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Abstract: Traditional mining exploration techniques require significant effort, including drilling and sample collection,
making the process highly challenging and costly. The application of machine learning (ML) in mineral explo-
ration has revolutionized the field by improving efficiency and accuracy in identifying critical raw materials
(CRM). This study presents a novel framework that integrates Light Detection and Ranging (LiDAR) and
PRISMA hyperspectral data with ML techniques to enhance mineral exploration. By leveraging an ensemble
model combining Random Forest (RF) and Multi-Layer Perceptron (MLP), this approach captures complex
spatial and spectral patterns, improving the prediction of cobalt, copper, and nickel concentrations. To address
the challenge of limited labeled data, synthetic samples were generated using the Gaussian Copula Synthesizer
(GCS), enhancing model generalization. The proposed methodology was validated at the Áramo mine in As-
turias, Spain, demonstrating that the fusion of multispectral and topographical features significantly improves
predictive accuracy. The results show that the scalability and robustness of this framework for identifying
CRM in geologically significant yet underexplored regions.

1 INTRODUCTION

Traditional mining exploration techniques rely heav-
ily on extensive field surveys, drilling, and geochem-
ical sampling, making the process time-consuming,
labor-intensive, and costly. Additionally, these meth-
ods often struggle with accessibility in remote or geo-
logically complex regions, limiting their efficiency in
large-scale mineral prospecting.

Recent advancements in Remote Sensing (RS)
technologies, particularly Light Detection and Rang-
ing (LiDAR), have been significantly employed in
geological mapping (Paniagua et al., 1988; Putki-
nen et al., 2017) and mineral exploration (Balaram,
2023). LiDAR provides high-resolution topographi-
cal data, which makes it a valuable resource for identi-
fying the presence of minerals (Lo et al., 2021; Farah-
nakian et al., 2024a). Another useful data type for
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monitoring and studying environmental phenomena
is hyperspectral data from satellites like PRISMA.
The PRISMA satellite offers high-resolution spectral
imaging across a wide range of wavelengths, allowing
for detailed analysis of surface compositions. This
capability makes it particularly useful in detecting
specific minerals and distinguishing between differ-
ent rock types or vegetation (Bedini and Chen, 2020).
Therefore, fusing these datasets provide a compre-
hensive foundation for mapping geological and min-
eralogical features (Farahnakian et al., 2024a).

Machine learning (ML) methods have been ex-
tensively applied in Mineral Prospectivity Mapping
(MPM) to analyze complex spatial and geochemical
patterns associated with mineralization. Early stud-
ies utilized traditional ML algorithms such as Sup-
port Vector Machines (SVM), which demonstrated ef-
fectiveness in binary classification tasks for predict-
ing mineral deposits (Abedi et al., 2012). Random
Forest (RF) has gained popularity due to its robust-
ness in handling high-dimensional data and its abil-
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ity to provide feature importance metrics, enabling in-
sights into the relationships between explanatory vari-
ables and mineral occurrences (Parsa and Maghsoudi,
2021). Gradient Boosting methods, such as XGBoost,
have also been employed for MPM, achieving high
accuracy by sequentially minimizing errors in predic-
tion (Ibrahim et al., 2022). Additionally, Artificial
Neural Networks (ANNs) have shown promise due
to their universal approximation capabilities, partic-
ularly in capturing complex, nonlinear relationships
between geochemical, geophysical, and RS variables
(Brown et al., 2000). Besides traditional ML models,
deep learning models such as Convolutional Neural
Networks (CNNs) (Sun et al., 2024) and autoencoders
(Luo et al., 2020) have been recently introduced to
leverage spatial and spectral features from hyperspec-
tral data, further enhancing predictive performance.

Despite these advancements, a key limitation
across most ML methods is the dependency on large,
labeled datasets for training. In mineral explo-
ration, such datasets are often limited due to the
high cost and logistical constraints of field sam-
pling. To mitigate this issue, synthetic data genera-
tion methods, such as the Gaussian Copula Synthe-
sizer (GCS) and deep learning-based approaches like
Conditional Generative Adversarial Networks (CT-
GAN) and Tabular Variational Autoencoder (TVAE),
have been proposed to augment training datasets, en-
abling ML models to generalize better and enhance
prediction accuracy. CTGAN (Xu et al., 2019a) is
a deep learning-based model tailored for generating
synthetic tabular data, excelling at capturing complex
dependencies between features by conditioning on
discrete variables. Similarly, TVAE (Xu et al., 2019b)
leverages variational autoencoders to synthesize tabu-
lar data by effectively modeling intricate relationships
within the dataset. In this work (Farahnakian et al.,
2024a), the authors demonstrate that the GCS outper-
forms deep learning-based models such as TVAE and
CTGAN, particularly in scenarios where training data
is limited or lacks variability. Another method, SEDA
(Sheikh et al., 2024) integrates feature and distance
similarities to augment the minority samples. They
evaluated the impact of SEDA on the performance of
four ML models, including Multi-Layer Perceptron
(MLP), RF, Decision Tree (DT), and Logistic Regres-
sion (LR). Their results show that adding high-quality
synthetic samples can help ML models to generalize
better to unseen data, addressing the overfitting issue
commonly seen in imbalanced datasets.

This study proposes a novel approach to mineral
exploration that combines LiDAR and PRISMA hy-
perspectral data to predict concentrations of critical

minerals, including cobalt (Co), copper (Cu), and
nickel (Ni), at the Áramo mine in Asturias, Spain.
An ensemble model combining RF and Multi-Layer
Perceptron (MLP) was developed to leverage the
strengths of both algorithms. RF was utilized for its
robust feature selection capabilities and ability to han-
dle high-dimensional datasets, while MLP was em-
ployed for its ability to model complex nonlinear re-
lationships in the fused dataset. To address the limita-
tion of labeled data, synthetic samples were generated
using GCS (Xu et al., 2019a), augmenting the dataset
and improving model performance.

The ensemble approach, employing an averaging
strategy, was evaluated using both real and synthetic
geochemical data as ground truth, demonstrating su-
perior performance compared to individual models.
Results indicate that the integration of multispectral
and topographical features derived from LiDAR and
hyperspectral imagery significantly enhances the rep-
resentation of spatial and spectral characteristics nec-
essary for identifying mineralization zones. Addition-
ally, the results underscore the effectiveness of data
augmentation in improving ML ensemble methods
for predicting critical raw material concentrations.
This framework offers a reliable and scalable solu-
tion for mineral exploration, advancing data-driven
exploration strategies while supporting sustainable re-
source development.

2 STUDY AREA

The pilot site, Áramo, located in the Sierra del Áramo
in northern Spain (Figure 1), lies within the Saint
Patrick Exploration License, an area renowned for its
Co, Cu and Ni mineralization. This mineralization is
associated with the Late-Variscan Áramo Fault (Pani-
agua et al., 1988) and occurs within the allochthonous
Áramo Unit, which is part of the Cantabrian Zone
(Aller, 1983). The mineralization predominantly oc-
curs in karstified Upper Carboniferous limestones that
have undergone multiple phases of hydrothermal al-
teration, followed by a supergene stage (Álvarez et al.,
2018; Archibald, 2021). These distinct alteration fea-
tures, including the lithological and structural char-
acteristics of the mineralized rocks, make the Aramo
mine particularly suitable for testing and advanc-
ing RS techniques for mapping critical raw materi-
als (CRM). The diversity of alteration signatures and
the well-documented geological framework enable
researchers to calibrate and validate RS data, such as
LiDAR, hyperspectral imaging, and other methods,
for effective mineral exploration in geologically com-
plex and underexplored regions.
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Figure 1: Location of the whole Aramo mine area. The St. Patrick mining area is the selected study area in this study.

(a) (b) (c)

Figure 2: The PRISMA imagery used in this study, alongside the actual distribution of (a) Co, (b) Cu, and (c) Ni concentrations
from geochemical data across the study area.

3 DATA

3.1 PRISMA

The PRISMA (PRecursore IperSpettrale della Mis-
sione Applicativa)1 satellite provides hyperspectral
imagery across 250 bands, offering continuous spec-
tral coverage. It includes 66 bands in the Visi-
ble and Near-Infrared (VNIR) range (400–1010 nm)
and 173 bands in the Short-Wave Infrared (SWIR)
range (920–2505 nm), both with a spatial resolution
of 30 meters. Additionally, PRISMA is equipped

1https://www.asi.it/en/earth-science/prisma/

with a panchromatic camera that captures a single
band (400–700 nm) image at 5-meter spatial reso-
lution. A PRISMA image of the study area, fea-
turing 5.1% cloud coverage, was acquired on May
10, 2022 (Figure 3), at the L2D processing level.
To ensure consistency, all bands were resampled us-
ing nearest-neighbor interpolation to a 5-meter reso-
lution. To reduce data dimensionality and minimize
noise, Principal Component Analysis (PCA) was em-
ployed, a technique proven effective in mineral explo-
ration with satellite imagery (Carvalho et al., 2024)
(Adiri et al., 2020). PCA compresses the information
from the original bands into a smaller set of bands,
known as principal components (PCs). Each PC rep-

S34I 2025 - Special Session on S34I - From the Sky to the Soil

288



resents contributions from all the input bands and is
ranked according to the amount of variance it explains
(Carvalho et al., 2024).

3.2 Airborne Light Detection and
Ranging (LiDAR)

In this study, high-resolution airborne LiDAR data
was acquired by Eurosense2 to capture detailed topo-
graphic information of the study area. The LiDAR
survey was conducted at an altitude of approximately
2,450 meters above mean sea level (AMSL) and 1,450
meters above ground level (AGL). To ensure thorough
coverage, the LiDAR strips were flown with a 70-80%
overlap, reducing gaps between flight paths and en-
hancing spatial continuity.

The average LiDAR point density exceeded 10
points per square meter, providing a fine spatial res-
olution, with each LiDAR spot having a ground di-
ameter of 36 cm. This high-density data was cru-
cial for producing accurate Digital Terrain Models
(DTM) and Digital Surface Models (DSM), both gen-
erated at a 0.5-meter grid resolution. This ensured
that terrain and surface details were captured with
high precision. To interpolate ground elevation values
between LiDAR points, Inverse Distance Weighting
(IDW) interpolation was applied, assigning greater
weight to points closer to the target location, thus en-
suring smooth and accurate surface modeling.

3.3 Field Data

The study area, Áramo mine, comprises the Saint
Patrick Exploration License, for Co, Cu, and Ni,
currently being explored by AURUM Global Explo-
ration3. Figure 3 illustrates the Co deposits and their
concentration on the PRISMA image. The dataset
consists of 729 samples, with Co concentrations rang-
ing from 1 to 18,750 parts per million (ppm), with
an average of 348.9 ppm. The Cu ranges from 2 to
500,000 ppm, with an average of 10,742.7 ppm. The
Ni ranges from from 1 to 16,800 ppm, with an av-
erage of 430.7 ppm. The distribution of metal con-
centrations, particularly Cu (Cu), has a large spread,
with some extreme maximum values (e.g., 50% Cu
and 500,000 ppm Cu). The standard deviation for Cu
is quite high, indicating variability in the dataset. Co
and Ni concentrations are much lower compared to
Cu on average, and have more moderate spreads.

2https://www.eurosense.com/
3https://www.aurumexploration.com/

exploration-projects-in-asturias-spain/

Figure 3: Correlation matrix heatmap for targets.

To confirm that multi-target regression is justified,
we plot the correlation heatmaps between targets as
shown in Figure 3. From the visualization, we can
see there is a strong positive correlation between Co
and Ni (0.66). However, the correlation between Cu
and Co (0.35) is weaker. For this reason and based
on our extensive experiments, we found that using a
multi-target regression for Co and Ni and a septate
model for Cu can achieve better result based on our
data.

The original distribution of data for the three min-
erals is skewed (see Figure 4a). To address this, we
performed three preprocessing steps on the field data
to mitigate issues such as skewed distributions, out-
liers, and variability in feature scales. The processed
distribution of minerals is presented in Figure 4b.
These preprocessing steps were crucial for enhancing
the stability and performance of the machine learning
models, as outlined below:

• Logarithmic transformation was applied to fea-
tures with positively skewed distributions to nor-
malize the data. Specifically, the natural log-
arithm with a small offset (log1p(x) = log(1 +
x)) was applied to numeric features to ensure the
transformation was defined for zero values.

• Winsorization was used to handle outlier, where
feature values were capped at the 99th percentile.
This step was applied column-wise to numeric
features to reduce the effect of extreme values
while preserving the majority of the data distri-
bution.

• Standard scaling was applied to all features to
normalize their distributions. This transformation

An Ensemble Modeling Approach for Mapping Critical Mineral Distribution with LiDAR and PRISMA Data

289



(a)

(b)

Figure 4: Comparison of (a) raw data and (b) processed distributions of mineral concentrations (Co, Cu, Ni).

scaled the data to have a mean of zero and a stan-
dard deviation of one.

4 METHODOLOGY

Figure 5 illustrates the proposed methodology out-
lined in this study. The final dataset consists of five
features, including DEM and DSM derived from Li-
DAR data, and three principal components (PCs) ex-
tracted from PRISMA hyperspectral data. The field
dataset, comprising 729 samples, is divided into train-
ing and test sets in a 70:30 ratio. To address the lim-
ited labeled data, GCS was employed to generate syn-
thetic data based on the training dataset. Both feature
and target values were augmented, and the synthetic
data was integrated with the original dataset to en-
hance the model training process.

Two models, RF and MLP, were used to solve the
regression problem for exploring the target mineral’s
distribution patterns. Both models are evaluated with
10-fold Cross Validation (CV), and optimal hyperpa-
rameters were determined using a Grid Search tech-

nique (Pedregosa et al., 2011). The predictions from
the two models were then combined through an av-
eraging ensemble approach to produce the final out-
put. The ensemble model’s performance was evalu-
ated on the test dataset using metrics such as RMSE,
MAE, and R2. The best-performing model was sub-
sequently utilized to generate high-resolution mineral
prediction maps for Co, Cu, and Ni across the entire
study area.

4.1 Synthetic Data Generation

GCS is reasonable if the dataset is small, as it
helps introduce diversity while preserving relation-
ships within the data. It was first introduced in the
Synthetic Data Vault (SDV) as a method to generate
synthetic data by modeling the statistical properties
and dependencies within a single table(Patki et al.,
2016). The process begins by identifying the appro-
priate probability distributions for each column, such
as Gaussian, uniform, or other relevant distributions,
using statistical tests like the Kolmogorov-Smirnov
(Jr., 1951) test to determine the best fit. The Gaussian
Copula Synthesizer captures the covariances between
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Figure 5: Overall framework.

columns by standardizing them to a normal distribu-
tion before computing their dependencies, which al-
lows it to accurately replicate the relationships within
the data. This approach ensures that the generated
data maintains the original patterns and correlations
observed in the real data, making it highly realistic
and suitable for various data science tasks.

One of the key advantages of the GCS is its com-
putational efficiency compared to more complex gen-
erative models, such as Generative Adversarial Net-
works (GANs). Since it relies on well-established sta-
tistical methods, this approach requires significantly
less computational power and training time, making
it faster and more scalable for large datasets. Addi-
tionally, GCS is inherently robust and easier to imple-
ment, as it does not involve the intricate training dy-
namics of adversarial models, which can be prone to
instability and mode collapse. These strengths make
GCS an attractive choice for generating high-quality
synthetic data with minimal computational overhead,
facilitating broader adoption in scenarios where data
privacy and speed are critical concerns(Patki et al.,
2016).

4.2 Ensemble Modeling

RF (Genuer et al., 2008) is an ensemble learning al-
gorithm that constructs multiple decision trees during
training and aggregates their outputs to enhance accu-
racy and robustness. For regression tasks, RF predicts
by averaging the outputs of the individual trees, while
for classification tasks, it determines the final output
using the majority vote (mode) of the trees. RF excels
at handling large, high-dimensional datasets and pro-
vides inherent estimates of feature importance, offer-
ing insights into the underlying data patterns (Farah-
nakian et al., 2024b). Its design mitigates overfitting
by combining predictions from multiple trees, thereby
improving generalization. Recent advancements have

further refined its computational efficiency and over-
fitting control, solidifying RF as a reliable and in-
terpretable choice for both predictive and descriptive
tasks.

MLP is a type of feedforward artificial neural net-
work composed of an input layer, one or more hid-
den layers, and an output layer. Each layer consists
of interconnected neurons that employ nonlinear ac-
tivation functions to capture complex relationships in
the data. During training, MLP adjusts its weights
using optimization algorithms such as backpropaga-
tion to minimize the error between predicted and ac-
tual outputs. Known for its universal approximation
properties, MLP is highly adaptable for tasks such as
regression and classification. However, it is suscepti-
ble to overfitting, especially in models with excessive
neurons or layers, which can be mitigated using tech-
niques like dropout and regularization. Determining
the optimal architecture typically requires experimen-
tation and validation.

In this study, we employed ”GridSearchCV”, a
systematic method from the scikit-learn library, to
identify the optimal set of hyperparameters for our
models. For RF, the optimal number of estimators
was 50, and the maximum depth of the trees was set
to 10. For MLP, the best configuration for the hidden
layer size was 100, and the regularization term alpha
was set to 0.001.

To further enhance predictive performance, we
proposed an ensemble approach that combines the
predictions from RF and MLP to leverage their com-
plementary strengths. Ensemble learning integrates
the outputs of multiple predictive models to enhance
performance, robustness, and generalization. For re-
gression tasks, we employed an averaging-based en-
semble, which reduces variance and improves predic-
tive accuracy by merging the outputs of RF and MLP.
This approach capitalizes on RF’s ability to handle
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noisy, high-dimensional data and MLP’s capacity to
learn from complex, multi-modal inputs, resulting in
a more robust and accurate predictive framework.

4.3 Performance Metrics

To evaluate the predictive performance of our models,
we used the following metrics:

• Mean Absolute Error (MAE): Measures the av-
erage absolute difference between predicted and
actual values. It provides a straightforward inter-
pretation of error magnitude, with smaller values
indicating better performance.

• Root Mean Squared Error (RMSE): Represents
the square root of the average squared differences
between predicted and actual values. RMSE is
sensitive to large errors and highlights the model’s
ability to handle outliers.

• Coefficient of Determination (R2): Indicates the
proportion of variance in the target variable ex-
plained by the model. An R2 value close to 1 sug-
gests that the model explains most of the variabil-
ity, while negative values indicate poor predictive
performance.

5 RESULTS

We trained a single-target regression model for Cu
to focus on its individual predictive patterns, while a
multi-target regression model was developed for Co
and Ni to leverage their strong correlation and en-
hance predictive performance. This dual modeling
approach ensures that both independent and corre-
lated variables are optimally modeled. The models
were evaluated using RMSE, MAE, and R², provid-
ing a comprehensive assessment of predictive accu-
racy, residual error, and the proportion of variance ex-
plained by the models.

5.1 Models’ Performance

Table 1 shows the performance of different models
(RF, MLP, and Ensemble) applied to both single-
target and multi-target regression tasks.

Single-Target Regression (Cu): The Ensemble
model demonstrated the best performance when aug-
mented data was used, achieving an RMSE of 1.66,
an MAE of 0.83, and an R² score of 0.18. This im-
provement highlights the effectiveness of GCS in en-
hancing the diversity of training data, thereby reduc-
ing model bias and variance.

RF also benefited significantly from GCS aug-
mentation, with an RMSE improvement from 2.45
(real data only) to 1.94 and a reduction in MAE from
0.92 to 0.87. However, the MLP exhibited diminished
performance with GCS augmentation, as evidenced
by an increase in RMSE (from 1.78 to 4.14) and a
slight decline in R² (from 0.11 to 0.08). This suggests
that the synthetic data may have introduced inconsis-
tencies or overfitting tendencies for MLP. Overall, the
Ensemble model with GCS augmentation emerged as
the most robust approach for Cu prediction, outper-
forming both individual models in accuracy and gen-
eralization.

Multi-Target Regression (Co, Ni): For the
multi-target regression of Co and Ni concentrations,
GCS augmentation provided notable benefits to the
Ensemble model. The Ensemble model achieved the
best performance, with an RMSE improvement from
0.11 (real data only) to 0.10 and an increase in R² from
0.12 to 0.18. The RF model showed consistent perfor-
mance, maintaining an RMSE of 0.11 and improving
R² from 0.05 to 0.12, indicating that GCS successfully
captured additional variability in the dataset. Simi-
larly, the MLP model exhibited a slight improvement
in R² (from 0.11 to 0.14) with GCS, while maintain-
ing consistent RMSE and MAE values.

5.2 Impact of Data Augmentation on
Model Performance

Table 1 also performance metrics (RMSE, MAE,
and R²) for machine learning models trained with
and without GCS-based data augmentation for both
single-target and multi-target predictions. The col-
umn ”Data Source” in Table 1 indicates whether the
models were trained using only real data or a combi-
nation of real and synthetic data.

For the single-target predictions of Cu concentra-
tion, the RF model shows improvement with GCS
augmentation, with RMSE decreasing from 2.45 to
1.94 and R² improving from -0.67 to -0.10. However,
the MLP model’s performance slightly deteriorates
with GCS augmentation (RMSE increases from 1.78
to 4.14). The ensemble model benefits from GCS aug-
mentation, achieving the best overall results for Cu
with an RMSE of 1.66 and an R² of 0.18, showcas-
ing the ensemble’s ability to generalize better when
leveraging augmented data.

For multi-target predictions (Co and Ni), the im-
pact of GCS augmentation is less pronounced but still
notable. While the RF model shows slight improve-
ments in R² from 0.05 to 0.12, the MLP and en-
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Table 1: Performance metrics for ML models with and without GCS Augmentation.

Model Type Target Data Source Model RMSE MAE R2

Single-Target Cu Real Data RF 2.45 0.92 -0.67
Single-Target Cu Real + GCS RF 1.94 0.87 -0.10
Single-Target Cu Real Data MLP 1.78 0.89 0.11
Single-Target Cu Real + GCS MLP 4.14 1.15 0.08
Single-Target Cu Real Data Ensemble 1.96 0.87 -0.07
Single-Target Cu Real + GCS Ensemble 1.66 0.83 0.18
Multi-Target Co,Ni Real Data RF 0.11 0.02 0.05
Multi-Target Co,Ni Real + GCS RF 0.11 0.03 0.12
Multi-Target Co,Ni Real Data MLP 0.11 0.04 0.11
Multi-Target Co,Ni Real + GCS MLP 0.11 0.03 0.14
Multi-Target Co,Ni Real Data Ensemble 0.11 0.03 0.12
Multi-Target Co,Ni Real + GCS Ensemble 0.10 0.02 0.18

semble models benefit more significantly. The en-
semble model achieves the best overall performance
with GCS augmentation, as indicated by a decrease
in RMSE to 0.10 and an improvement in R² to 0.18.
These results suggest that GCS augmentation effec-
tively enhances model performance for multi-target
tasks, particularly for ensemble methods.

(a)

(b)

Figure 6: The performance metrics vs the number of syn-
thetic data points for the ensemble model of (a) single target
(Cu), and (b) multi-target (Co,Ni).

5.3 Model Performance vs Number of
Synthetic Samples

Different amounts of synthetic data are systematically
tested and combined with real data to enhance model
robustness. Figure 6 shows the performance metrics
(MAE, RMSE and R²) versus the number of synthetic
data points for the ensemble model of single target
and multi-target. The performance of the ensemble
model for single-target regression (Cu) improves con-
sistently as the number of synthetic data points in-
creases. As shown in Figure 6(a), the RMSE and
MAE exhibit a gradual decline, while the R² score
shows a steady increase. With the addition of up to
2,000 synthetic data samples, the RMSE reduces to
1.66, and the MAE decreases to 0.83, demonstrating
enhanced accuracy. The R² improves to 0.18, indicat-
ing better variance explanation. These results con-
firm the effectiveness of GCS augmentation in en-
hancing model robustness and predictive performance
for single-target regression tasks.

For the multi-target regression of Co and Ni, the
ensemble model similarly benefits from the inclusion
of synthetic data, as shown in Figure 6(b). The RMSE
remains stable at 0.10, while the MAE maintains a
low value of 0.02. The R² score increases slightly to
0.18, demonstrating a modest improvement in vari-
ance explanation with the addition of synthetic data.
Unlike the single-target task, the improvements are
more marginal, suggesting that the real dataset al-
ready captures much of the variability for these tar-
gets. Nevertheless, the synthetic data contributes to
maintaining model stability and consistency across
performance metrics.

In Figure 7, we also visualize the distribution real
data and and the synthetic dataset generated using
GCS only for the optimal number of synthetic data
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(a) (b)

(c)

Figure 7: Distribution of the real dataset versus synthetic dataset for the ensemble model predictions: (a) Cu and (b) Co and
Ni.

(a) (b) (c)

Figure 8: The prediction maps of (a) Co, (b) Cu, and (c) Ni concentrations across the study area.
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where ensemble model achieves the lowest RMSE.
Both regression models achieve the lowest RMSE
with 2,000 synthetic samples. Across all three targets
(Cu, Co, Ni), the synthetic data closely approximates
the real data distribution. This demonstrates the ca-
pability of GCS to model and replicate the statistical
characteristics of the real dataset. The close alignment
between real and synthetic distributions supports the
validity of using the synthetic dataset for data aug-
mentation in training machine learning models. This
alignment ensures that the synthetic data does not in-
troduce significant biases into the learning process.

5.4 Predicted Distribution Maps

The prediction maps of Co, Cu, and Ni concentrations
(Figure 8) illustrate the spatial distribution of these
critical raw materials across the study area. These
maps were generated using the ensemble modeling
approach that combines RF and MLP models using
LiDAR and PRISMA data.

The Co prediction map (Figure 8(a)) reveals a
concentrated distribution of Co in the central and
northeastern portions of the study area, with estimated
concentrations ranging from 40 ppm to 900 ppm.
These areas coincide with regions of known geologi-
cal features conducive to Co mineralization.

The Cu prediction map (Figure 8(b)) reveals a
concentrated distribution of Cu in the central and
southern portions of the study area, with estimated
concentrations ranging from 30 ppm to 60,459 ppm.

The Ni prediction map (Figure 8(c)) highlights
high Ni concentrations (up to 1,118 ppm) in the north-
ern and southern parts of the study area, indicating
potential overlap with Co mineralization zones. This
spatial correlation underscores the strong geological
relationship between Co and Ni , which was effec-
tively captured by the multi-target regression model.

These prediction maps demonstrate the efficacy of
the ensemble modeling approach in integrating multi-
sensor data and leveraging synthetic data augmen-
tation to produce high-resolution distribution maps.
The results provide valuable insights for prioritizing
exploration targets and guiding resource development
strategies in geologically significant areas.

6 CONCLUSIONS

This study presents a comprehensive framework for
mineral exploration, demonstrating the integration
of LiDAR-derived elevation models (DEM, DSM)

with hyperspectral Principal Components (PCs) ex-
tracted from PRISMA imagery provided a richer fea-
ture space for ML models. By combining the predic-
tive strengths of RF and MLP in an ensemble model,
the approach effectively addresses the complexities of
multi-sensor data analysis. The inclusion of synthetic
data generated by the GCS significantly mitigates the
challenges posed by limited labeled datasets, enhanc-
ing model performance and generalization. Exper-
iments conducted at the Áramo mine in Asturias,
Spain, validated the framework’s ability to produce
accurate distribution maps.

Future work will focus on extending this frame-
work to incorporate additional data sources, such as
geophysical measurements and soil geochemistry, to
further enhance prediction accuracy and applicability
in diverse geological settings. Additionally, exploring
advanced machine learning techniques, such as deep
learning models tailored for multi-sensor data fusion,
and assessing their scalability across larger study ar-
eas will be prioritized.
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