviewee is asked to rate the usefulness of cer-
tain parameters and use cases according to a Likert
scale. Additionally, for almost each question group,
the interviewee is also provided with a free text field
where additional information can be submitted.

The questionnaire starts with general questions,
such as the interviewee’s age, years of experience in
software development, the industry of their current
job and the size of their company. The next part is the
general RDF data model that was developed, which
consists of the software quality rules, the dynamic
data entries and the software QMs.

Here, the interviewees are asked to rank the suit-
ability of this data model with respect to completeness
and adequacy of the distinct data items with the pos-
sibility to optionally enter additional remarks to the
data model. After this part, the possible query param-
eters for the rule and quality profile export are shown,
followed by the use cases for the rule and quality pro-
file export. The next section covers the QM tailoring

Automated Quality Model Management Using Semantic Technologies

part, starting with the possible query parameters fol-
lowed by the corresponding use cases.

Since the use cases of both prototypical services
are rather abstract and the future users of these ser-
vices belong to a small group of software engineers
that are specialised in software quality engineering,
this evaluation’s participants were selected accord-
ingly. Eight software quality experts participated in
the final evaluation. Some more detail on the study
population will be given in the next section.

6.2 Interview Results

In this section, the rule and quality profile-related
items of the questionnaire are explained.

The parameters of the rule and quality profile ex-
port are split into three categories that are displayed
in Figure 4, Figure 5 and Figure 6.

The first category shows the importance of the pa-
rameters that are supported in the rule exporting pro-
cess. Then, in the second category, results regarding
the quality profile export parameters are evaluated.
Afterwards, the importance of each dynamic aspect
is presented in the last category.

In the following sections, the individual parame-
ters are presented together with their explanation and
the final results, starting with the rule export parame-
ters.

Importance of parameters for rule export

. = Very Important

== important
Rule severity 75% 25% Neutral
Not Very Important

e == Not Important at All

Rule exclusion by ID
Additional properties

Source tool 15% 50%
'

SonarQube quality profile 37.5% 37.5%

:

:
100%90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 10% 20%
Percentage of Responses

Figure 4: Importance of parameters for rule export.

As depicted in Figure 4, the first parameter is used
to filter rules according to their associated factors of
the QM, which are separated by a comma. In general,
almost all responses rate this parameter as very im-
portant or important. The next parameter represents
the severity of a rule. Here, it is also possible to filter
with multiple severity levels, which are separated by
a comma. As before, 75% of the responses rate this
parameter as very important and the rest as important.

In contrast to these two parameters, only 37.5%
of responses rate the rule exclusion by ID, where
rules can explicitly be excluded by their given ID as
very important and 25% as important. Nevertheless,
12.5% rate this feature as not important at all.

229

ICSOFT 2025 - 20th International Conference on Software Technologies

Importance of parameters for quality profile export

Quality model factors Importance

= Very Important

== Important
Neutral

Rule severities
i
Rule exclusion by ID 37.5% 25% % —12.5%)

Additional properties 37.5 25 Not Very Important

Source tool = Not Important at Al

SonarQube quality profile

Initial availability

Entity restriction
Quality model impacts query
Quality model impacted by
query

Dynarmic aspects

100% 80% 60% 40% 20% 0% 20% 40%
Percentage of Responses

Figure 5: Importance of parameters for quality profile ex-
port.

Regarding the additional properties that are the re-
mainder of the Quamoco QMs, 75% of the intervie-
wees rated the importance as very important or impor-
tant. The rest, 2 participants, rated this feature as not
very important. For the source tool, i.e. the tool from
which the rules are imported, it is possible to indicate
several tools together with an explicit version.

The tools are again separated with a comma, and
the version number is separated with a ”:” after the
corresponding tool’s name. E.g., the tool Sonar-
Qube with version 10 would be as follows: ”Sonar-
Qube:10”. However, 50% rated this parameter as im-
portant and 25% as very important. One participant
rated this parameter as neutral or as not very impor-
tant in each case.

The penultimate rule export parameter is the
source quality profile from SonarQube which allows
to user to specify a quality profile from which the cor-
responding rules should be exported. Here, 37.5%
each rated this export parameter as very important or
important. The rest rated the importance as neutral.

The last parameter, the programming language of
the rule, is used to restrict the rules to certain pro-
gramming languages. All participants rated this pa-
rameter as very important or important. To summa-
rize, all provided parameters were rated mostly posi-
tively by the interviewees.

In Figure 5, the parameters for exporting quality
profiles for SonarQube are shown. As the first seven
parameters are the same and their results are roughly
the same, they are skipped in this part of the question-
naire’s evaluation.

The first new parameter is the possibility to filter
rules for quality profiles using tags that are provided
by SonarQube. Again, a comma is used to separate
these values. 37% of the participants rated this pa-
rameter positive. The exact number rated this param-
eter as neutral and 25% as not very important. For the
initial availability, which is used to filter rules by the
date they were added in SonarQube, only 25% rated
this feature as very important. More than 50%, how-
ever, rated this neutral, and one person rated it as not
very important.

230

The entity restriction which allows the user of this
service to restrict rules by their associated QM en-
tries’ entity type like @Source Code, @Statement,
etc. This feature was rated positively by 62.5% of the
responses. One interviewee rated it as neutral, and the
rest, 25%, as not very important. The next parameter
is the QM impacts query which is used to select rules
where an associated QM entry impacts another QM
entry.

It is also possible to filter according to the type
of impact, which is either positive (+) or negative (-).
The plus sign can also be omitted and is used inter-
nally as default when no sign is provided. 62.5% of
the responses rated this parameter as very important
and 25% as important. The rest, 25%, rated it as neu-
tral.

For the next parameter, which is the inverse of
the QM impacts query, namely the QM impacted by
query, the responses are almost the same with the ex-
ception that 50% rated it as very important and one
interviewee as not very important. The parameter list
for the export of quality profiles is concluded by the
dynamic aspects whose detailed query options are ex-
plained and evaluated in the next paragraph. Three
out of four recipients rated the usage of dynamic as-
pects for quality profile export as very important, and
the remainder as important.

To summarise the overall importance of the pa-
rameters, almost all provided parameters were cat-
egorised as very important or important except for
SonarQube tags and the initial availability of rules.

Importance of dynamic aspect related query parameters

Importance

- Very Important

== Important
Neutral

Open issues total / ratio
Number / Ratio of won't fix
issues

Not Very Important.

Number / Ratio of false m= Not Important at Al

positive issues

Usage of a metric 7.
Issues per 100 LOC

“Fixing factor" 7. 25%

Comparison operators

H
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 10% 20%
Percentage of Responses

Figure 6: Importance of dynamic aspect related query pa-
rameters.

In total, six dynamic aspects were implemented
and evaluated together with the provided query op-
erators using the questionnaire, with the results dis-
played in Figure 6. The first dynamic aspect is the
number of open issues as an absolute value, respec-
tively as a ratio to the number of open issues with the
same severity. Here, all participants rated the query
option positively, with 62.5% as very important and
the rest as important.

Next, the total number of issues marked as won’t
fix and the ratio variant with the absolute number of

issues marked as won’t fix compared to the total num-
ber of the corresponding rule’s open issues. Most of
the interviewees ranked this query parameter as very
important or important. However, 25% ranked it as
neutral.

The next parameter is almost the same as before;
nevertheless, focusing on the total number of issues
marked as false positives and again as a ratio. 75%
rated this parameter as very important; in each case,
one interviewee ranked it as important and neutral.

Whilst previous parameters focus on the number
and types of issues of a certain rule, the next param-
eter focuses on the usage of a rule in a list of pre-
defined projects. A usage of 60 % would mean that a
certain rule is used in 60% of pre-defined projects.
Additionally, it is also possible to define multiple
project lists. Almost all interviewees rated this param-
eter positively with 37.5% as very important, 50% as
important and one result rated as neutral. In the next
dynamic aspect, the number of issues per 100 lines
of code (LOC) is used to identify rules where the ra-
tio of open issues per 100 LOC matches the provided
query criteria. All interviewees rated this aspect as
very important respectively important with an equal
share. The last aspect is called “Fixing factor” and
denotes whether the number of open issues is cur-
rently rising, steady or declining. With 62.5% of the
interviewees finding this aspect as important and 25
% as important, it is mostly rated positively. Never-
theless, 37.5 % rated it as neutral. The final question
was about the provided comparison operators, namely
<, >, <=, >=, ! = and ==. Here, 62.5% rated these
as very important and 25 % as important. For the rest,
one interviewee rated it as neutral.

To summarize the evaluation of the dynamic as-
pects: overall, the aspects are rated mostly without
any exception as very important and important with-
out any responses rating any aspect respectively the
comparison operators as unimportant.

In this last section of the interview results, the re-
sults regarding the suitability of the automatic rule
association using the proposed ML service are eval-
uated. For the evaluation, the best-performing model,
the SciBERT model, was chosen.

All three evaluation measures, precision, recall
and the fl-score were presented to provide the inter-
viewees with the same background information. Ad-
ditionally, the classification process’s best and worst
performing target classes were shown to give the in-
terviewees an intuition of a typical task the ML model
will perform. Overall, 37.5% each ranked the suit-
ability as highly suitable and neutral. 25% rated it as
suitable, as shown in Figure 7.

However, during the interviews, a great interest

Automated Quality Model Management Using Semantic Technologies

Suitability of the automatic rule association

Suitability
. Highly Suitable
= Suitable
Neutral
Marginally Suitable
= Not Suitable at All

Suitability of the automatic
rule associat tion

80% 70% 60% 50% 40% 30% 20% 10% 0% 10%
Percentage of Responses

Figure 7: Suitability of the automatic rule association.

in the possible usage of this approach was shown.
Nevertheless, real-world application is still missing
and needs further evaluation to see how such a model
would perform on real data in the future.

6.3 Threats to Validity

The statistical conclusion validity can not be analysed
since no statistical hypothesis testing was performed
to answer the research questions. No threats regarding
the proposed groups by (Shadish et al., 2002) could
be found for the internal validity. However, regard-
ing the construct validity, it could be argued that a
threat regarding the so-called inadequate explication
of constructs by (Shadish et al., 2002) might occur
since there could be a differentiation between the use
cases and parameters presented and the actual useful-
ness of this service.

Nevertheless, the participants expressed the use-
fulness of both services both textually using the free
text options and verbally during the interviews. Re-
garding the external validity of these experiments, a
possible threat would be concerning the interaction of
the observed relationship with the setting, i.e., does
the effect change when the setting changes, which
would be, in the case of this study, the participants. As
the questionnaire was specially designed for software
quality experts, this threat is minimised since this is
also the target group. The threat is also minimised
by choosing software quality experts from different
backgrounds, i.e. various industries and academia and
various experience levels.

7 CONCLUSION AND FUTURE
WORK

The research questions RQ 1 and RQ 2.2 were an-
swered using the questionnaire. Regarding the suit-
ability of query-based QM, which was asked in RQ
1, the experts ranked the proposed use cases of the
QM tailoring tool as mostly important, with no use
case being entirely ranked as unimportant. Therefore,

231

ICSOFT 2025 - 20th International Conference on Software Technologies

the developed approach, which uses a service for tai-
loring QMs and exporting quality profiles for Sonar-
Qube, can be considered suitable.

Regarding RQ 2.2 where the suitability of the au-
tomatic rule association of rules to QMs from a soft-
ware quality expert’s perspective should be examined,
the questionnaire’s results and the verbal feedback
from the interviewees indicate that a fully automatic
rule association would not be acceptable. This is due
to the fact that some interviewees work in highly reg-
ulated environments where misclassifications must be
avoided at all costs. However, the interviewees agreed
that this ML service would be appropriate for generat-
ing an initial draft, which would then require explicit
review by a software quality engineer.

To summarise the overall results of the evaluation,
with some exceptions the participants of the survey
rated almost all use-cases of the QM tailoring and
quality profile export service as useful, as expected.
In addition, the participants showed great interest in
the concept of the dynamic aspects where dynamic
project-related data from SonarQube is used to tailor
QMs and generate issue-specific quality profiles for
SonarQube which are used for further analysis.

Special interest was shown regarding the “fixing
factor”. It was suggested to use this metric to de-
velop a traffic light system in a QM viewer respec-
tively editor where those traffic lights indicate on
sub-hierarchies of the corresponding QM whether the
number of open issues is currently rising, declining or
steady.

For the automatic rule classification using the
adapted and fine-tuned ML model from the litera-
ture research and the experiments, the participants of
this evaluation where sceptical regarding the usage in
a fully-automated real world scenario due to the re-
stricted environment as a participant remarked. How-
ever, the participants overall agreed that it would be
beneficial to the software quality management pro-
cess, if the ML service is not used totally automatic
but rather in a semi-automatic way, i.e., the classifica-
tion results of this service are not used as a final clas-
sification. Instead, these results are used as a sugges-
tion for the software quality expert who then marks
the classification manually.

Future work based on both developed services
could include more practical evaluation and usage on
real world projects in the context of larger companies.
Especially for the ML service, the classification in a
real world setting needs to be evaluated further.

232

REFERENCES

Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: A Pre-
trained Language Model for Scientific Text. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3615-3620, Hong
Kong, China. Association for Computational Linguis-
tics.

Deissenboeck, F., Juergens, E., Lochmann, K., and Wagner,
S. (2009). Software quality models: Purposes, usage
scenarios and requirements. In 2009 ICSE Workshop
on Software Quality, pages 9-14.

Garvin, D. A. (1987). Competing on the Eight Dimensions
of Quality. Harvard Business Review. Section: Con-
sumer behavior.

Knublauch, H., Allemang, D., and Steyskal, S. (2017).
SHACL Advanced Features.

Knublauch, H. and Kontokostas, D. (2017). Shapes Con-
straint Language (SHACL).

McCall, J. A., Richards, P. K., and Walters, G. F. (1977).
Factors in software quality. volume i. concepts and
definitions of software quality. Technical report,
GENERAL ELECTRIC CO SUNNYVALE CA.

Pressman, R. S. (2010). Software engineering: a practi-
tioner’s approach. McGraw-Hill Higher Education,
New York, 7th ed edition.

Shadish, W. R., Cook, T. D., and Campbell, D. T. (2002).
Experimental and quasi-experimental designs for gen-
eralized causal inference. Experimental and quasi-
experimental designs for generalized causal infer-
ence., pages xxi, 623—xxi, 623. Place: Boston, MA,
US Publisher: Houghton, Mifflin and Company.

Wagner, S., Goeb, A., Heinemann, L., Klds, M., Lampa-
sona, C., Lochmann, K., Mayr, A., Plosch, R., Seidl,
A., Streit, J., and Trendowicz, A. (2015). Oper-
ationalised product quality models and assessment:
The quamoco approach. Information and Software
Technology, 62:101-123.

Wagpner, S., Lochmann, K., Heinemann, L., Klds, M., Tren-
dowicz, A., Plosch, R., Seidi, A., Goeb, A., and Streit,
J. (2012a). The quamoco product quality modelling
and assessment approach. In 2012 34th International
Conference on Software Engineering (ICSE), pages
1133-1142.

Wagner, S., Lochmann, K., Winter, S., Deissenbock, E. J.,
Herrmansdorfer, M., Heinemann, L., Klds, M., Tren-
dowicz, A., Heidrich, J., Plosch, R., Gob, A., Korner,
C., Schoder, K., Streit, J., and Schubert, C. (2012b).
The quamoco quality meta-model. Report.

Wehrmann, J., Cerri, R., and Barros, R. (2018). Hierarchi-
cal Multi-Label Classification Networks. In Dy, J. and
Krause, A., editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
5075-5084. PMLR.

