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Abstract: Automatic path planning of unmanned aerial vehicles (UAVs) can reduce human operational errors and min-
imize the risk of flight accidents. Generally, path planning requires UAVs to arrive at the target points safely 
and timely. The commonly utilized dynamic programming algorithms and heuristic bionic algorithms are 
characterized by their intricate designs and suboptimal performance, making it challenging to achieve the 
goal. Some methods based on Reinforcement Learning (RL) are only suitable for specialized scenarios and 
have poor scalability. This paper proposed an Extensible Multi Agent Reinforcement Learning (MARL) 
Framework. It includes System Framework and Learning Framework. System Framework sets up the scenario 
of path planning problem, which can be extended to different scenarios, including dynamic/static targets, 
sparse/dense obstacle, etc. Learning framework reconstruct the models and scenarios of System Framework 
as Partially Observable Markov Decision Process (POMDP) problem and adapt MARL algorithms to solve 
it. Learning framework can be compatible with a variety of MARL algorithms. To test our proposed frame-
work, preliminary experiments were conducted on three MARL algorithms: IQL, VDN, and QMIX, in the 
constructed scenario. The experimental results have verified the effectiveness of our proposed framework. 

1 INTRODUCTION 

Collaborative path planning for multiple unmanned 
aerial vehicles (UAVs) represents a quintessential au-
tomatic control challenge.In comparison to traditional 
manual control, automatic control for multiple UAVs 
exhibits significant advantages in terms of efficiency 
and safety. 

At present, some algorithms have achieved signif-
icant results in path planning for single /distributed 
UAVs. However, in complex environments charac-
terized by the presence of multiple targets and a sig-
nificant number of obstacles, a single UAV often 
struggles to efficiently accomplish the task. Such sce-
narios typically necessitate the collaboration of mul-
tiple UAVs to effectively perform path planning in 
these challenging conditions. Coordinating multiple 
UAVs has brought many new challenges (Raap, M. 
et al. 2019). For example, algorithms tailored for the 
single UAV-single target path planning problem 
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solely require consideration for minimizing the dis-
tance between the UAV and the target point. But for 
multiple UAVs, the relationship between the UAV 
and the target points may change as the environment 
dynamically changes.In addition, when dealing with 
multiple target points, competition among UAVs 
should be taken into account to prevent redundant vis-
its to the same target point. Furthermore, the fuel en-
durance limit must be considered, ensuring that the 
UAV reaches the target point within a specified 
timeframe. 

In recent years, various methods and algorithms 
have emerged in the field of multi-UAV path plan-
ning research. Mainly including dynamic program-
ming algorithms, heuristic algorithms, reinforcement 
learning methods, etc. Ni et al. (Ni, J., Tang, G. et al. 
2020) designed an innovative latent game model and 
optimized binary logarithmic linear learning algo-
rithm, which can address the challenges of collabora-
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tive control and comprehensive coverage of search ar-
eas in multi-UAV collaborative search tasks. Zheng J 
et al. (Zheng, J., Ding, M. et al.2023) developed an 
overall UAV search objective function in a finite time 
domain, which not only considers the need for re-
peated searches, but also considers the maintenance 
of connectivity and collision avoidance between 
UAVs. This study decomposes the overall search ob-
jective function and establishes a Distributed Con-
strained Optimization Problem (DCOP) model, 
which enables all UAVs to optimize the overall 
search objective by interacting with their neighbors. 
A method based on Enhanced Genetic Algorithm 
(EGA) is proposed to explore the global optimal so-
lution of DCOP. Zhang M et al. (Zhang M, Han Y, 
Chen S. et al., 2023) proposed a RIME algorithm 
based on multi elite policy enhancement for 3D UAV 
path planning. This algorithm achieves exploration 
and development behavior in optimization methods 
by simulating the formation process of ice. Update the 
population during the optimal solution selection stage 
through an improved greedy selection mechanism. 

Traditional dynamic programming algorithms are 
limited to controlling small-scale UAV swarms and 
require tailored designs for different scenarios, lead-
ing to limited flexibility. Heuristic biomimetic algo-
rithms can address these issues to some extent. How-
ever, most heuristic algorithms only utilize infor-
mation from a single step or a few steps to determine 
UAV behavior and are unable to account for the im-
pact of long-term benefits on current decisions. 

Currently, reinforcement learning (RL) algo-
rithms stand as one of the most efficient methods for 
implementing collaborative path planning for multi-
ple UAVs. Through interaction with the environment, 
RL learns the optimal policy and adapts to real-time 
environmental changes.It utilizes historical experi-
ence via Q-networks to integrate long-term benefits 
into UAV behavior decision-making. However, RL 
still encounters unresolved challenges in UAV path 
planning for dynamic targets, including: 1. some stud-
ies still use centralized DQN(Mnih, V. et al,2015) or 
IQL(Kostrikov, I. et al,2021) algorithms to solve 
multi-UAV collaborative path planning problems 
(Fei, W. et al, 2024) (Fang, W. et al, 2024). These al-
gorithms cannot fully integrate the observed infor-
mation of all agents, which results in agents are una-
ble to make optimal decisions.2. Many studies focus 
on improving algorithms for specific scenarios, and 
algorithms are inflexibility.  

This paper presents an Extensible Multi Agent 
Reinforcement Learning (MARL) Framework.The 
Extensible MARL Framework consists of two parts, 
the System Framework and the Learning framework. 

The contributions are as follows: 
1. System Framework defines the multi-objec-

tive optimization function and the constraints of the 
problem, and constructs a scenario for multi-UAV 
path planning, and develops models for UAVs, obsta-
cles, and targets. 

2. Learning Framework reconstructs the multi-
UAV trajectory planning process into a Partially Ob-
servable Markov Decision Process (POMDP), and 
combines the MARL algorithm with the recon-
structed problem. To ensure the smooth operation of 
the algorithm, the reward function of the MARL al-
gorithm is constructed using environmental infor-
mation such as the number of discovered targets and 
the distance between the UAV and the targets. 

3. We conducted preliminary experiments using 
  three MARL algorithms, IQL,VDN(Sunehag, P. et 
al,2017),and QMIX(Rashid, T. et al.,2020), to verify
 the effectiveness of the proposed method. 

2 SYSTEM FRAMEWORK 

To describe solve the problem of UAVs collaborative 
path planning. Firstly, we define the problem as a 
nonlinear multi-objective optimization problem and 
establish its constraints. Subsequently, based on the 
problem setting, we depict the scenario and identify 
the models within it, including drones, obstacles, tar-
gets, among others. Lastly, we formulate these mod-
els, determining their behavioral and interaction rules. 

2.1 Problem Formulation  

The ability of multi-UAV collaborative path planning 
can be represented by the number of discovered tar-
gets. The objective function is established as follows: 𝐹௧ = 𝑚𝑎𝑥 ෍ ቊ1 |𝑑𝑖𝑠(𝐿(𝑡𝑎𝑟௜,௧) − 𝐿(𝑢௝,௧)) ≤ 𝑑௥0 |𝑑𝑖𝑠(𝐿(𝑡𝑎𝑟௜,௧) − 𝐿(𝑢௝,௧)) > 𝑑௥

௠
௜ (1)

For 𝑡𝑎𝑟௜,௝ represents the information of i-th target 
at time t,𝑢௝,௧ represents the information of j-th UAV 
at time t. L (.) is used to obtain location, and dis(.) is 
used to calculate distance. The total number of targets 
is m. When at a certain moment t’, the overall envi-
ronment reaches the condition Ft’=m,the overall goal 
reaches the ideal optimum. 

Meanwhile, the behaviours of UAVs in the scene 
must meet the following constraints: ||𝐿(∀𝑈௧) − 𝐿(𝑧))|| < 𝑑𝑧 (2)𝐿(∀𝑈௧) ∈ [(0, 𝑀௑), (0, 𝑀௒)] (3)
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𝑡 ∈ [0, 𝑇]   𝑎𝑛𝑑 𝑡 ∈ 𝑁 (4)

𝑐ℎ𝑎𝑛𝑔𝑒(𝑒௟௜௦௧ ௜) ቊ𝑇 |𝑑𝑖𝑠(𝐿(𝑢௜,௧) − 𝐿(𝑢௝,௧)) ≤ 𝑑௖𝐹|𝑑𝑖𝑠(𝐿(𝑢௜,௧) − 𝐿(𝑢௝,௧)) > 𝑑௖ (5)

For constraint (2), z representing obstacles, the 
positions of all UAVs cannot coincide with the posi-
tions of obstacles. Constraint (3) means that the posi-
tion of the UAV cannot exceed the specified area map 
boundary. Constraint (4) means that the advancement 
of timestamps must be a discrete integer, without con-
sidering the situation where a model is located be-
tween multiple grids at a certain time node. Constraint 
(5) means that the UAV can only exchange 𝑒௟௜௦௧ in-
formation with other UAVs within its communication 
range.𝑒௟௜௦௧ records the information about all targets is 
heading by which UAV. 𝑒௟௜௦௧ is an important attribute 
used to help UAVs avoid accessing duplicate targets. 
This is defined in Section 2.3. 
2.2 Scenario Design 

Figure 1 shows the overall scenario designed accord-
ing to the System Framework.Set the size of the spec-
ified area to (Mx, My), which can be divided into 
multiple grids of size (mx, my). UAVs, targets, and 
partially changing obstacles are all active within the 
grid. The field of view (FOV) of a UAV can obtain 
the information including the location of obstacles 
and targets, within the grids in its detection range. 
When the timestamp advancement, UAVs, and some 
mobilizable targets can move to nearby grids. There 
are also some immovable targets in the scenario. The 
condition for mission victory is that n UAVs reach all 
m target points (n≥m). 

Ly

Lx

communication

TargetTarget

Target

Obstacle / No-fly zone

Obstacle / No-fly zone

 
Figure 1: Schematic diagram of multi-UAV collaborative 
path planning scenario. 

2.3 Behavioral Modeling 

UAV model:The UAV model is defined as follows: 𝑢 = {𝑥, 𝑦, 𝑑௥, 𝑑௖, 𝑒௟௜௦௧} (6)

x and y represent the coordinate positions of the 
UAV. 𝑑௥௔௡௚௘  and 𝑐𝑜𝑚𝑚௥௔௡௚௘  represent the detec-
tion range and communication range of the UAV, re-
spectively. With the UAV's own position as the center, 
it can perceive the presence of targets and obstacles 
within the 𝑑௥, and can communicate with other UAVs 
within the 𝑑௖. 𝑒௟௜௦௧ is a list recording the target points 
of each UAV. The UAV cannot obtain the complete  𝑒௟௜௦௧  in real time and can only obtain it through com-
municating with other UAVs. 

The definition of 𝑒௟௜௦௧  is shown in Equation 6, 
where 𝑡𝑎𝑟𝑔𝑒𝑡௝௜  represents that UAVi is heading to-
wards targetj, n represents the number of UAVs, and 
j represents the identification number of the targets. 𝑒௟௜௦௧ = { 𝑡𝑎𝑟𝑔𝑒𝑡௝௜| 𝑖 = 0,1,2, … 𝑛 , 𝑗 ∈ 𝑚} (7)

In order to make the overall system scalable, n can 
also be set to a slightly larger integer than the total 
number of UAVs. For example, there are three UAVs 
in the scene, and at a certain moment ct, the infor-
mation recorded in the 𝑒௟௜௦௧ of UAVi may be {0, -1,1}. 
The three elements represent that UAV0 is heading 
towards target0 and currently unable to obtain target 
information tracked by UAV1, while UAV2  is head-
ing towards target1. As shown in algorithm 1. Based 
on the information stored in 𝑒௟௜௦௧, UAVs can dynam-
ically allocate tasks more reasonably, avoiding multi-
ple UAVs from repeatedly reaching the same target. 

 
Input: elist of UAVi 
Result: Updated elist of UAVi 
U_list←Ø 
add UAVi to U_list 
for j=0 to count (UAVs) do: 

if ( UAVj is within the comm_range of UAVi ): 
add UAVj to U_list 

END for 
new_e_list← Ø 
#Calculate the closest target to UAVi and record it 
new_e_list[i]←record (UAVi) 
for j=0 to count (UAVs) do: 

cache← Ø 
if(new_e_list[j] has no record),then: 
for k=0 to count(U_list) do: 

if (elist,k has a record about UAVj),then: 
cache←cache+record(UAVj) 

END for 
#Find the latest record in cache,update list 
new_e_list ← update (new_e_list,cache,j) 

END for 
Algorithm 1: UAVs communication. 
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The definition of UAVs movement rules is as fol-
lows: each UAV has 8 selectable search directions at 
each time step. The position of UAVi at time step t is 
denoted as 𝐿(𝑢௜,௧), which is updated by the selected 
action a=𝛥(𝑥, 𝑦), represented as: ൜𝜕𝐿(𝑢௜,௧)/𝜕𝑥 = 𝜕𝐿(𝑢௜,௧, 𝑥)/𝜕𝑥 + 𝛥𝑥𝜕𝐿(𝑢௜,௧)/𝜕𝑦 = 𝜕𝐿(𝑢௜,௧, 𝑦)/𝜕𝑦 + 𝛥𝑦 (8)

𝛥(𝑥, 𝑦) =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ (1,0), 𝑖𝑓 𝑎 = 0 (𝑒𝑎𝑠𝑡)(0,1), 𝑖𝑓 𝑎 = 1 (𝑛𝑜𝑟𝑡ℎ)(−1,0), 𝑖𝑓 𝑎 = 2 (𝑤𝑒𝑠𝑡)(0, −1), 𝑖𝑓 𝑎 = 3 (𝑠𝑜𝑢𝑡ℎ)(1,1), 𝑖𝑓 𝑎 = 4 (𝑒𝑎𝑠𝑡 𝑛𝑜𝑟𝑡ℎ)(−1,1), 𝑖𝑓 𝑎 = 5 (𝑤𝑒𝑠𝑡 𝑛𝑜𝑟𝑡ℎ)(1, −1), 𝑖𝑓 𝑎 = 6 (𝑒𝑎𝑠𝑡 𝑠𝑜𝑢𝑡ℎ)(−1, −1), 𝑖𝑓 𝑎 = 7 (𝑤𝑒𝑠𝑡 𝑠𝑜𝑢𝑡ℎ)

(9)

Due to the presence of obstacles and area bound-
aries, at certain times, the movement actions of the 
UAV may become unavailable, as shown in Figure 2. 
For units near obstacles or at the edge of the map, the 
corresponding action selection will become unavaila-
ble.  

 
Figure 2 Schematic diagram of UAV action selection. 

Target model: some targets can be moved to ad-
jacent grids according to the same movement rules as 
UAVs. Some targets are immovable. 

Obstacle model: There are multiple obstacles at 
random positions within the designated area.To guar-
antee the solvability of the overall problem, we define 
an obstacle model in its initial state, subject to the fol-
lowing constraints:       ∄𝑧 |  𝐿(𝑧) = 𝐿(∀𝑢଴) 𝑜𝑟  𝐿(𝑧) = 𝐿(∀𝑡𝑎𝑟଴) (10)∄𝑧 |𝑠𝑝(∀𝑢, 𝑧) = 0 𝑜𝑟 𝑠𝑝(∀𝑡𝑎𝑟, 𝑧) = 0 (11)

Constraint (10) indicates that the generation of ob-
stacles cannot coincide with the positions of the target 
and the UAV. For constraint (11), sp(.) is the number 
of positions that can be reached by the computing unit. 
In the case of complete obstacle free and map bound-
ary free influence, sp(.)=8.This constraint indicates 
that obstacles cannot completely surround the UAV 
and target, making it impossible for the UAV to move 
or for the target location to be reached. 

3 LEARNING FRAMEWORK 

For multi-UAV path planning, UAVs are required to 
continuously detect and update information during 
flight. However, due to hardware limitations and 
other factors, they often cannot accurately observe the 
overrall environment. Consequently, UAV path plan-
ning is aptly considered as a POMDP, and MARL is 
one of the most efficient algorithms to solve POMDP 
problems. 

In this section, we introduce a Learning Frame-
work that reconstructs the scenarios and models es-
tablished in Section 2 into POMDP components. Sub-
sequently, we design a simulation flow to generate the 
episodes required for training the MARL algorithm. 
Lastly, we detail how the MARL algorithm interacts 
with the episode data to optimize network parameters 
and produce drone actions that are responsive to epi-
sode generation. 

3.1 Scenario Reconstructing 

To solve the problem built by System Framework. 
We reconstruct the scenario and models proposed by 
the System Framework as POMDP system. 

Agent: A UAV is defined as an agent in the envi-
ronment. The agent obtains information about the sur-
rounding environment from its own sensors, selects 
an action and provides feedback to the system. 

A: the action of the UAV at time t is expressed as: 𝐴௧ = ൛𝑎ଵ,௧, 𝑎ଶ,௧, … , 𝑎௡,௧ൟ (12)

Where 𝑎௜,௧ represents the encoding of the move-
ment rules defined in Section 2.2. 

O: Each agent can observe its own information 
and some environment information, expressed as: 𝑂௧ = ൛𝑜ଵ,௧, 𝑜ଶ,௧, … , 𝑜௡,௧ൟ (13)𝑜௜,௧ = ൛𝑜𝑓௜,௧, 𝑒𝑓௜,௧ൟ (14)𝑜𝑓௜,௧ = { 𝐿൫𝑢௜,௧൯, 𝑑௥௔௡௚௘(௨೔), 𝐿ቀ𝑚𝑖𝑛௘೔,೟ቁ,𝐷ቀ𝑚𝑖𝑛௘೔,೟ , 𝑢௜,௧ቁ, 𝑒௟௜௦௧ } (15)

𝑒𝑓௜,௧ = ൛ℎ൫𝑢௜,௧, 𝐸௧൯ൟ (16)O୲ represents the sum of observation information 
obtained by all agents at time t in the current environ-
ment.o୧,୲ represents the observation information of 
the agent i at time t, which consists of two parts.For of୧,୲,L൫u୧,୲൯ represents the coordinates of agent i in the 
map at time t, d୰(u୧) represents the sensing range of 
UAV i. L൫mtar୧,୲൯ represents the coordinate position 

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

220



of the target closest to the agent i at time t. D൫mtar୧,୲, u୧,୲൯  represents the distance between the 
target and the UAV. For 𝑒𝑓௜,௧, ℎ൫𝑢௜,௧, 𝐸௧൯ means that 
at time t,the targets in each cell within the detection 
range 𝑑௥. 

S: The overall state of the system is the sum of 
global observation information and timestamp infor-
mation, expressed as: 𝑆௧ = {𝑂௧, 𝑡/𝑇} (17)

T is the maximum that the timestamp can advance 
to, and 𝑡/𝑇 indicates the time advance of the current 
environment. 

R: The value calculated by the system according 
to the current environment information is used to 
guide Q network fitting. According to the problem 
definition, we build the reward function as follows: 𝑅௧ = 𝑐𝑜𝑢𝑛𝑡(𝑡𝑎𝑟ᇱ௧) − 𝑑௧,௨,௘𝐿௑ + 𝑏𝑤 (18)𝑐𝑜𝑢𝑛𝑡(𝑡𝑎𝑟′௧)  represents the number of targets 
found at time t. 𝑑௧,௨,௘ represents the sum of the dis-
tance between each UAV u and its nearest target e at 
time t.Directly put 𝑑௧,௨,௘  into the reward value is 
likely to dilute other incentives factor, So we use 𝐿௑ 
to narrow its processing. 𝑏𝑤 is an indication function 
that, at the end of an episode, bw=1 if battle_won sta-
tus has been reached, bw=0 otherwise. 

3.2 Simulation Algorithm 

In this paper, the purpose of repeating environmental 
simulations is to obtain a large number of "episodes". 
The simulation events of the environment follow the 
principle of discrete event simulation. Episode is the 
complete process of an intelligent agent starting to ex-
plore the environment and reaching a termination state 
(or reaching a predetermined step limit). In the MARL 
framework, the intelligent agent network can learn 
from a large amount of "episode" data, continuously 
optimize network parameters, thereby improving deci-
sion-making efficiency and ultimately achieving intel-
ligent acquisition of excellent strategies. 

The specific process of environment simulation 
is :(1) input the episode and time step t to be updated. 
Obtain the actions of the UAVs. The actions come 
from the output of the Q network. (2) Execute the ac-
tions to update the status of the UAVs. (3) Targets 
movement.(4) UVAs communicate with each other to 
update their observations. (5) To calculate the overall 
reward. According to RL definition, it is necessary to 
calculate the difference between the reward value of 
this time step and the reward value of the previous 
time step as the one-step reward for an episode. (6) 
Record environmental information. (7) Check if the 

environment has reached the 'battle won' state. If it 
has, stop the environment and end the episode early. 
(8) Check if the timestamp of the environment has 
reached the maximum number of advances, to reach 
the end of the episode. (9) Output updated episode. 
Algorithm 2 describes the above process, where the 
code marked with * is the behaviours that requires in-
teraction with MARL. 

 

Input: episode,t 
Result: updated episode 
history_reward←0,  reward←0 
done←False 
episode ←Ø 
*Obtain_actions from Q network 
UVAs←UAVs_move(UAVs,actions) 
targets←Targets_move(targets, obstacles) 
UVAs←UVAs_communicate(UAVs) 
*reward ←Get_reward(UAVs,targets) #eq17 
*reward ←reward - history_reward 
*history_reward← reward 
terminated←False 
if episode gets victory conditions,then: 

battle_won←True 
done←True 

if t reaches the maximum simulation time T,then: 
terminated←True 
done←True 

episode←update(episode) 

Algorithm 2: Simulation: update episode. 

3.3 MARL Learning Procedure 

MARL algorithms need to adaptively learn how to 
control the UAV to complete the mission according 
to real-time episode information.  

The network that controls the action of the agent 
in MARL is called Q network, and the Q network 
training process is as follows:(1) initialize Q net-
work parameter θ and target network parameter 
θ- ,total training time steps T (2) Create two timers, 
train_t to record the training progress and e_t to 
record the progress of the episode. Initialize an ep-
isode. Initialize buffer D (3) The movements of the 
UAVs are obtained from the Q network, the status 
of the episode is updated, and the data is stored in 
D. (4) When the data in D is sufficient for network 
training, parameters θ of the main network and θ- 
of the target network are trained.(5) When the ca-
pacity of D is full, it is cleaned. The cleanup 
method is usually to delete some of the data that 
enters the buffer first. (6) get training-finished θ. 
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Inputs: Initialize parameters θand θ-, T 
Results: training completed θand θ- 
Initialize replay buffer D, episode 
train_t←0 
e_t←0 
Reset the episode 
while t ≤ T do: 

actions←𝜀_greedy(UAVs,Q(θ)) 
# Algorithm2 
episode←update_episode(episode,t) 
train_t←train_t +1 
e_t←e_t+1 
episode←add_steps(episode) 
if(episode has been finished),then: 

Reset the episode 
e_t=0 

D←update_ episode(episode) 
if(The episode stored in D is enough  
to train the Q network), then: 

Sample a random batch of episode in D 
*Update the parameters of networkθ 
c←0 
if(θ has been trained step c),then: 

*Update the parameters of networkθ- 
if(capacity(D) +capacity(e) >=M), then: 

D←clean_buffer(D) 
END while 

Algorithm 3: MARL learns environment information and 
outputs UAVs actions. 

In algorithm 3,the parameter update of the target 
network θ- behind that of the main network θ. This 
can avoid the frequent change of the target value, re-
duce the instability in the training process, and make 
the main network converge to the optimal strategy 
more smoothly. QMIX uses the Mixing Network to 
mix the individual Q values of multiple agents into a 
global Q value. The global Q value represents the ex-
pected return of all agents acting together. VAN ob-
tains this global Q value through a linear function, 
and IQL does not consider global Q values. 

4 SIMULATION RESULT AND 
ANALYSIS 

In this section, MARL algorithms: IQL, VDN and 
QMIX, are tested in the scenarios with different ob-
stacle rate settings to test the effectiveness of the Ex-
tensible MARL Framework. Then the experimental 
results are described and analysed.  

4.1 Experiment Settings 

This section introduces the operating environment of 
the experiment, the setting of MARL algorithm hy-
perparameters and the setting of simulation environ-
ment. The experimental hardwares are：NVIDIA 
GeForce RTX 3080Ti and AMD EPYC 9754. The 
softwares are Ubuntu22.04,torch 2.3.0&CUDA 
12.1,and  PYMARL (Samvelyan, M. et al. 2019). Set-
tings of the MARL hyper-parameters are: batch 
size:64 ,buffer_size:5000,and lr:0.001. We conducted 
experiments on maps with grid sizes of 20 × 20. Ob-
stacle rate refers to the percentage of cells set as ob-
stacles, which is set to 20 or 40. The scenario involves 
6 agents and 6 targets.For a single agent,dr=1 and 
dc=1. The maximum of simulation time is 200. 

4.2 Analysis of Algorithm Performance 

In this section, we analyse the performance of three 
MARL algorithms: IQL, VDN, and QMIX. Figures 3 
and 4 show the variation of reward values over simu-
lation time for three algorithms in a simulation envi-
ronment with a map size of 20 × 20. T is the total run-
ning time of the simulation environment, measured in 
millions. Statistics are performed at fixed intervals of 
10k time steps, and the average value of 10k time 
steps is taken as the experimental result.It can be seen 
that IQL and VDN fit faster than QMIX. When the 
obstacle rate is 20, the reward value of IQL and VDN 
is slightly higher compared to QMIX. When the ob-
stacle rate is 40, the performance of the VDN algo-
rithm is slightly higher. This is because QMIX re-
quires additional use of global information to train a 
hypernetwork. In our simulation environment, using 
a combination of local observations as global infor-
mation may not provide sufficient data for the hyper-
network. Additionally, it is possible that the structure 
of QMIX's hypernetwork is not suitable for our task. 

Table 1 shows the comparison of the average re-
ward values of the three algorithms in the last 50 time 
steps. It can be seen from the time-reward curve that 
the three algorithms are close to fitting when ap-
proaching the end of training. By comparing the av-
erage reward of the three algorithms in the last 50 
Time steps, the specific performance gap of the algo-
rithms can be more intuitively identified. It can be 
seen that VDN performs slightly better than the other 
two algorithms. This is because VDN uses linear 
functions to combine the Q values of agents, which 
avoids the lack of interaction between agents like IQL, 
and the difficulty of combining Q values caused using 
complex hypernetworks like QMIX. 
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Figure 3 Time-reward curve of three algorithms at an ob-
stacle rate of 20. 

 
Figure 4 Time-reward curve of three algorithms at an ob-
stacle rate of 20. 

Table 1 Comparison of the average reward values of the 
three algorithms in the last 50 time steps. 

Obstacle rate (%) Method Reward
20 IQL 6.45
20 VDN 6.35
20 QMIX 6.27
40 IQL 5.81
40 VDN 6.01
40 QMIX 5.75

4.3 Analysis of Mission Completion 
Level 

Figure 5 and Figure 6 show the time-target discovery 
number curves of the three algorithms, and Table 2 
shows how many targets were discovered by each of 
the three algorithms in the last 50 time steps. The re-
sults of this experiment are similar to result of the re-
ward comparison experiment, but the performance 
gap between the algorithms is not as significant as the 
previous experiment. In the case where the total num-
ber of target points is 6, the number of targets found 
using the three algorithms exceeds 5, indicating that 
Extensible MARL Framework can effectively com-
plete the path planning task. 

 
Figure 5 Time-Number of targets found curve of three al-
gorithms at an obstacle rate of 20. 

Table 2: Comparison of the average number of targets 
found of the three algorithms in the last 50 time steps. 

Obstacle 
rate(%)

Method Number of  
targets found

20 IQL 5.89
20 VDN 5.91
20 QMIX 5.86
40 IQL 5.38
40 VDN 5.64
40 QMIX 5.43

 
Figure 6 Time-Number of targets found curve of three al-
gorithms at an obstacle rate of 40. 

5 CONCLUSION 

In order to solve the problem of multi-UAV coopera-
tive path planning, we propose the Extensible MARL 
Framework. Extensible MARL Framework can be 
applied to scenarios built with a variety of environ-
mental factors and is compatible with a variety of 
MARL algorithms. The Extensible MARL Frame-
work consists of two parts, the system framework and 
the learning framework. The system framework de-
fines the scenario, including the problems to be 
solved, the models, and the behavioural interactions 
between the models. The learning framework aims to 
reconstruct the problems and models of the system 
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framework into POMDP, then solve the problems of 
the system framework through MARL algorithm. 

In the experiment part, to verify the validity of Ex-
tensible MARL Framework, the paper tests three 
MARL algorithms: IQL, VDN and QMIX, and it 
evaluates these algorithms in two scenarios featuring 
different obstacle rates: 20% for sparse and 40% for 
dense. The experiment results show that IQL and 
VDN adapt to the environment faster than QMIX, and 
the reward value of IQL and VDN is slightly higher 
than QMIX when the proportion of obstacles is 20%. 
When the proportion of obstacles increases to 40%, 
the performance of the VDN algorithm is slightly 
higher than the other two algorithms. 

In future research, we will further optimize the al-
gorithm for the poor performance of QMIX's hybrid 
network. At the same time, we will design more dy-
namic complex scenarios to test the robustness of var-
ious algorithms. At the same time, we consider de-
signing more realistic experimental scenarios to en-
sure that the MARL algorithm can be truly integrated 
with practical applications. 
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