
Enhancing Data Serialization Efficiency in REST Services: Migrating
from JSON to Protocol Buffers

Anas Shatnawi a, Adem Bahri, Boubou Thiam Niang b and Benoit Verhaeghe c

Berger-Levrault, Mauguio, France
fi

Keywords: REST Services, Data Serialization, JSON, Protocol Buffers, Software Transformation, Migration.

Abstract: Data serialization efficiency is crucial for optimizing web application performance. JSON is widely used due
to its compatibility with REST services, but its text-based format often introduces performance limitations.
As web applications grow more complex and distributed, the need for more efficient serialization methods
becomes evident. Protocol Buffers (Protobuf) has demonstrated significant improvements in reducing payload
size and enhancing serialization/deserialization speed compared to JSON. To improve the performance and
optimize resource utilization of existing web applications, the JSON data serialization approach of their REST
services should be migrated to Protobuf. Existing migration approaches emphasize manual processes, which
can be time-consuming and error-prone. In this paper, we propose a semi-automated approach to migrating the
data serialization of existing REST services from JSON to Protobuf. Our approach refactors existing REST
codebases to use Protobuf. It is evaluated on two web applications. The results show a reduction in payload
size by 60% to 80%, leading to an 80% improvement in response time, a 17% decrease in CPU utilization,
and an 18% reduction in energy consumption, all with no additional memory overhead.

1 INTRODUCTION

Web applications have become essential in our daily
lives. As they exchange data, the efficiency of data
serialization (Jang and et al., 2020) plays a critical
role in optimizing their performance. Data serializa-
tion directly affects resource usage, and system re-
sponsiveness (Eugster and et al., 2003). Tradition-
ally, web applications have relied on text-based data
serialization approaches, such as JSON (Crockford,
2006) that is integrated with REST services since the
early 2000s (Fielding, 2000). These approaches have
gained widespread adoption among companies for de-
veloping numerous web applications due to their sim-
plicity and ease of use (Barbaglia and et al., 2017).

Text-based data serialization methods often face
performance challenges, especially when managing
large payloads or complex data structures. The text-
based nature of JSON results in larger data sizes being
exchanged between application services, which in-
creases both parsing and transmission overhead (Fer-
nando, 2022; Kelly, 2022). As applications be-

a https://orcid.org/0000-0002-5561-4232
b https://orcid.org/0000-0002-8618-1740
c https://orcid.org/0000-0002-4588-2698

come more complex and distributed, the demand for
faster and more efficient data serialization approaches
grows (Štefanič, 2022; Eugster and et al., 2003), es-
pecially for those requiring real-time processing.

As part of their Google Remote Procedure Call
(gRPC), Google has introduced advanced version of
Protocol Buffers (Protobuf), which provides a com-
pact and efficient binary format for data serialization
(Štefanič, 2022). It enhances application performance
by minimizing data size and improving serializa-
tion/deserialization speeds (Lee and Liu, 2022a; Berg
and Mebrahtu Redi, 2023), demonstrating a perfor-
mance advantage over JSON, particularly with large
payloads (Eugster and et al., 2003; Fernando, 2022;
Štefanič, 2022; Kelly, 2022). Lee et al. (Lee and Liu,
2022a) show that gRPC can outperform REST by up
to 7 and 10 times in data reception and transmission,
respectively, due to Protobuf’s efficient serialization.
Thus, Protobuf presents a robust alternative to JSON
for optimizing performance and resource utilization.

To optimize performance and resource utilization
in existing web applications, migrating the JSON data
serialization of REST services to Protobuf is essen-
tial (Štefanič, 2022; Lee and Liu, 2022a; Berg and
Mebrahtu Redi, 2023). Companies face two main
options: a complete application rebuild or a code

Shatnawi, A., Bahri, A., Niang, B. T. and Verhaeghe, B.
Enhancing Data Serialization Efficiency in REST Services: Migrating from JSON to Protocol Buffers.
DOI: 10.5220/0013459500003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 193-200
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

193



refactoring approach. While a complete rebuild can
be resource-intensive and time-consuming, a migra-
tion approach offers a more manageable alternative
by leveraging the existing codebase. With migration,
we need to address two main questions: how to mi-
grate existing REST services from JSON to Protobuf?
and what are the benefits of this migration? Exist-
ing approaches (Štefanič, 2022; Lee and Liu, 2022a;
Berg and Mebrahtu Redi, 2023) emphasize manual
processes, which can be time-consuming and error-
prone. These approaches often lack performance
measurement post-migration, making it challenging
to assess their impact on application efficiency. Fur-
thermore, manual migration is typically unsuitable for
industrial applications due to its resource-intensive
nature, limiting scalability and increasing the risk of
errors in larger systems.

In this paper, we propose a semi-automated ap-
proach for migrating the data serialization of exist-
ing REST services from JSON to Protobuf to enhance
their performance. Our approach involves refactor-
ing the codebase of these services to substitute JSON
with Protobuf. We evaluate our approach using two
web applications—one open-source and one indus-
trial—of varying sizes. The results show a 60% to
80% reduction in payload size, leading to an 80% im-
provement in response time, a 17% decrease in CPU
utilization, and an 18% reduction in energy consump-
tion, all without additional memory overhead.

The rest of this paper is organized as follows. Sec-
tion 2 presents the challenges and the proposed ap-
proach. Section 3 details the identification of Data
Transfer Objects (DTOs) and the transformation of
their data schema into the Protobuf format. Section 4
explains the generation of Protobuf entities based on
the transformed schema. Section 5 describes how ex-
isting DTOs are refactored to include Protobuf serial-
ization and deserialization methods. In Section 6, we
refactor the REST controllers to replace JSON with
Protobuf. Section 7 presents the evaluation results,
and related work is analyzed in Section 8. Finally,
Section 9 concludes the paper and outlines future re-
search directions.

2 THE PROPOSED APPROACH

2.1 Migration Challenges

Migrating the data serialization of REST services
from JSON to Protobuf is not a straightforward task.
Unlike the migration from JSON to XML, which in
Java and Spring can often be accomplished by sim-
ply modifying a Maven dependency or annotations,

this process involves significant refactoring in the ap-
plication codebase (e.g., source code and configura-
tion files). For instance, all DTOs must be adapted to
support the Protobuf format and existing REST con-
trollers need to be updated to use the serialization and
deserialization techniques provided by Protobuf.

This task is further complicated by the complexity
of DTO classes. Identifying all DTOs across com-
plex applications, especially in large-scale industrial
systems, presents several challenges. These include
handling nested DTOs, multiple inheritance levels,
and DTOs inherited from external libraries. This pro-
cess demands a detailed analysis of controller meth-
ods, inheritance hierarchies, and associated data mod-
els. Mapping Java data types, including complex
types like List, Set, Map, and enums, to their Proto-
buf equivalents can be non-trivial. Ensuring precision
while handling edge cases (e.g., handling nested or
inherited DTOs) is critical. Reverse engineering large
and intricate data schemas to prepare Protobuf .proto
files demands thorough validation to ensure that all
relationships and fields are accurately represented.

Additionally, REST clients must be updated to
properly consume the newly Protobuf-based con-
trollers, ensuring compatibility and seamless commu-
nication. This involves adapting the client-side logic
to serialize and deserialize data in the Protobuf format
instead of JSON. Depending on the programming lan-
guage and framework used by the clients, this may re-
quire integrating Protobuf libraries, generating client-
side Protobuf classes from the .proto files, and modi-
fying API calls to handle the Protobuf-encoded data.

To facilitate a gradual transition to the new
Protobuf-based REST API, it is advisable to main-
tain both JSON and Protobuf versions of the con-
trollers during the migration phase. This approach
enables clients to incrementally adapt to the Proto-
buf format while continuing to use the existing JSON-
based endpoints. By supporting both formats con-
currently, developers can ensure backward compati-
bility, reduce the risk of service disruptions, and al-
low client-side teams to migrate at their own pace.
Over time, as all clients adopt the Protobuf format, the
JSON-based controllers can be deprecated and even-
tually removed, completing the migration process.

2.2 Migration Process

Our approach introduces a semi-automated process
to migrate REST API data serialization from JSON
to Protobuf. The process, outlined in Figure 1, con-
sists of four main steps: (1) Identify DTOs and re-
verse engineer the data schema into Protobuf format,
(2) Generate Protobuf entities, (3) Refactor DTOs to

ICSOFT 2025 - 20th International Conference on Software Technologies

194



Figure 1: Process for migrating REST from JSON to Protobuf.

include serialization and deserialization methods, and
(4) Refactor REST controllers to use Protobuf.

(1) Identify DTOs and Reverse Engineer Their
Data Schema into Protobuf Format: This step in-
volves analyzing the data exchanged through REST
APIs by identifying the Data Transfer Object (DTO)
(Monday, 2003) classes for each REST endpoint.
These DTOs define the input parameters and return
objects. The data structure of each DTO is reverse-
engineered to extract its schema, which is crucial
for understanding data organization and transmission
between the API and its clients. This schema is
then translated into the Protobuf format by creating
a .proto file.

(2) Generate Protobuf Entities: To facilitate
data conversion between Protobuf and Java objects
of the business logic, we generate Protobuf entities
equivalent to the DTOs. This is based on the data
schema recovered in the previous step. These entities
handle the data in the REST/Protobuf services pro-
duced by our approach and the necessary boilerplate
code (Builders) to construct Protobuf instances from
DTO instances and vice versa. Using the Protocol
Buffers Compiler (protoc), the creation of the Proto-
buf entity classes as well as their inner logic is auto-
mated. The compiler reads the .proto file and gener-
ates the necessary Java classes to manage data struc-
tures, ensuring smooth conversion without manually
writing complex logic.

(3) Refactor DTOs by Adding Methods to Seri-
alize and Deserialize Data: To avoid modifying the
application’s business logic, the internal implemen-
tation of the REST services continue working with
the original DTOs. However, these original DTOs are
not capable of converting to or constructing from Pro-
tobuf instances that are received or sent by a REST
endpoint. Thus, this step aims to refactor existing
DTO classes by adding methods for serialization and
deserialization of data using the generated Protobuf
classes. This integration allows DTOs to efficiently
convert data to and from Protobuf instances.

(4) Refactor REST Controllers to use Protobuf:
This step modifies existing REST controllers to han-
dle Protobuf instead of JSON. Rather than completely
replacing the existing controller, a new Protobuf-

based controller is generated. This dual-controller ap-
proach allows both JSON and Protobuf versions to co-
exist during the migration, enabling a gradual transi-
tion without disrupting current REST clients.

3 IDENTIFY DTOS AND
TRANSFORM THEIR DATA
SCHEMA INTO PROTOBUF

In this section, we discuss how to identify the DTOs
within our REST services and convert their data
schema into the Protobuf format. To do so, we first
analyze the data models associated with all REST
endpoints across the REST controllers. This involves
scanning each controller’s methods to examine both
the input parameters, which represent the data re-
ceived from the client, and the return types, which
represent the data returned to the client.

Once the DTOs are identified, we reverse engineer
their data schema to prepare for migration to Proto-
buf. We examine the fields of each DTO to identify
their Java data types. We also check the inheritance
of each DTO, as their parent classes must be migrated
to Protobuf as well.

To establish a mapping between Java types and
their corresponding Protobuf types, we rely on the
Protobuf documentation (protobuf.dev, 2024). For in-
stance, Java’s primitive types such as int, long, and
boolean directly translate to Protobuf types int32,
int64, and bool, respectively. Complex types like
List and Set in Java are represented as repeated
fields in Protobuf, while Map is directly mapped us-
ing map<KeyType, ValueType>. Additionally, other
types, including enum, double, float, and String, each
have their specific equivalents in Protobuf.

Based on this mapping, we derive the Protobuf
format from these data schemas by creating a .proto
file. To do so, we propose an algorithm illustrated
in Figure 2. It begins by creating a new .proto file
and adding the necessary header information, includ-
ing package details, import statements, and the syn-
tax declaration (e.g., syntax = "proto3"; specifies
the version of Protobuf). Then, it parses a given Java

Enhancing Data Serialization Efficiency in REST Services: Migrating from JSON to Protocol Buffers

195



Figure 2: Transformation from DTOs to Protobuf format.

DTO class to extract its fields and their data types.
If the DTO extends a parent class, it recursively pro-
cesses the parent DTO before continuing with the cur-
rent one. As the algorithm iterates over each field,
it determines the field type and generates the ap-
propriate Protobuf definition. If the field is another
DTO, the algorithm recursively generates Protobuf
definitions for the nested DTO. For enums, a corre-
sponding Protobuf enum definition is created. Arrays
and collections are transformed into repeated fields,
while maps are generated as map<KeyType, Value-
Type>. For primitive or boxed primitive types, the
algorithm directly generates a Protobuf field defini-
tion (e.g., Long to sint64). Each generated field is
then added to the .proto file. Throughout the process,
the algorithm ensures that all referenced nested DTOs
or enums are properly defined in the ProtoFile. After
processing all fields and confirming message encap-
sulation, the .proto file is finalized and returned.

4 GENERATE PROTOBUF
ENTITIES

In this step, we generate Protobuf entities based on
the data schema embedded in the .proto file generated
in the previous step. To generate these Protobuf en-
tities from .proto, we rely on the Protobuf compiler
(protoc) (gRPC, 2024) provided by Google to gen-
erate Protobuf entities based on a given .proto file.
This based on three main steps: (1) Add the pro-

toc Plugin: we ensure that the protoc compiler plu-
gin is added to the build configuration of the target
project. For a Maven project, we need to include
the protobuf-maven-plugin 1 in the pom.xml file. (2)
Run the protoc Compiler: we execute the build com-
mand to compile the .proto file and generate the Java
classes. For Maven, use: mvn clean install. This com-
mand triggers the build process, which will compile
the .proto files and produce the corresponding Java
classes in the target/generated-sources/protobuf di-
rectory. (3) Verify the Output: After running the
build, we ensure that the Java files have been gener-
ated. These files include classes for implementing the
Protobuf messages (corresponding to DTOs) defined
in the .proto file.

This process integrates the protoc compiler into
the build workflow, automating the generation of Java
classes from Protobuf definitions and ensuring that
the application can effectively handle Protobuf data.

5 REFACTOR DTOS BY ADDING
METHODS TO SERIALIZE AND
DESERIALIZE DATA

To refactor the existing DTOs by adding serializa-
tion and deserialization methods in Java, we utilize
the Protobuf entities generated in the previous step.
These methods are responsible for converting Java
objects used in the business logic into Protobuf mes-
sages and vice versa. For each DTO, we add toProto
and fromProto methods, which respectively convert
the DTO object to a Protobuf message and the Proto-
buf message back to a DTO object.

To implement the toProto method, we utilize the
generated Protobuf entities, which include Builder
objects for constructing Protobuf messages. We use
the setter methods of the Builder to fill the Proto-
buf message with values from the corresponding DTO
fields (e.g., builder.setId(id)). For fromProto method,
we extract each field from the received Protobuf in-
stance using its getter methods. With the extracted
values, the method creates a new instance of the DTO
class, ensuring that all data from the Protobuf mes-
sage is accurately transferred to the Java object.

To automate the generation of the toProto() and
fromProto() methods, we propose an algorithm out-
lined in Figure 3. It begins by taking a Protocol
Buffers (.proto) file as input and using the Protoc
compiler to generate the initial Java classes for the
corresponding Protobuf message types. Once these
classes are generated, an Abstract Syntax Tree (AST)

1https://github.com/xolstice/protobuf-maven-plugin

ICSOFT 2025 - 20th International Conference on Software Technologies

196



Figure 3: Refactor DTOs by adding methods to serialize
and deserialize data.

is extracted from the Java code. The AST pro-
vides a structured overview of the class hierarchies,
fields, methods, and data types. We then analyze
this structure to identify the relevant Protobuf mes-
sage types and map them to their respective fields
within the DTO classes. For each Protobuf message
type, we generate a corresponding Java class, which
includes fields mapped directly from the .proto file.
To achieve this, we leverage the JavaPoet library2,
which programmatically generates the necessary Java
code, producing the final .java files. This automated
approach ensures consistency, reduces manual effort,
and minimizes the potential for errors in the serializa-
tion and deserialization process. We implement this
algorithm in called ProtoGen3 that streamlines the in-
tegration of Protobuf with existing Java applications.

6 REFACTOR JSON
CONTROLLER TO PROTOBUF
CONTROLLER

This step modifies existing REST controllers to han-
dle Protobuf messages while keeping the original
JSON-based controllers intact. A new Protobuf-based
controller is generated, allowing both JSON and Pro-
tobuf versions to coexist. This dual-controller ap-
proach enables a gradual migration, ensuring back-
ward compatibility without disrupting current REST
clients. Controller methods are refactored by updat-
ing return types and parameters to use Protobuf mes-
sages, replacing JSON-based data structures. The
toProto() and fromProto() methods ensure efficient
handling of Protobuf requests and responses.

2https://github.com/palantir/javapoet
3https://github.com/Bahri-Adem/ProtoGen

We propose an algorithm illustrated in Figure 4.
It begins by retrieving all Java files in the project
directory. Each file is processed individually to de-
termine if it contains classes annotated with REST
controller annotations, such as @RestController or
@RequestMapping. Once a REST controller is identi-
fied, we create a copy of the class and place it in a new
package designated for Protobuf REST services. The
package declaration in the copied class is updated to
reflect its new location. Necessary Protobuf entities
and classes are imported into the copied file. Next,
the class definition is modified by updating its anno-
tation and class name to indicate that it is now a Pro-
tobuf controller. For each endpoint in this controller,
we refactor its Java method as follows. We adjust the
return type to correspond to the appropriate Protobuf
message type. Then, the method parameters are refac-
tored to match the Protobuf request message format.
Additionally, the return expressions are modified to
incorporate Protobuf-specific logic for handling re-
quests and responses. This process is repeated for
any other REST controllers present in the project. It’s
worth noting that we do not need to modify the busi-
ness logic of these methods.

Figure 4: Controller converter algorithm.

Enhancing Data Serialization Efficiency in REST Services: Migrating from JSON to Protocol Buffers

197



7 EVALUATION

7.1 Evaluation Goal and Methodology

Our approach is evaluated by assessing the efficiency
of Protobuf compared to JSON in terms of application
performance. This analysis enables us to quantify the
benefits of adopting Protobuf as a data serialization
approach. To do so, we rely on two web applica-
tions. Application 1 is the PetStore, an open-source
application proposed by Oracle to demonstrate Java
technologies. Application 2 is a large-scale industrial
application from the Berger-Levrault company.

To assess the impact of serialization formats, we
created two controllers for the same application: one
with REST/JSON and the other with REST/Proto-
buf. To collect metrics, we began by identifying
identical workloads to ensure fair comparisons, us-
ing consistent real-world scenarios to ensure that per-
formance differences reflect the serialization formats
used. Then, we executed large workload sizes un-
der varied conditions, including concurrent users and
varying data volumes, while functional tests helped
determine appropriate workload sizes for comprehen-
sive data generation. Finally, we continuously collect
performance metrics during workload execution.

Our evaluation is based on five key metrics: (1)
Data exchange size: The size of data transferred be-
tween clients and servers. It indicates the cost of pars-
ing and transmitting this data. (2) Response time:
The duration from request to response. It is con-
nected to the user experience. (3) CPU usage: The
percentage of processing power consumed during re-
quest handling. It is used to evaluate the system’s ef-
ficiency under load. (4) Energy consumption: The
power used during request processing. It is measured
to assess its sustainability. (5) Memory usage: The
amount of memory consumed during request execu-
tion. It is related to resource utilization.

7.2 Results

Figure 5 Illustrates the percentage reduction achieved
with Protobuf compared to JSON in terms of data ex-
change size, response time, CPU usage, energy con-
sumption, and memory usage. The results show that
Protobuf achieves substantial savings, with Applica-
tion 1 experiencing up to an 80% reduction at 16,384
objects (from 1.69 MB to 0.36 MB), and Applica-
tion 2 seeing a 60% reduction at 256 objects (from
2.23 MB to 0.84 MB). This reduction is largely due
to Protobuf’s more compact binary format, which is
optimized for data transmission, unlike JSON’s ver-
bose text-based format. These results indicate that

Figure 5: Results of percentage reduction achieved with
Protobuf compared to JSON.

Protobuf is especially efficient as the number of ob-
jects increases, reducing transmission overhead and
network latency. The consistent reduction in data size
across both applications suggests that Protobuf can be
highly beneficial for systems handling large datasets.
Based on these findings, adopting Protobuf in data-
intensive applications is recommended, as it can sig-
nificantly improve performance by minimizing data
payload size. For response time, Application 1 ex-
hibits around an 80% reduction (from 2969 MS to 631
MS), while Application 2 shows approximately a 60%
reduction (from 3657 MS to 2141 MS). These results
are due to Protobuf’s more efficient serialization and
deserialization processes compared to JSON, which
involves parsing more complex text structures. The
results indicate that Protobuf significantly improves
response times, particularly as the data load increases,
making it a better choice for high-performance appli-
cations. This performance boost suggests that sys-
tems requiring fast, real-time responses can benefit
greatly from switching to Protobuf. Based on these
findings, adopting Protobuf in latency-sensitive ap-
plications is highly recommended, especially where
large data transfers or frequent interactions are in-

ICSOFT 2025 - 20th International Conference on Software Technologies

198



volved. Concerning the CPU usage, the results show
that Protobuf reduces CPU usage by about 17% in
Application 1 and 18% in Application 2. This reduc-
tion can be attributed to Protobuf which requires sig-
nificantly less processing power for serialization and
deserialization compared to JSON. As a result, Pro-
tobuf’s efficiency becomes particularly evident under
high user loads, where it helps reduce CPU strain and
enhances overall system scalability. These findings
suggest that Protobuf can lead to more efficient re-
source utilization, especially in environments where
CPU resources are limited. For energy consump-
tion, the results illustrate that reduction is around 18%
and 19% for Application 1 and Application 2, respec-
tively. This significant energy saving is attributed to
Protobuf’s efficiency in data serialization and dese-
rialization processes, which require fewer resources
for parsing and transmitting smaller data. Regarding
memory consumption, the results show that the max-
imum memory reduction observed was around 1.3%
for Application 1 and 1.4% for Application 2 under
heavy user loads. However, this change is negligible,
as we do not have any significant impact on memory
usage. This is a good indication that the migration
to Protobuf yields positive results without introducing
any negative effects on memory consumption.

In summary, Protobuf consistently outperforms
JSON across all tested performance metrics, demon-
strating advantages in data size, response time, CPU
usage, and energy consumption, with no additional
memory overhead. This positions Protobuf as a
compelling choice for applications requiring efficient
serialization and deserialization, especially in high-
performance and resource-constrained environments.

7.3 Threats to Validity

Internal Threats. While a controlled testing envi-
ronment is useful for isolating variables, it might not
reflect real-world complexities like network latency
or fluctuating system load. Also, simulated work-
loads, although designed to mimic typical user inter-
actions, may not capture the intricacies of live envi-
ronments, which could lead to discrepancies in per-
formance metrics.

External Threats. While Protobuf is supported by
various programming languages, the results obtained
in this study specifically represent its performance
with Java web applications. However, Java-based
backend applications represent a wide range of in-
dustrial applications. To generalize these findings for
other languages (e.g., JavaScript), an empirical study
should be conducted.

8 RELATED WORK

Several approaches have been proposed to enhance
the performance of web applications by migrating
to more efficient technologies (Kennedy and Mol-
loy, 2009; Verhaeghe and et al., 2021; Darbord and
et al., 2023; Kaushalya and Perera, 2021; Rabetski
and Schneider, 2013; Lee and Liu, 2022a). While
our approach focuses on migrating the data serial-
ization, they address other aspects of web applica-
tion migration. Some approaches emphasize com-
munication protocol migration, including migration
from RPC to REST (Kennedy and Molloy, 2009),
REST to gRPC (Lee and Liu, 2022b), as well as
RMI to REST (Darbord and et al., 2023). Other
ones migrate the frontend framework including GWT
to Angular (Verhaeghe and et al., 2021), AngularJS
to Web Components (Ronde, 2021), Thymeleaf to
Angular (Eriksson, 2022), and AngularJS to Re-
act (Kaushalya and Perera, 2021). On the archi-
tectural side, attention has been given to migrating
from monolithic architectures to microservice-based
ones. Pinos et al. (Pinos-Figueroa and León-Paredes,
2023) propose a refactoring strategy, while others rec-
ommend layered architecture designs (Zaragoza and
et al., 2022) or automated graph clustering techniques
to decompose monolithic systems using data flow-
driven approaches (Filippone and et al., 2023; Chen
et al., 2017). Other efforts focus on migration to
cloud-native architectures (Balalaie and et al., 2016),
or shifting from on-premises systems to Software as a
Service (SaaS) (Rabetski and Schneider, 2013; Sabiri
and Benabbou, 2015). Although these approaches
contribute to improving web applications, they do not
address the migration of data serialization formats.

Few approaches specifically target migrating data
serialization from JSON to Protobuf. Most focus
on transitioning from REST to gRPC but overlook a
thorough Protobuf migration. Yunhyeok Lee and Yi
Liu (Lee and Liu, 2022a) propose a manual approach
for migrating REST to gRPC using a simple case
study, but it lacks scalability for larger applications
and does not include performance evaluation. Michal
Štefanič (Štefanič, 2022) offers guidelines for migrat-
ing from REST microservices to gRPC but overlooks
the migration from JSON to Protobuf. Although the
study uses an industrial example, it lacks automa-
tion techniques for streamlining the migration pro-
cess. Additionally, while the study discusses data
exchange size, it does not measure key performance
aspects like response time, memory consumption, or
energy efficiency. Berg and Redi (Berg and Me-
brahtu Redi, 2023) focus on analyzing data exchange
size and latency but omit key performance metrics

Enhancing Data Serialization Efficiency in REST Services: Migrating from JSON to Protocol Buffers

199



such as CPU usage, memory consumption, and en-
ergy efficiency, which are crucial for a comprehen-
sive evaluation. Additionally, their testing relies on a
small example and lacks migration guidelines.

9 CONCLUSION

We propose a semi-automated approach for migrating
the data serialization of existing REST services from
JSON to Protobuf. This aims to optimize the perfor-
mance of existing web applications. We evaluate our
approach using one industrial and one open-source
applications. The results show that both applications
achieve similar levels of performance optimization
and resource utilization reduction. They exhibit a re-
duction in data size of 80% for larger payloads, im-
prove response times by 80%, reduce CPU utilization
by 17%, and decrease energy consumption by 18%,
all without consuming any additional memory. Pro-
tobuf emerges as a strong contender for organizations
looking to optimize their applications’ performance
and responsiveness. Therefore, it is highly recom-
mended to consider Protobuf in scenarios character-
ized by high user concurrency and stringent resource
constraints, as it not only improves performance but
also contributes to more sustainable software.

As a future direction, we plan to extend our
approach by migrating the communication protocol
from REST to gRPC and testing it with a wider range
of web applications. We plan to explore the migration
to Protobuf in frontend applications.

REFERENCES
Balalaie, A. and et al. (2016). Microservices architecture

enables devops: Migration to a cloud-native architec-
ture. Ieee Software, 33(3):42–52.

Barbaglia, G. and et al. (2017). Definition of rest web ser-
vices with json schema. Software: Practice and Ex-
perience, 47(6):907–920.

Berg, J. and Mebrahtu Redi, D. (2023). Benchmarking the
request throughput of conventional api calls and grpc:
A comparative study of rest and grpc.

Chen, R., Li, S., and Li, Z. (2017). From monolith to mi-
croservices: A dataflow-driven approach. In 2017
24th Asia-Pacific Software Engineering Conference
(APSEC), pages 466–475. IEEE.

Crockford, D. (2006). The application/json media type for
javascript object notation (json). Internet Engineering
Task Force IETF Request for Comments.

Darbord, G. and et al. (2023). Migrating the communication
protocol of client–server applications. IEEE Software,
40(4):11–18.

Eriksson, J. (2022). Migration of the user interface of a web
application: from thymeleaf to angular.

Eugster, P. T. and et al. (2003). The many faces of
publish/subscribe. ACM computing surveys (CSUR),
35(2):114–131.

Fernando, R. (2022). Evaluating performance of rest
vs. grpc. https://medium.com/@EmperorRXF/
evaluating-performance-of-rest-vsgrpc-1b8bdf0b22da.

Fielding, R. T. (2000). Architectural styles and the design
of network-based software architectures. University
of California, Irvine.

Filippone, G. and et al. (2023). From monolithic to mi-
croservice architecture: an automated approach based
on graph clustering and combinatorial optimization.
In ICSA, pages 47–57. IEEE.

gRPC (2024). https://grpc.io/docs/protoc-installation/. (ac-
cessed: September 2024).

Jang, J. and et al. (2020). A specialized architecture for
object serialization with applications to big data ana-
lytics. In ISCA, pages 322–334. IEEE.

Kaushalya, T. and Perera, I. (2021). Framework to migrate
angularjs based legacy web application to react com-
ponent architecture. In Moratuwa Engineering Re-
search Conference (MERCon), pages 693–698. IEEE.

Kelly, T. (2022). grpc vs rest: Performance benchmarking.
Journal of Systems Research (JSys).

Kennedy, S. and Molloy, O. (2009). A framework for tran-
sitioning enterprise web services from xml-rpc to rest.

Lee, Y. and Liu, Y. (2022a). Using refactoring to migrate
rest applications to grpc. University of Massachusetts
Dartmouth.

Lee, Y. and Liu, Y. (2022b). Using refactoring to migrate
rest applications to grpc. In ACM Southeast Confer-
ence, pages 219–223.

Monday, P. (2003). Implementing the data transfer object
pattern. In Web Services Patterns: Java™ Platform
Edition, pages 279–295. Springer.

Pinos-Figueroa, B. and León-Paredes, G. (2023). An ap-
proach of a migration process from a legacy web man-
agement system with a monolithic architecture to a
modern microservices-based architecture of a tourism
services company. In CONISOFT, pages 9–17. IEEE.

protobuf.dev (2024). https://protobuf.dev/
programming-guides/proto3/#scalar. (accessed:
Sep/2024)

Rabetski, P. and Schneider, G. (2013). Migration of an on-
premise application to the cloud: Experience report.
In ESOCC, pages 227–241. Springer.

Ronde, S. (2021). Migrating Angular-based web apps to
Web Components-A case study at 30MHz. PhD thesis,
Universiteit van Amsterdam.

Sabiri, K. and Benabbou, F. (2015). Methods migration
from on-premise to cloud. Journal of Computer Engi-
neering, 17(2):58–65.

Verhaeghe, B. and et al. (2021). Migrating gui behavior:
from gwt to angular. In ICSME, pages 495–504. IEEE.

Zaragoza, P. and et al. (2022). Leveraging the layered ar-
chitecture for microservice recovery. In ICSA, pages
135–145. IEEE.

Štefanič, M. (2022). Developing the guidelines for migra-
tion from restful microservices to grpc. Masaryk Uni-
versity.

ICSOFT 2025 - 20th International Conference on Software Technologies

200


