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The rapid evolution of Industry 4.0 has introduced transformative technologies such as the Internet of Things
(IoT), Artificial Intelligence (Al), and big data, facilitating real-time data collection, processing, and decision-
making. At the heart of this revolution lies Cyber-Physical Systems (CPS), which integrate computational
algorithms with physical components to create intelligent, resilient, and adaptive systems. However, CPS
deployment remains complex due to the need for extensive domain expertise. This paper introduces loT-
AID, a novel Explainable Al (XAI)-driven Cyber-Physical Recommendation System (CPRS) that enhances
transparency, trust, and efficiency in CPS design. IoT-AID integrates traditional machine learning models,
deep learning architectures, and fine-tuned transformer-based models with XAl techniques to automate and
improve CPS configuration. Our approach ensures that Al-driven recommendations are interpretable, thereby

increasing adoption across industries.

1 INTRODUCTION

Industry 4.0 marks a pivotal era where the fusion of
IoT, Al and big data transforms industries, enabling
real-time monitoring, predictive maintenance, and de-
centralized decision-making (Choaib et al., 2024).
Cyber-Physical Systems (CPS) form the backbone of
this transformation, integrating physical components
with computational intelligence to optimize industrial
processes. Despite their potential, CPS deployment
faces key challenges. One of the major issues is
the complexity of configuring such systems, as en-
gineers must integrate multiple components, requir-
ing deep domain expertise in hardware and software
(Garouani et al., 2022a). Additionally, the availabil-
ity of high-quality domain-specific datasets, remain a
bottleneck for training Al models effectively (Whang
et al.,, 2023). Many CPS recommendation systems
also lack transparency, often functioning as black-box
models, making it difficult for users to trust their out-
puts and interpret how recommendations are gener-
ated (Garouani et al., 2022c).

To address these challenges, [oT-AID has been de-
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veloped as a novel solution that integrates Explain-
able Al (XAI) techniques with advanced AI mod-
els, ensuring transparent and user-centric CPS design
recommendations (Moosavi et al., 2024). By imple-
menting a multi-faceted approach combining machine
learning, deep learning, and transformer-based mod-
els, IoT-AID enhances the accuracy and interpretabil-
ity of recommendations while simplifying the config-
uration process for engineers and decision-makers.
Building effective CPS applications necessitates
a deep understanding of user needs and the accurate
identification of necessary physical components, such
as sensors. While Large Language Models (LLMs)
have revolutionized various aspects of Industry 4.0,
their potential in smart manufacturing and Cyber-
Physical Systems (CPS) remains largely unexplored
(Choaib et al., 2024). LLMs, which are trained on
extensive, generalized knowledge, often lack the spe-
cialized insights required to navigate the complex
challenges of these domains (Zaheer et al., 2020). To
bridge this gap, we propose fine-tuning LLMs with
datasets specifically built for entity recognition, en-
hancing their ability to generate customized recom-
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mendations for CPS configuration. However, we also
leveraged traditional machine learning models such
as Decision Trees, Support Vector Machines (SVM),
and Naive Bayes, as well as deep learning models
like Recurrent Neural Networks (RNN) and Convo-
lutional Neural Networks (CNN). This multi-faced
approach, combined with fine-tuning a pre-trained
BERT model for text classification, ensured a com-
prehensive understanding of user needs and facilitated
the recommendation of essential components. By
integrating these techniques into the Cyber-Physical
Recommender System (CPRS), we automated and en-
hanced the recommendation process, leading to more
efficient CPS design and implementation in the realm
of Industry 4.0.

The rest of the paper is organized as follows, a
small background on text classification and its differ-
ent models, in addition to the state of the art for cy-
ber physical systems and utilizing XAI. Section 3 dis-
cusses the main components of the proposed system
and we also discuss how these components collabo-
rate to achieve the pursued goals, and how to utilize
different models in this system, Finally in section 4
we will discuss the obtained results and what are the
faced challenges and concludes the paper and outlines
future perspectives in section 5.

2 BACKGROUND

2.1 Text Classification

Text classification, also referred to as text catego-
rization, assigns predefined labels to text based on
its content, playing a crucial role in various NLP
applications such as sentiment analysis, spam de-
tection, topic categorization, and document sum-
marization. Traditionally, methods for text classi-
fication ranged from simple rule-based systems to
more complex machine learning models (Sebastiani,
2002). However, recent advancements in deep learn-
ing and Transformer-based architectures have signifi-
cantly enhanced performance and expanded the range
of applications (Devlin et al., 2019; Yang et al., 2019).
This machine learning subfield, akin to recognizing
features of different flowers, involves training algo-
rithms to detect patterns in words and phrases, en-
abling them to classify new, unlabeled texts. This
technique is utilized in a variety of contexts, including
filtering spam emails (Mardiansyah and Surya, 2024),
analyzing social media sentiment for hate speech
(Zampieri et al., 2023), and categorizing news articles
and videos by topic (Zaheer et al., 2020), highlighting
its versatile and practical applications.
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2.1.1 Traditional Machine Learning Methods

* Naive Bayes: A probabilistic classifier based
on Bayes’ theorem, assuming independence be-
tween features. It is simple, fast, and effective
for many text classification tasks but can struggle
with highly correlated features (McCallum and
Nigam, 1998).

* Support Vector Machines (SVM): A discrimi-
native classifier that finds a hyperplane to sepa-
rate data points of different classes. Known for its
effectiveness in high-dimensional spaces, SVMs
provide strong performance for text classification
tasks (Joachims, 1998).

e Decision Tree: A flowchart-like model where
each node represents a feature and each branch
represents a decision rule. While easy to interpret,
decision trees can overfit the training data without
proper pruning (Quinlan, 1986).

2.1.2 Deep Learning Methods

¢ Feedforward Neural Networks (FNN): Simple
neural networks with one or more hidden layers.
While foundational, they are less effective for text
due to the lack of sequential data handling capa-
bilities (Goodfellow et al., 2016).

¢ Convolutional Neural Networks (CNN): Utilize
convolutional layers to capture local patterns in
text. They are particularly effective for sentence
classification and sentiment analysis (Zhao and
Wu, 2016; Garouani et al., 2023).

* Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM): Capture sequen-
tial dependencies in text data, making them suit-
able for text classification where context is im-
portant. LSTMs, in particular, address the van-
ishing gradient problem of RNNs (Hochreiter and
Schmidhuber, 1997).

2.1.3 Transformer-Based Models

¢ BERT (Bidirectional Encoder Representations
from Transformers): Uses transformers to cap-
ture context from both directions in text, setting a
new state-of-the-art for many NLP tasks, includ-
ing text classification (Devlin et al., 2019).

¢ GPT (Generative Pre-trained Transformer): A
generative model that predicts the next word in a
sequence, useful for both text generation and clas-
sification tasks. GPT-3, in particular, has shown
remarkable capabilities (Brown et al., 2020).

* XLNet: Combines the strengths of autoregressive
and autoencoding models, outperforming BERT
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Figure 1: CPRS Architecture.

on various NLP benchmarks by capturing bidi-
rectional contexts without masking (Yang et al.,
2019).

2.2 Cyber-Physical Systems

Cyber-Physical Systems (CPS) integrate computa-
tional algorithms with physical elements to create in-
terconnected systems that offer advanced functional-
ities and capabilities. CPSs leverage smart sensors,
embedded systems, cloud computing, data storage,
and artificial intelligence techniques to transform in-
dustries, paving the way for smarter factories that are
at the forefront of the fourth industrial revolution.
These advancements enable predictive maintenance,
real-time monitoring, and self-optimization(Garouani
et al.,, 2022b). As critical components of this rev-
olution, CPSs contribute to the development of in-
telligent, resilient, and adaptive machines, facilitat-
ing their widespread adoption across various sectors
and applications. Despite their potential, configuring
CPS solutions to meet specific needs remains chal-
lenging for researchers and engineers due to knowl-
edge gaps. Automated assistance can help by en-
abling engineers and researchers to efficiently de-
velop, validate, and deploy CPS solutions, thereby
enhancing service quality, productivity, and reducing
dependence on human expertise .

The proposed Cyber-Physical Recommender Sys-
tem (CPRS), illustrated in Figure 1, comprises a
Knowledge Base (KB) and a recommendation engine.
The KB contains comprehensive information about
sensors, including their specifications and application
domains. Users interact with the system through a
chatbot, providing details such as product informa-
tion and budget constraints. To address new chal-

lenges, the system employs Natural Language Pro-
cessing (NLP) to extract keywords and match them
with data stored in the KB . Recommendations are re-
fined based on rankings and user feedback. Further-
more, a Meta-knowledge base stores knowledge ac-
quired during offline training and uses ontologies to
enhance information retrieval and query understand-
ing (Choaib et al., 2024).

To improve decision-making, the CPRS incorpo-
rates LLMs such as BERT and some other deep learn-
ing models such as CNN and LSTM. Although LLMs
are proficient in general language understanding, they
may lack the domain-specific knowledge needed for
cyber-physical systems (Devlin et al., 2019). To miti-
gate this, fine-tuning is performed, training LLMs on
domain-specific datasets to understand the terminol-
ogy and context of cyber-physical systems (Choaib
et al.,, 2024). The CPRS uses LLMs to enhance
Natural Language Understanding (NLU), extract en-
tities from user inputs, generate recommendations,
and continuously optimize based on user feedback.
Evaluation metrics include the accuracy of entity ex-
traction and the relevance of recommendations, ulti-
mately facilitating the development of smart cyber-
physical systems.

2.3 XAI

Explainable Al (XAl) is crucial in addressing the lack
of transparency in Al-driven CPS recommendation
systems. XAl aims to make Al decisions comprehen-
sible to humans by providing clear insights into how
models generate predictions (Ribeiro et al., 2016b).
In the IoT-AID system, post-hoc interpretability
methods such as Local Interpretable Model-agnostic
Explanations (LIME) and SHapley Additive exPla-
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nations (SHAP) have been incorporated to enhance
transparency (Ribeiro et al., 2016a; Garouani and
Bouneffa, 2023). LIME generates localized expla-
nations by approximating decision boundaries around
individual predictions, enabling users to understand
the key factors influencing each recommendation. On
the other hand, SHAP provides a global interpretabil-
ity framework by calculating the contribution of each
input feature across multiple predictions. These tech-
niques empower users to validate the CPS recommen-
dations, fostering greater trust and usability.

3 A NOVEL CYBER PHYSICAL
RECOMMENDER SYSTEM

3.1 System Architecture

IoT-AID is designed as a modular system compris-
ing several key components that work in tandem to
streamline CPS design and configuration. The first
component, the Preprocessing Module, is responsi-
ble for cleaning and tokenizing text input using nat-
ural language processing tools such as spaCy and
NLTK. This ensures that the input is standardized
and free from noise. Next, the NLP module uti-
lizes fine-tuned BERT embeddings to extract relevant
entities and contextual information from the input.
The extracted entities are then processed in the data
analysis module, which leverages a combination of
traditional machine learning models, deep learning
architectures, and transformer-based models to ana-
lyze user requirements comprehensively. Based on
this analysis, the Recommendation Engine generates
ranked CPS configurations tailored to the user’s spe-
cific application needs. Finally, the Explainability
Layer integrates XAl techniques such as LIME and
SHAP to provide transparent insights into the recom-
mendations, allowing users to understand the reason-
ing behind each decision.

3.2 Dataset Generation and Feature
Extraction

Data Acquisition Challenges: In our pursuit of con-
structing a reliable Cyber-Physical Recommender
System (CPRS) as shown in figure 2, we encountered
a significant challenge: the absence of readily avail-
able data online. To address this gap, we turned to
web scraping and generative Al techniques to gener-
ate the necessary data.

Dataset Composition: The dataset needed to in-
clude a variety of applications, their respective fields
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of activity, and the sensors used in such applications.
To accomplish this, we integrated a function into our
Django project. This function leverages the OpenAl
library and an OpenAl API key to make requests to
the ChatGPT API, allowing us to retrieve the data we
required.

Data Generation Process: We initiated the data
generation by passing a specific phrase as a param-
eter in the request, instructing ChatGPT to provide us
with the needed data. After executing the request, we
successfully obtained several lines of data. However,
we faced a limitation: ChatGPT could only provide
limited lines per request, and we needed hundreds.
To overcome this, we ran the request in a loop 100
of times, storing all the data in JSON format within a
JSON file.

Data Redundancy Issue: This process took sev-
eral hours, and we eventually collected all required
JSON elements. Yet, we encountered an issue with
data redundancy—too many repeated lines. Despite
instructing ChatGPT not to provide previously given
applications, the data still contained duplicates.

Redundancy Resolution: To resolve this, we im-
plemented a function that iterated through the JSON
array, filtering out redundant entries and compiling a
new file with unique elements. Once we had a refined
JSON file containing 600 unique applications, we uti-
lized a CSV library to convert the JSON data into a
CSV format.

This structured approach not only streamlined our
data collection process but also ensured the unique-
ness and relevance of the data for our Al model’s
training.

3.2.1 Entities Dataset

The entities are described by the attributes shown in
figure 3:
* Application: This field specified the context or
domain where sensors were applied.

» Sensor Types: It listed the various types or cate-
gories of sensors commonly used within the spec-
ified domain.

* Description: This section provided a detailed
overview of how sensors were employed within
the specified domain, including their functionali-
ties and practical applications.

e Domain : Here, we identified the broader industry
or field where these sensors found utility.

3.3 Data Preprocessing

Data preprocessing is a critical step in preparing the
text data for machine learning models. We utilized
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Figure 2: CPRS Pipeline.

"Application™: "smart Irrigation Systems”,

"Sensor Types": "Soil moisture sensors, Weather sensors, Flow
sensors”,

"Description”: "Sensors used to monitor soil moisture levels,
weather conditions, and water flow, enabling efficient irrigation
practices.”,

"Domain of Application”: "Agriculture”

"Application": "Health Monitoring Systems",

"Sensor Types": "Heart rate sensors, Blood pressure sensors, Oxygen
saturation sensors, Temperature sensors",

"Description”: "sensors used to monitor vital signs and health
metrics in real-time, allowing for early detection of health
issues"”,

"Domain of Application": "Healthcare"

Figure 3: Entities Dataset.

both NLTK and spaCy for this purpose. The process
involved cleaning the text by removing special char-
acters, numbers, and stop words which do not con-
tribute to the semantic meaning. Tokenization was
performed to split the text into individual words (to-
kens). This was followed by lemmatization, which re-
duced words to their base forms, thus ensuring consis-
tency (Garouani and Kharroubi, 2022). For instance,
the raw text ”I need a system for health monitoring
for heart rate and oxygen levels” was preprocessed
using spaCy to become “’need system health monitor-
ing heart rate oxygen level”. This preprocessing en-
sured that the text was in a suitable format for feature
extraction and modeling.

3.4 Feature Extraction

Feature extraction transforms textual data into nu-
merical representations that can be used by machine
learning algorithms. We employed two primary meth-
ods: TF-IDF (Term Frequency-Inverse Document
Frequency) Vectorization and BERT Embeddings.
TF-IDF vectorization converted the text into numeri-
cal features by considering the importance of words in
the context of the entire dataset. BERT embeddings,
generated using a pre-trained BERT model, provided
deep contextual understanding of the text by captur-
ing the semantic relationships between words. For
example, the preprocessed text “need system health
monitoring heart rate oxygen level” was converted

into TF-IDF vectors and BERT embeddings, which
served as inputs to the various models.

3.5 Model Training

3.5.1 Machine Learning Models

¢ Decision Tree classifier (DT): The Decision Tree
classifier is a simple yet powerful model that splits
the data based on feature importance to make pre-
dictions. We trained a single decision tree on TF-
IDF vectors using sklearn’s Decision Tree classi-
fier. The model was capable of capturing com-
plex decision boundaries but was prone to over-
fitting. Despite this, it provided a clear and inter-
pretable decision-making process, which we visu-
alized through a generated decision tree diagram.

* Support Vector Machine (SVM): The SVM model
with a linear kernel is well-suited for text classi-
fication due to its robustness and ability to gen-
eralize well. We implemented an SVM classifier
within a pipeline that included TF-IDF vectoriza-
tion, using sklearn’s SVC with probability esti-
mates. This model transformed the preprocessed
descriptions into numerical vectors and then clas-
sified them. The SVM showed high accuracy on
validation data and was less prone to overfitting
compared to the Decision Tree.

* Naive Bayes: The Naive Bayes classifier, partic-
ularly the Multinomial Naive Bayes, is efficient
and effective for text data. It makes simple as-
sumptions about the data distribution but performs
well. Using sklearn’s MultinomialNB, we trained
the model on TF-IDF vectors. The NB model was
fast to train and predict, and it achieved good per-
formance on the text classification task.

3.5.2 Deep Learning Models

¢ Recurrent Neural Network (RNN): RNNs are de-
signed to handle sequential data and are particu-
larly effective for tasks involving time series or
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text sequences. We built an RNN using a sequen-
tial model with an Embedding layer, an LSTM
layer, and a Dense output layer using TensorFlow.
The model captured sequential dependencies in
the text, allowing it to understand context over
long sequences. We tokenized and padded the in-
put sequences before feeding them into the RNN.
This model achieved good accuracy on the valida-
tion data, demonstrating its ability to handle com-
plex dependencies in the text.

¢ Convolutional Neural Network (CNN): CNN:ss, al-
though traditionally used for image processing,
are also effective for text classification by cap-
turing local patterns. Our CNN model consisted
of an Embedding layer, a Conv1D (convolutional)
layer, a GlobalMaxPooling1D layer, and a Dense
output layer. This architecture allowed the model
to detect key phrases and patterns within the text.
We tokenized and padded the sequences before
feeding them into the CNN. The model showed
high accuracy on the validation data, effectively
capturing local features in the text.

* Fine-Tuning BERT:Fine-tuning a pre-trained
BERT model involves adapting it to our specific
text classification task. BERT is a transformer-
based model that excels at understanding context
in text. For our task, we used the pre-trained
BERT model from the Hugging Face library and
added a classification layer on top of it. This
involved training the entire model, including the
BERT layers, to adjust the pre-trained weights
to better fit our dataset. We tokenized the input
text using BERT’s tokenizer, ensuring compatibil-
ity with the model’s expectations. The tokenized
inputs were then fed into the BERT model, fol-
lowed by a dense layer for classification. Train-
ing was performed using a learning rate schedule
and early stopping to prevent overfitting. The fine-
tuning process leveraged the deep contextual em-
beddings of BERT, making it highly effective for
our classification task.

3.6 Proposed Model for XAI in CPS
3.6.1 Role of XAI

Explainable AI (XAI) is fundamental to the IoT-AID
system, ensuring that its recommendations are not
only accurate but also comprehensible. The impor-
tance of XAl lies in its ability to make Al systems
transparent by explaining the reasoning behind their
outputs. For example, in a CPS design scenario,
XAI can clarify why specific sensors or communi-
cation protocols were chosen for a given applica-
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tion (Garouani and Bouneffa, 2023). Such explana-
tions enable engineers to validate the system’s rec-
ommendations and align them with real-world con-
straints and requirements. Moreover, by building trust
and fostering informed decision-making, XAI miti-
gates skepticism often associated with Al-driven sys-
tems.

3.6.2 Utilization of XAI

[IoT-AID incorporates XAI techniques at various
stages of its workflow. During preprocessing, Local
Interpretable Model-agnostic Explanations (LIME)
and SHapley Additive exPlanations (SHAP) help
identify the most significant features in user inputs.
LIME generates local approximations of the model’s
decision boundaries, allowing users to understand
which factors contributed most to specific recommen-
dations. SHAP, on the other hand, provides a global
explanation by computing the average contribution of
each input feature across multiple predictions. These
techniques provide localized insights, making the sys-
tem’s behavior transparent for specific recommenda-
tions. Additionally, during entity recognition and rec-
ommendation generation, XAl techniques highlight
the role of extracted features and contextual rela-
tionships in shaping system outputs. This layered
approach to interpretability ensures that every stage
of IoT-AID’s process is comprehensible and user-
centric.

3.6.3 Structure of the Model

The IoT-AID system integrates traditional machine
learning and modern deep learning techniques, com-
plemented by XAI tools. Traditional algorithms,
such as Decision Trees and Support Vector Machines
(SVMs), are employed for their inherent interpretabil-
ity and simplicity. For more complex tasks, Con-
volutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are used to capture intricate
relationships and temporal dependencies in the data.
Fine-tuned transformer-based models, such as BERT,
enable contextual understanding and domain-specific
entity recognition. These models utilize structured
CPS datasets and expert-generated synthetic data to
improve recommendation accuracy and robustness.
The architecture ensures that each layer processes
data efficiently, applying XAI techniques to provide
transparent insights at every stage.

3.6.4 Model Architecture and Workflow

TIoT-AID’s architecture consists of five key modules:
Preprocessing Module: This module cleans and
tokenizes user inputs, removing noise and standardiz-
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ing the data format. Tools like spaCy and NLTK are
employed for efficient text preprocessing.

NLP Module: Using fine-tuned BERT embed-
dings, this module extracts entities and semantic con-
text from user inputs, ensuring accurate interpretation
of requirements.

Data Analysis Module: Outputs from various ma-
chine learning and deep learning models are inte-
grated in this module to evaluate user requirements
comprehensively.

Recommendation Engine: Based on the processed
data, this engine generates ranked CPS configurations
tailored to the user’s application.

Explainability Layer: XAI techniques are ap-
plied here to provide transparent explanations for rec-
ommendations, fostering user trust and enabling in-
formed decision-making. Figure 4 shows a snippet of
how we used Lime highlighting key words that influ-
ence the model’s decision, with important terms in red
and less important terms in green.

Ineed a % ﬁ I

Can you provide some about
your T

Figure 4: Lime Explanation.

To give an example of the work flow, the user be-
gins by providing a query, such as ”’I need a system
for health monitoring for heart rate and oxygen lev-
els.” This input is cleaned and tokenized in the Pre-
processing Module before being passed to the NLP
Module, where relevant entities like health monitor-
ing” and “heart rate” are extracted. These entities
are analyzed in the Data Analysis Module using a
combination of machine learning and deep learning
models, which collectively generate a list of recom-
mended configurations. The Recommendation En-
gine ranks these suggestions, while the Explainabil-
ity Layer provides detailed insights into the reasoning
behind each recommendation. The models use struc-
tured CPS datasets combined with expert-generated
synthetic data to improve recommendation accuracy
and robustness. The architecture also supports iter-
ative feedback loops, allowing users to refine their
requirements and improve the model’s recommenda-
tions over time.

4 RESULTS AND DISCUSSION

Preliminary evaluations of IoT-AID have demon-
strated its effectiveness in addressing key challenges
in CPS design. The system achieved high accuracy
in entity recognition and recommendation relevance,
thanks to its integration of advanced language models

and machine learning techniques. The incorporation
of XAI methods significantly enhanced user trust and
satisfaction, providing clear and concise explanations
for recommendations. However, the system’s perfor-
mance remains constrained by the quality and scope
of the training dataset, highlighting the need for fur-
ther data expansion.
Also some challenges with data scarcity arise:

4.1 Data Collection Issues

CPS applications require domain-specific datasets,
which are often unavailable or incomplete. IoT-AID
addresses this challenge by leveraging web scrap-
ing techniques to collect data from publicly available
sources. Additionally, generative Al models such as
OpenAl’s GPT are used to synthesize supplementary
data, bridging gaps in the dataset.

4.2 Data Preprocessing and
Deduplication

The data collection process is often plagued by redun-
dancy, with duplicate entries diminishing the qual-
ity of the dataset. To counter this, IoT-AID employs
automated scripts for deduplication and enriches the
dataset with relevant attributes, such as sensor types
and application domains. These steps ensure that the
data is both comprehensive and unique.

4.3 Impact on Results

While these methods significantly enhance dataset
quality, data scarcity remains a challenge in niche
CPS domains. The system’s performance is partic-
ularly affected in scenarios requiring highly special-
ized knowledge. Future work will explore collabora-
tions with industry partners and the use of advanced
data augmentation techniques to further expand and
diversify the dataset.

4.4 Evaluating CPS Performance and
Decision-Making with XAI

Evaluating CPS performance requires a problem-
specific approach, as different applications necessi-
tate distinct success metrics. A universal evaluation
criterion is impractical, so future work will focus on
defining tailored performance indicators or relying on
domain expert validation. This approach ensures that
reasoning strategies—whether pattern-based, logic-
driven, or hybrid—are aligned with the intended func-
tion of the CPS.
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In addition, it is important to recognize that
explainability in Al-driven decision-making is not
equivalent to correctness. XAI in IoT-AID is de-
signed to enhance user understanding by providing
interpretable recommendations rather than guarantee-
ing optimal solutions. By offering clear justifications
for each recommendation, users can make more in-
formed decisions, either accepting or rejecting sug-
gestions based on their own expertise and contextual
needs.

4.5 Addressing Bias Reinforcement in
Recommendations

A significant challenge in Al-driven recommenda-
tions is the risk of bias reinforcement. If an XAl sys-
tem prioritizes user trust and alignment over objec-
tive accuracy, it may reinforce predictable but subop-
timal decisions. Future work will focus on develop-
ing mechanisms to detect and mitigate biases, such as
adversarial testing, diverse training datasets, and al-
ternative recommendation strategies. These measures
aim to ensure that recommendations remain explain-
able while also being objectively beneficial for CPS
configurations.

S CONCLUSION AND FUTURE
WORK

IoT-AID represents a significant advancement in the
field of CPS design and implementation. By inte-
grating XAl techniques into a comprehensive recom-
mendation system, IoT-AID addresses critical chal-
lenges related to complexity, data scarcity, and trans-
parency. Its ability to provide interpretable, accurate,
and user-centric recommendations has the potential to
democratize CPS adoption and accelerate the realiza-
tion of Industry 4.0 objectives. Future iterations will
refine the system’s capabilities, ensuring its applica-
bility across diverse industries and domains.

Future efforts will focus on several key areas to
enhance [IoT-AID’s capabilities. First, expanding the
dataset by collaborating with industry partners and
employing advanced data augmentation techniques
will improve model accuracy and generalizability.
Second, the exploration of hybrid XAl techniques that
combine intrinsic and post-hoc interpretability meth-
ods will further enhance transparency. Third, fine-
tuning advanced transformer models, such as GPT
variants, for domain-specific applications will enable
more nuanced and accurate recommendations. Fi-
nally, real-world deployments of IoT-AID in indus-
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trial settings will provide valuable insights into its
scalability, adaptability, and overall impact.
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