
Building a Decision Landscape Model for Software Development: From
Empirical Insights to Formal Theory

Hannes Salin a

School of Information and Engineering, Dalarna University, Borlänge, Sweden

Keywords: Decision-Making, Value Stream Mapping, Formal Model, Software Engineering, Software Development.

Abstract: Value stream mapping is a well known method for identifying waste and bottlenecks in production processes.
It is also used in the software engineering context, to map value streams of different processes in software
development. By regarding decision-making processes as value streams, we can describe and further analyze
decision-making flows in an organization for optimization such as reduced lead times or decision making
efficiency. Using empirical data from three different software development organizations in Sweden, we
develop a formal model to describe decision-making flows in a software development organizational context,
in a compact and systematic syntax. Our formal model can thus be used for analyzing decision-making flows
and support management in better understanding how decisions are made within their organizations.

1 INTRODUCTION

As for any organization in software engineering that
produces value of some sort, decision-making is
crucial, e.g. for improved managerial perspectives
with metrics (Salin et al., 2022), architectural de-
sign (Razavian et al., 2019), or product development
(Mendes et al., 2018). In an organization with many
different collaborative teams, units and processes, it
may be complicated to fully understand the overall
decision-making landscape, namely the mapping of
all necessary decision flows that needs to be executed
for efficient or optimal productivity. For this reason,
it would be beneficial to identify and map decision
processes and associated bottlenecks in the organiza-
tion, in order to better understand how these flows can
be optimized. Also, it might be the case that formal
decision-making processes are described in documen-
tation and policies, but works differently in practice.
For that reason, organizations need to map such cur-
rent processes to better understand their own work-
flows.

Value stream mapping (VSM) is a powerful tool
in the lean (and agile) toolbox, which also has been
shown to be suitable for managerial analysis (Eleft-
herios Andreadis and Kumar, 2017). VSM is a sys-
tematic approach used to visualize and analyze the
flow of a process, identifying inefficiencies, bottle-

a https://orcid.org/0000-0001-6327-3565

necks, and potential improvements. Such mapping
supports decision-making for prioritizing and coordi-
nating continuous improvement initiatives, by map-
ping each step of the workflow and thereby distin-
guishing value-added from non-value-added activi-
ties. The typical method to perform a VSM is via
workshops (Mäkinen, 2024), although different qual-
itative and/or quantitative methods and other type
of documenting activities works as well. VSM is
predominantly used in manufacturing and operations
contexts, however, also used in software engineering
and DevOps contexts (Botero et al., 2024; Mäkinen,
2024; Murphy and Kersten, 2020; Tankhiwale and
Saraf, 2020). The term value is broad and can include
anything that the organization regards (and define) as
valuable, either in time, monetary units or other type
of metrics. The value of a decision outcome would be
one example.

Given a compact and understandable formal
model for decision-making processes in any context
of software engineering, we aim to provide a sup-
portive tool to perform a VSM directed towards de-
cision value flows, easy to analyze for optimizations.
Moreover, by introducing a formal model as basis
for running a VSM, it could potentially be analyzed
with more depth compared to standard approaches us-
ing multiple step workshops or flow-chart based pro-
cesses with natural language descriptions (Qin and
Liu, 2022; Meudt et al., 2017). Since VSM is not
necessarily only suited for one context or domain, any

Salin, H.
Building a Decision Landscape Model for Software Development: From Empirical Insights to Formal Theory.
DOI: 10.5220/0013457300003964
In Proceedings of the 20th International Conference on Software Technologies (ICSOFT 2025), pages 15-26
ISBN: 978-989-758-757-3; ISSN: 2184-2833
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

15



improvements that support such approach would be
general in nature.

1.1 Paper Outline

The rest of the paper is outlined as follows: the re-
maining of this section includes related work and
formulated research question. Section 2 describe
the chosen methodology and theoretical foundation,
whereas section 3 presents the results from the empir-
ical data collection. Section 4 describe the developed
model, and section 5 the discussion including threats
to validity and future work. Section 6 concludes our
research.

1.2 Related Work

We underscore that our research is not within the
field of traditional decision theory (Kumar, 2025),
nor the cognitive sciences in decision-making (Wall-
sten, 2024). Instead, our work is in particular focused
on the ability to transform observed decision-making
processes in software engineering organizations into
compact and comprehensible formal language. In
contrast, much research is made in general methods
for logic of decision-making, e.g. a general model
for decisions under incomplete knowledge (Marković
et al., 2024), or different decision-making methods
for artificial intelligence and systems such as prompt-
ing and reinforcement learning (Yang et al., 2023).

Closest to our approach is the Managerial
Decision-making Description Model (MDDM) that
has been proposed, which can be used for visualiza-
tion of decision-making processes that changes the
business structure states (Kunigami et al., 2019). Fo-
cus for MDDM is on graphical representations via di-
agrams connecting agents’ goals, events, objectives
and other business components. However, the model
does not provide a compact mathematical syntax for
describing the decision-making landscape.

Regarding supportive methods to VSM for
decision-making mapping, discrete events simulation
has been proposed with VSM towards investment de-
cisions (Helleno et al., 2015), and another type of sim-
ulation to enhance lean optimization calculations (Liu
and Yang, 2020). One study implemented a multi-
agent system for dynamic VSM for manufacturing
systems, where the proposed method consisted of a
cyber-physical system with hardware components and
sensors (Huang et al., 2019). However, none of these
approaches has utilized a formal syntax model for de-
scribing decision-making processes.

Finally, a strict formal approach is the Burrows-
Abadi-Needham (BAN) logic for analyzing and rea-

son about authentication in security protocols (Bur-
rows et al., 1990). However, decision-making pro-
cesses are not in scope for BAN logic, although our
proposed model uses a similar formalized syntax with
defined relations in order to systematically describe
complex processes. Thus, to our knowledge, there
are no proposed formal models to describe decision-
making flows using a more syntax-based approach,
with the aim to support VSM.

1.3 Research Question

Given the importance of understanding a software de-
velopment organization’s current decision landscape,
we need a model where decision boundaries, un-
clear mandates and other challenges can be identified.
Also, to better optimize the organization, a decision
landscape map is required, thus a model for how to
efficiently construct such mapping is needed. A for-
mal model is a mathematical or logical representation
of a system or phenomenon, defined by precise rules
and structures to analyze, predict, and/or verify its be-
havior. For that reason, we formulate the following
research question:

• RQ1: How can a formal model of decision-
making in software development organizations be
used for supporting value stream mapping?
By constructing a formal model, our study aims to

provide a compact way to describe decision-making
processes as a supporting tool for VSM, hence ensur-
ing practical applicability for studying software de-
velopment organizational decision-making. Thus, we
seek a way for engineering managers to better under-
stand and optimize their organizations using formal
language to describe current decision-making flows.

2 METHOD

The chosen research methodology follows an induc-
tive approach aimed at theory building from empiri-
cal data (Sjøberg et al., 2008), collected in several in-
stances of the software development context (different
roles from three Swedish software engineering com-
panies). The approach is exploratory in the sense of
identifying current decision-making processes, which
then render a theoretic model construction. Data was
gathered through semi-structured interviews and an
open question survey to capture decision-making pro-
cesses, potential conflicts, and dependencies across
different organizational teams, roles and units. Target
companies were chosen via convenience sampling.
An iterative process of qualitative pattern identifica-
tion, using thematic-inspired analysis, was used to

ICSOFT 2025 - 20th International Conference on Software Technologies

16



summarized a set of key insights. These insights were
then used to develop the proposed formal model of
decision-making.

The aim is to develop a descriptive model since its
primary goal is to provide a compact but structured
language to represent and analyze observed decision-
making processes (Wang et al., 2004). It should cap-
ture relationships and to some degree the dynamics
of decisions without prescribing how these processes
should ideally function or be optimized. Therefore,
unlike normative models, it does not aim to define op-
timal decision-making practices but instead serves as
a tool for understanding and documenting real-world
workflows in conjunction with VSM practices.

2.1 Theoretical Foundation

Based on the guidelines in theory building for soft-
ware engineering (Sjøberg et al., 2008), a theory
should be presented with certain archetypes. We
have chosen to use two of the defined concepts: ac-
tors and activities, where actors are different roles
in an organization and activities refers to different
decision-making relations, e.g. making a success-
ful/unsuccessful decision and so on. Moreover, we
use the notion of constructs, propositions, explana-
tions and scope to construct and present the proposed
model. Constructs are explicit classes or attributes,
e.g. a design, a concept or an organizational entity. A
proposition is a statement aligned with one or many
constructs, e.g. ”decisions in a team are not vio-
lated by a first line manager”. Explanations are de-
scriptions of why the propositions are formulated, and
scope details the motivation for the whole theory.

We construct the decision-making model on the
basis of bounded rationality (Simon, 1955) for how
agents behave, and extends this foundation by in-
corporate Hackman’s unit authority theory (Hack-
man, 1986). By combining bounded rationality
as the underlying principle with inspiration from
Hackman’s authority classifications, our model cap-
tures the nuances of hierarchical and collaborative
decision-making.

2.1.1 Bounded Rationality

The notion of bounded rationality is the assumption
that individuals and teams make decisions within the
limits of their knowledge, resources, and cognitive ca-
pacities (Simon, 1955). We use bounded rationality
as a foundational principle in our model, recognizing
that decision-makers in software development orga-
nizations cannot evaluate all possible options exhaus-
tively due to time constraints, limited information,
and complex inter-dependencies. Instead of seeking

optimal solutions, we assume the decision-maker in-
stead aims for satisfactory outcomes by using heuris-
tics. This assumption aligns with the realities of ag-
ile and dynamic environments in software engineer-
ing, where exhaustive decision-making is impracti-
cal (Erbas and Erbas, 2009; Moe et al., 2012). Al-
though bounded rationality and similar rational de-
cision models are the commonly used assumptions
used in software engineering (Ralph, 2018), other
standpoints exists as well such as empirical natural-
istic theory (Pretorius et al., 2024). However, this
is more studied towards software design decision-
making context, whereas our study focus on the soft-
ware development organizational context.

2.1.2 Hackman’s Theory

Hackman’s unit authority theory (Hackman, 1986)
classifies decision-making authority within teams into
three levels: managerial control (decisions are cen-
tralized with managers), shared control (authority
is distributed between managers and team mem-
bers) and self-control (teams operate autonomously
with full decision-making power). This classification
provides a conceptual foundation for understanding
how authority impacts team dynamics and decision-
making processes. The theory has been used pre-
viously in the agile software engineering context to
study team autonomy (Moe et al., 2021).

3 RESULTS

In this section we describe the resulting data collec-
tion procedure, along with the data. We summarize
the findings in the data into a set of key insights,
which are later used for motivating the model. These
key insights describes identified themes from the data,
i.e. expressions and descriptions from the participants
that align within certain themes.

3.1 Data Collection

The data collection included three Swedish organi-
zations with software development as part of their
operations: two in banking/financial institutions (re-
ferred to as company A and company B, respectively)
and one public sector agency. These companies were
selected by convenience sampling, and all three had
similar product based organizations with agile soft-
ware development.

Semi-structured interviews and one online survey
was created for collecting data about current decision-
making processes. The survey was open-ended with

Building a Decision Landscape Model for Software Development: From Empirical Insights to Formal Theory

17



a free text answer field, where participants was asked
to describe what roles that made what type of deci-
sions, and if there were any necessary decisions that
could not be made for a certain role, and how these
were handled in the organization. The survey was
sent to N = 61 employees in total after a convenience
sampling across the three companies. The sampling
stemmed from initial discussions with representatives
from each company, which directed/recommended
subsets of employees to include in the data collection
phase. Four different roles were represented (software
developers, architects, project managers, engineering
managers) with n = 34 respondents in total. The sur-
vey questions are detailed in Tab. 1 and was further
elaborated in the interviews, i.e. the interview proto-
col was not different from the survey questions. The
survey had an introductory text highlighting that all
questions were related to decision-making processes
in the organization and not towards cognitive aspects;
one example was also given to underscore this.

Four interviews were conducted, with two soft-
ware developers (one from the public sector agency
and one from bank/finance company B), one architect
(bank/finance company A) and one engineering man-
ager (bank/finance company B). All interviews were
remote and scheduled for 20 minutes each. All inter-
viewees were also respondents to the survey.

Table 1: Questions stated in the survey, and used for elabo-
ration in the semi-structured interviews.

ID Question
Q1 Can you describe how decisions are made

in your role, from the need of a decision to
when it is executed?

Q2 Can you describe what decisions you need
but are not within your mandate?

Q3 Can you describe what decisions you may
need to take for someone else that does not
have the same mandate?

Q4 Can you describe what challenges you face
during decision-making processes in your
organization?

Q5 If you cannot take a decision immediately,
can you describe the steps you need to take
in the organization in order to make the de-
cision?

From the respondents of the survey, n1 = 17 were
from the public sector agency, n2 = 9 from company
A, and the remaining n3 = 8 from company B. We
did not collect data on the respondents’ gender, age or
other personal data. The validity of the sample cannot
be used for generalization, but rather indicative.

3.2 Data Summary

From the survey results we collected and grouped dif-
ferent clusters of similar themes. From the clustering
we then formulated different insights, representing
each cluster. The discovered clusters were labeled:
same role - different authority, no decision, lack of in-
formation, need for escalation, decision dependency;
and denoted KI1−KI5 respectively. We continued to
fill these clusters with data from the interviews. One
additional cluster, denoted KI6, was discovered from
the interviews: enforced decisions. We summarize
the clusters into key insights that were discovered dur-
ing the data collection phase in Tab. 2. We acknowl-
edge that these insights have their limitations due to a
small-size sample, and further data collection would
be helpful to refine the development of future versions
of the model.

Table 2: Key insights extracted from the data collection
phase.

ID Key insight
KI1 One context (team, role) can contain sev-

eral employees with the same appointed
role, but with different decision mandate
on the same decision type.

KI2 Employees with same roles and same man-
date might stall in a decision-making pro-
cess. The same can happen even if one role
has higher mandate than the other, and no
decision is made.

KI3 In several cases, a decision could be stalled
due to lack of information or knowledge of
the decision-maker. The typical implica-
tion was that an investigation and/or meet-
ings were scheduled to analyze the deci-
sion further.

KI4 Similar to KI2 and KI3, in several occasions
a stalled decision could not proceed even
though more information was gathered. In
these cases, the typical scenario was esca-
lation to management and/or architects for
final decision-making.

KI5 In several cases, a decision-maker was hes-
itant to make a decision before another de-
pendent decision was made. This could
happen both within a team or between dif-
ferent organizational units.

KI6 Decisions can be enforced, by actors that
lack the sufficient mandate. Decisions can
also be overridden by actors with- and
without sufficient mandates.

ICSOFT 2025 - 20th International Conference on Software Technologies

18



4 MODEL DEVELOPMENT

This section describes the proposed formal model for
describing decision-making processes in a software
development context. We use standard set theory to
describe constructs, and relations using the notation
a⊕b where a,b are any constructs and ⊕ any defined
relation operator within the model. A construct is any
set or element of a set defined in model. The basis for
our chosen notation is inspired by the work of (Wang
et al., 2004).

4.1 Decision-Making Context Boundary

Let C represent a specific context, such as a develop-
ment team, architecture role, IT infrastructure team or
a managerial context. The Decision-Making Context
Boundary (DCB) for context C, denoted as DCB(C),
is the set of all decisions that can be made by the ac-
tors operating within C, subject to the constraints and
scope of C. To avoid vagueness of what a context is,
we formally define it using actors and mandate sets.

Definition 1 (Actor Set). Let ai be an actor, i.e. a
role within an organization with specified task assign-
ments. For the contexts in this model we use actors
such as system developer, architect, agile actor, man-
agerial actor. The set of all ai that belongs to a specific
decision-making context is denoted A and called actor
set.

Definition 2 (Mandate Set). Let a tuple (ai,(d j,m j))
be a mandate description, which specify the level of
mandate m j ∈ N actor ai has for decision d j. The
positive integer m j thus represents the hierarchical
authority level of actor ai where higher numbers indi-
cate greater decision-making power. For (ai,(d,m j))
and (ak,(d,m∗j)) where m j > m∗j then ai has a higher
authority level than ak and can override ak in deci-
sion d. The set of all tuples that belongs to a specific
decison-making context is denoted M and called the
mandate set.

Definition 3 (Context). Let C be a context within a
software engineering organization. A context C is de-
fined as a tuple C = (A,M) where A is the actor set
(or roles), and M the mandate set given to the actors.

From the underlying theoretical assumptions of
bounded rationality and Hackman’s theory, we are
able to define three constraints for an agent when
making a decision: authority, knowledge and resource
constraints. These are necessary to be managed by the
decision-making agent in order to make a decision:

Definition 4 (Context Decisions). We call d ∈D a de-
cision, where D is the universal decision space of all
possible decisions in the organization. The element

⊥∈D represents the absence of a decision, signifying
that no explicit action or choice has been made within
the context. For a given decision d that is valid to ex-
ecute in context C, we denote it as d ⇌C, unless there
are no constraints on d. The following constraints are
defined:

• Authority Constraint: d can only belong to
DCB(C) if d is within the mandate defined in M
for an actor in A.

• Knowledge Constraint: d can only belong to
DCB(C) if the necessary information for d is ac-
cessible to the actors in A, i.e. information that
enables an informed decision instead of just make
a decision by chance.

• Resource Constraint: d can only belong to
DCB(C) if the resources required for d are avail-
able within the scope of C, i.e. people, organiza-
tions or assets to be included in the decision.

If d is constrained by any of the three constraint types,
we denote that by d ⇀ C, meaning that this decision
attempt will not be valid in C (unsuccessful).

We now define the DCB(C) as the set of all deci-
sions d for which d ⇌ C, satisfying the context con-
straints:
Definition 5 (Decision-Making Context Boundary).

DCB(C) = {d ∈ D | d ⇌C} (1)

where D is the universal set of all possible decisions
in the system or organization, d an individual deci-
sion and C a specific context, such as a team, organi-
zational unit, or domain.

For instance, let C be an unrealistic (for illus-
trative purposes) context of a developer team that
only has the ability to prioritize a backlog, with
actor set A = {system developer, scrum master}
and a corresponding mandate set M =
{(system developer,(d,2)),(scrum master,(d,1))},
where d is a decision to prioritizing the backlog. In
this DCB(C) the scrum master has less mandate in
decisions regarding the backlog. An extension to this
context would be to add tuple (product owner,(d,3))
indicating that in this particular context the product
owner has the right to final decisions of the backlog
over the rest of the team. The final DCB(C) would
then be: DCB(C) = {d,⊥} over the sets A and M.

We note that for an organization ORG, we can de-
scribe the complete decision landscape by:

DCBORG =
n⋃

i=1

DCB(Ci) (2)

where DCBorg represents the set of all valid decisions
across all contexts {C1,C2, . . . ,Cn} in the organiza-
tion.

Building a Decision Landscape Model for Software Development: From Empirical Insights to Formal Theory

19



Note that mandate sets are not exclusive, i.e. for
an actor ak ∈ Ak that belongs to Ck may have de-
cision authority for a decision in multiple contexts.
For example, given a decision d ∈ DCB(Ci) but also
d ∈ DCB(Ck) the actor ak may have decision man-
dates mi in Ci and mk in Ck, and mi ̸= mk. This cap-
tures a managerial role that can have limited decision
power in one context for d but full mandate in another
context.

4.2 Decision Conflicts

In the case where different actors have the same man-
date level mi, say (a1,(d,mi))∈Mk and (a2,(d,mi))∈
Mk there might be possible conflicts in the decision-
making process. For a subset Ck = (Ak,Mk) to a
context C, we define the decision conflict function
f : Ck ×D→ D that either render a decision d ∈ D
or the no decision ⊥∈D. This function represents the
process where a decision is made (thus to be executed
in a context), including mandate conflicts.

Definition 6 (Decision Conflict Function). Let Ck =
(Ak,Mk) where Ak ⊆ A and Mk ⊆M for a certain con-
text C = (A,M). Let f : Ck×D→ D be function de-
fined as:

f (Ck,d) =


dδ if ∃ai,a j ∈ Ak s.t (ai,(d,mi)) ∈Mk,

(a j,(d,m j)) ∈Mk and mi = m j

d if ∃ak ∈ Ak s.t (ak,(d,mk)) ∈Mk

and mk > mi for all i ̸= k
(3)

where dδ is a particular decision d ∈ D with proba-
bility δ and has the possibility to yield ⊥.

Note that the decision mandate hierarchy holds
trivially when no conflicts arise. The probabilistic
outcome dδ represents that if there is a conflict, it
can be resolved in multiple ways. One such exam-
ple is when an actor outside the current DCB(C) may
interfere and make a decision that is not normally
within the context decision space (e.g., upper man-
agement). In these cases, the likelihood of dδ resolv-
ing to ⊥ or a specific decision, depends on the used
conflict resolution strategy or external organizational
policies. Hence, it is up to the analyzing organization
to define the probability distribution for δ associated
to each possible d. We illustrate this function as fol-
lows: in ORG it is concluded that for a certain context
Ck = (Ak,Mk) there is a risk of decision conflict for
decision d. Given the current policies and empirical
knowledge, it is estimated that f (Ck,d) = d′ is given
by Pr[d =⊥] = 0.5 and Pr[d′ = d] = 0.5, i.e. the deci-
sion resolves to either no decision or the desired deci-
sion d with a uniform distribution. Therefore δ = 0.5

when resolving d into d′, and similarly δ = 0.5 when
resolving d into no decision.

To summarize, to model a particular decision
outcome, we use the decision conflict function
f (Ck,d)= d′ such that d′= d, d′= dδ for some dδ ∈D
with probability δ, or d′ =⊥.

4.3 Relation Definitions

We already defined the ⇌ and ⇀ relations, but we
also need several more to fully describe decision
flows. In this section we defined four additional re-
lations in the model, derived from the key insights.

4.3.1 Enforced Decisions

It might happen that a decision d for which it holds
that d ⇌ C1 in DCB(C1) where C1 = (A1,M1), but
is enforced and executed by ak that belongs to A2 in
C2 = (A2,M2) with corresponding DCB(C2). Regard-
less if d ⇀ C2 or not due to violations to the con-
straints in Def. 4 it might be the case the decision is
executed anyway. This could happen if the decision-
maker has high mandates in many other decisions (but
not necessarily in d) or enforce the decision by also
violating organizational constraints. As an example,
a very high influencing employee could manipulate or
make decisions without anyone noticing. In order to
capture a violating decision d into another context C
where d does not belong, we denote that by the ⇁
relation:

Definition 7. Let d be a decision such that d ̸∈
DCB(C) due to violation of any of the constraints in
Def. 4. Then if d is enforced by actor ak in DCB(C),
we denote that relation as d ⇁ (C,ak).

4.3.2 Decision Dependencies

Decision dependencies represent situations where a
decision d in one context C1 is dependent upon an-
other decision d′ in context C2 (C1 can be the same
as C2 as well). These dependencies often arise in
software engineering organizations when intercon-
nected teams or units must align their decisions to
achieve shared objectives, such as a development
team depending on an architectural decision to pro-
ceed. Moreover, from key insight KI5 we conclude
the need for such relation in the model. Capturing
these relationships with the relation d ← d′ provides
a way to model and analyze the interplay between de-
cisions within and across contexts.

Definition 8. Let d ∈C1,d′ ∈C2 be two decisions in
any two contexts C1 and C2. If there exists a depen-
dency between d and d′, i.e. d cannot be made before

ICSOFT 2025 - 20th International Conference on Software Technologies

20



d′ is decided, we denote that relation as d← d′ where
the left-hand side is the dependent decision.

4.3.3 Feedback-Driven Decisions

From the key insights we identified an reoccurring
theme of decisions that required several feedback
loops before execution (KI3). Especially when the
information and/or knowledge of the decision-maker
was lacking, such feedback loop is needed. There-
fore, due to its common nature, we introduce the rela-
tion of a decision requiring feedback, denoted d ⟳ ak
where ak is the actor that is requested for feedback.
If a decision d cannot be decided upon due to lack of
information, it corresponds to this relation.

Definition 9. Let d be a decision for which d ⇀ ak
due to the knowledge constraint, we denote that rela-
tion as d ⟳ C if there is a request of retrieving more
information for decision d from actor ak.

4.3.4 Decision for Escalation

A typical relation identified in the study were esca-
lated decisions (KI4), namely that an actor could not
make a decision within its own context, hence esca-
lated the decision to someone with a higher mandate
level (often a manager or architect). In a sense, this
relation occurs trivially in any organization with au-
thority levels, and aligns with Hackman’s theory. This
relation is naturally cross-context and we define it as
follows:

Definition 10. Let d be decision for which d ⇀C. If
the decision is escalated to another actor ak we de-
note that relation as d ↑ ak.

4.4 Summary of Relations

A relation in the model translates to a state, namely
a state within a context where a particular outcome is
about to be reached. For example, d ⇌ C indicates
that a decision d will be successful if executed within
C (not that d was successfully executed). Similarly,
d ⇀C indicates that d will not be able to be success-
fully executed in C, and d ↑ ak indicates that d is go-
ing to be escalated to ak as a next step. All defined
relations are summarized in Tab. 3.

4.5 Model Syntax

To describe decision-making processes using the pro-
posed model, we introduce a syntax that captures the
flow of decisions within organizational contexts. This
syntax includes both operators and symbols to rep-
resent sequential, conditional, and iterative flows, as

Table 3: Summary of decision relations in the proposed
model.

Notation Relation/Construct
d ⇌C Valid decision in context C
d ⇀C Invalid decision in context C

d ⇁ (C,ak) Enforced decision into context C by
actor ak where d ̸∈ DCB(C)

d ⟳ ak Decision requires feedback from ac-
tor ak

d ↑ ak Decision escalated to actor ak
d← d′ Dependency for d ∈C to d′ ∈C′

⊥ No decision

well as termination states. The syntax is pseudo code
inspired, thus universally understandable. A relation
or a combination of relations and/or symbols and/or
operators is called an expression and is denoted ⟨exp⟩.
The following operators and symbols are defined for
constructing decision flow expressions:

START: Represents the initial condition or state of
the decision-making process, which sets a starting
point of the flow and provides the starting context.

Example: START (d ⇀ C1) THEN d ⟳ ak
UNTIL d ⇌C1.

THEN: Represents a sequential flow, where one re-
lation follows another.

Example: d ⇀C1 THEN d ⟳ ak.

IF: Represents a conditional branch based on con-
straints or conditions.

Example: IF d← d′ THEN d′⇌C2.

OTHERWISE: Represents an alternative branch
when the condition in IF is not satisfied.

Example: IF d ← d′ THEN d′ ⇌ C2 OTH-
ERWISE d′⇀C2.

UNTIL: Represents an iterative flow that continues
until a specific condition is met.

Example: d ⟳ ak UNTIL d ⇌C.

AND: Represents parallel dependencies, where mul-
tiple relations must hold simultaneously.

Example: d1 ⇌C1 AND d2 ⟳ ak.

OR: Represents alternative paths where at least one
relation must hold.

Example: d1 ⟳ ak OR d1 ↑ am.

NOT: Represents the negation of a relation or con-
dition. We use the equivalence relation ≡ to ex-
plicitly show a negated relation.

Example: NOT d ⇌ C indicates that d can-
not be valid made in context C. Can also be
expressed as NOT d ⇌C ≡ d ⇀C.

Building a Decision Landscape Model for Software Development: From Empirical Insights to Formal Theory

21



CONFLICT: Represents a case of a decision con-
flict that occurs. This implicitly indicates the need
for computing the decision conflict function.

Example: d CONFLICT (A,M) indicates
that d has a conflicting situation given actors
in A with mandates specified in M.

RESOLVE: Represents when the decision conflict
function f is used for yielding a decision outcome
given a conflict.

Example: d RESOLVE (A,M) → dδ indi-
cates that d was resolved into dδ, where dδ

is determined by a given probabilistic func-
tion specific to the organization.

END: The end of a decision flow is indicated using
END, together with either d→ □ (successful ex-
ecution) or d←⊥ (no decision).

Example: d ⇌C THEN d→□ END.

Example: d ⇀C THEN d→⊥ END.

Parentheses: Used to group sub-expressions and
define precedence in decision flows. Follows the
conventional rules for parentheses for logic ex-
pressions.

Example: d ⇌C1 THEN (IF d← d′ THEN
d′⇌C2 OTHERWISE d′⇀C2).

To illustrate the usage of the syntax, consider a
scenario where a decision dA is needed in context CA
but is invalid due to information constraints, requires
feedback from actor ak, escalates to actor am if un-
resolved, and concludes with either successful execu-
tion or no decision:

START (dA ⇀CA)

THEN (dA ⟳ ak UNTIL dA ⇌CA)

OTHERWISE (dA ↑ am)

THEN IF dA ⇌CA THEN dA→□

OTHERWISE dA→⊥
END.

Another example illustrates the process where a
decision dA (e.g. architectural decision in a team) is
not valid due to a dependency to dB (e.g. architect
team approval):

START (dA ⇀CA)

AND (dA← dB)

THEN (dB ↑ aB UNTIL dB ⇌CB)

THEN dB→□

THEN dA ⇌CA

THEN dA→□ END.

These examples show the compactness and build
up to sub expressions within a complete expression
for an analyzed process. As seen in both examples,
the THEN operator works as an implication and rep-
resents a logical next step in the process. This com-
bined with a VSM, where details on why certain ex-
pressions are reached, would thus give a compact yet
comprehensive mapping of a decision flow.

4.6 Axiomatic Rules

To ensure logical consistency in the model, we also
introduce a set of fundamental rules. These are con-
sidered valid in the model given the caveat that they
also assume a simplified worldview, e.g. strict se-
quential steps in a process and no detailed consider-
ation to temporal aspects of a process. We use the
standard mathematical notation of =⇒ to show that
a certain expression ⟨exp⟩1 logically leads to another
expression ⟨exp⟩2, namely: ⟨exp⟩1 =⇒ ⟨exp⟩2.

Definition 11 (Dependency Resolution Rule). A de-
pendent decision cannot proceed unless its prerequi-
site decision is completed.

d← d′ =⇒ (d ⇀C OR d′⇀C′)

This ensures that decision d cannot be valid in context
C unless the dependent decision d′ is valid in context
C′.

Definition 12 (Feedback Resolution Rule). A deci-
sion requiring feedback must resolve its feedback loop
before proceeding.

(d ⟳ ak UNTIL d ⇌C) =⇒ d ⇀C OR d ⟳ am

where am is another feedback actor. This ensures that
a decision in a feedback loop cannot proceed to va-
lidity until the necessary feedback is addressed.

Definition 13 (Escalation Termination Rule). An es-
calated decision must either reach a valid state or ter-
minate with ⊥.

d ↑ ak =⇒ (d ⇌C′ OR ⊥)

This ensures that escalation leads to a resolution, ei-
ther by validating the decision in a higher context C′

or terminating without resolution.

Definition 14 (Mutual Exclusion Rule). A decision
cannot be escalated and resolved within the same
context at the same time (simplifying temporal as-
pects), thus we have the implication that.

d ⇌C =⇒ NOT d ↑ ak

for any actor ak ∈ A where C = (A,M).

ICSOFT 2025 - 20th International Conference on Software Technologies

22



Table 4: Summary of the decision flow syntax, where ⟨exp⟩ is any valid expression constructed from the model.

Syntax Description
START ⟨exp⟩ Specifies the initial condition of the decision process.
⟨exp⟩ THEN ⟨exp⟩ Sequential flow, where one expression follows another.
IF ⟨condition⟩, THEN ⟨exp⟩ Conditional branch based on a specified condition.
OTHERWISE ⟨exp⟩ Specifies the alternative path if the condition in IF is not met.
⟨exp⟩ UNTIL ⟨condition⟩ Iterative flow that continues until a specific condition is satisfied.
⟨exp⟩ AND ⟨exp⟩ Parallel dependencies, where both expressions must hold.
⟨exp⟩ OR ⟨exp⟩ Alternative paths, where at least one expression must hold.
NOT ⟨exp⟩ Negation of an expression or condition.
⟨exp⟩ THEN □ END Indicates the decision process ends with successful execution.
⟨exp⟩ THEN ⊥ END Indicates the decision process ends with no decision.
Parentheses () Groups sub-expressions and defines precedence.

Definition 15 (Loop Consistency Rule). A decision
d that depend on decision d′ cannot at the same time
have a dependency relation for d′; either d is depen-
dent on d′ or vice versa, otherwise there will be an
infinite loop of dependency.

d← d′ =⇒ NOT d′← d

We acknowledge that these axiomatic rules are not
complete nor exclusive; in this preliminary work we
provide a first attempt to construct the model which
needs to be further tested and evaluated.

4.7 Propositions and Explanations

In this section we summarize the developed model’s
propositions and associated explanations, based on
the nomenclature and theory presentation structure in
(Sjøberg et al., 2008). These are summarized in Tab. 5
and Tab. 6. Explanations are associated to the propo-
sitions of the theory, i.e. the model. The rationale is to
have a sufficiently good motivation to the formulated
proposition.

4.8 Scope

The scope of the model is that it is designed to cap-
ture and analyze decision-making processes within
software development organizations, using a compact
and efficient syntax, as a supportive tool in VSM ac-
tivities. The model includes the capture of hierar-
chical, cross-context, and dependency-related chal-
lenges. While the model is grounded in the software
engineering domain, its principles could possibly be
generalized to other knowledge-intensive fields with
similar organizational dynamics. The model’s pri-
mary scope is thus to complement VSM activities and
thereby provide insights into decision-making con-
straints, conflicts, and dependencies, enabling organi-
zations to identify and address inefficiencies in their
decision landscapes.

Table 5: Formulated propositions for the developed model.

ID Proposition
P1 Explicitly modeling decision dependencies

and constraints enhances the the structural
and relational understanding of decision-
making processes.

P2 Using pseudo-code syntax enables system-
atic mapping and analysis of decision flows
across multiple organizational contexts, sup-
porting consistent representation of diverse
decision processes.

P3 Using actor sets, mandate sets, and context
boundaries with pseudo-code syntax allows
for a compact and precise representation of
decision processes, reducing ambiguity in
process analysis.

P4 Using authority, knowledge, and resource
constraints, along with mandate sets, enables
the model to identify factors impacting deci-
sion validity.

P5 Integrating the model with VSM approaches
supports the identification of process waste
in decision-making workflows.

P6 Using explicitly defined relations such as
dependencies, feedback loops, escalations,
enforced decisions, systematically captures
both linear and non-linear decision-making
flows.

5 DISCUSSION

In our model, Hackman’s framework is used as ba-
sis for the design of the mandate set M by highlight-
ing the hierarchical relationships and distribution of
decision-making power within and between contexts.
For example, contexts operating under shared control
often experience decision conflicts that require reso-
lution mechanisms, which our decision conflict func-
tion f addresses. In our model we can provide a more

Building a Decision Landscape Model for Software Development: From Empirical Insights to Formal Theory

23



Table 6: Explanations for the propositions of the developed
model.

ID Explanation
E1 Explicitly modeling decision dependencies

and constraints provides an overview of th
whole process. This is particularly im-
portant for addressing scenarios like KI5,
where decisions are delayed due to unre-
solved dependencies, however, all insights
KI1-KI5 indicate the need for a structured
way to model a decision path.

E2 Using pseudo-code syntax introduces a
standardized representation of decision
flows, making it easier to analyze, repli-
cate, and communicate decision-making
processes across different contexts. Such
syntax is natural in software engineering,
and allows for potential usage in other for-
mal methods or tools for automatic syntax
validation.

E3 By defining actors and mandates as sets,
with context boundaries, provide a struc-
tured (mathematical) way to model de-
cision landscapes by capturing roles, re-
sponsibilities, and constraints in decision-
making, since these are fundamental con-
cepts in organizational structures.

E4 Authority, knowledge, and resource con-
straints are key factors that influence de-
cision validity, as motivated by KI1-KI3.
By integrating these constraints, the model
thus enables the identification of barriers in
the decision-making process.

E5 Integrating the model with VSM supports
the identification of process waste, such as
delays, hinders and unnecessary steps, by
using the compact notation of the model
with the practical application of VSM ap-
proaches. This explanation draws futher on
lean management principles that empha-
size waste reduction through process anal-
ysis.

E6 Explicitly defined relations, such as depen-
dencies, feedback loops, escalations, and
enforced decisions, allow for the system-
atic representation of both linear and non-
linear decision flows, capturing the com-
plexity of real-world processes. This ex-
planation is justified by KI1-KI6.

granular view on the decision mandates compared to
Hackman’s framework, since we define sets of deci-
sions with corresponding pre-specified mandate lev-
els mi. This aligns well with proposition P4 due to its

simple nomenclature.
The foundation of bounded rationality directly

connects to the proposed relations in the model, such
as feedback loops and escalation, since it highlights
how decision-makers operate with the different con-
straints. For example, this is captured in P4, show-
ing the need to identify factors impacting decision
validity when actors cannot exhaustively evaluate all
options. Similarly, Hackman’s theory has indeed
shaped the model’s constructs, such as decision con-
text boundaries, which relates directly to the hierar-
chical decision-making processes described in P3 and
P6. The escalation relation explicitly reflects Hack-
man’s classifications of authority by demonstrating
how decisions transition from self-control to manage-
rial control when lower-level actors lack the authority
(or has other constraints) to proceed. By integrating
these theories, the model thus provides a structured
way to formalize the interplay between decisions and
decision-makers in a software engineering organiza-
tion. As shown in the developed constructs and re-
lations, it indeed provides a compact language to de-
scribe the decision flows (illustrated with the exam-
ples in Sec. 4.5), hence it would be supportive in VSM
activities. Especially to describe the decision flows
for both comparison and formal analysis within the
same organization. The model is yet to be evaluated
in single, but preferably multi-case studies, to show
how well the support of the model gives a decision
landscape VSM. This is our working hypothesis for
future work, and concludes proposition P5.

The proposed model could have potential for
automation in decision-support systems, supporting
even more efficient VSM approaches. From this for-
malizing of decision-making processes with clearly
defined constructs, rules, and relations, the model
could potentially be implemented algorithmically to
analyze workflows, identify bottlenecks, and suggest
optimizations in real-time. Additionally, its pseudo-
code-inspired syntax and logical structure would
make it suitable for integration with tools for formal
reasoning, enabling automated validation of decision
flows, conflict detection, and different type of com-
plex patterns. Moreover, considering different type of
use cases where the model could be useful, the model
syntax and rules most likely allow for both simple and
more complex ones such as cross-organizational (thus
cross-contextual) decision flows between different ac-
tors.

5.1 Example Scenario

We illustrate the syntax with another example. A
project manager (ap) needs to allocate cloud re-

ICSOFT 2025 - 20th International Conference on Software Technologies

24



sources for a new microservice (dX ), but this re-
quires prior technical approval for security compli-
ance from the infrastructure team (ai). The decision-
making process is captured in steps: firstly, ap at-
tempts to make a decision to allocate resources with-
out approval (dX ⇀ CX ) and is identified to depend
on a compliance decision (dX ← dY ). The decision
is escalated to the infrastructure team (dY ↑ ai) which
makes the decision (dY ⇌ CY ). If the infrastructure
team provides approval, the decision is successfully
made (dY → □) and the project manager is now able
to proceed (dX ⇌ CX ). The final decision is success-
fully made: dX → □. However, if the infrastructure
team identifies security concerns, a feedback loop is
initiated where the project manager must address the
issues before resubmitting the request. If the concerns
remain unresolved, the decision process may result in
a failure (dX →⊥). The full description in the model
is:

START (dX ⇀CX )

AND (dX ← dY )

THEN (dY ↑ ai UNTIL dY ⇌CY )

THEN (dY →□)

THEN dX ⇌CX

THEN dX →□ END.
OR (dY →⊥) IF unresolved.

From this analysis, it is possible to complement
a VSM in resource allocation decisions to better un-
derstand the overall workflow with dependencies and
parties.

5.2 Threats to Validity

This model is subject to certain limitations that may
affect both its validity and applicability. The for-
malization make several assumptions that may not
fully capture real-world scenarios, e.g. static actor-
and mandate sets that does not fully reflect the dy-
namic nature of roles and responsibilities which fre-
quently change. Moreover, while the model captures
key decision relations such as escalation and feed-
back, it simplifies complex interactions like resource-
and knowledge dependencies, which may require ad-
ditional constructs. Also, the model builds on logical
rules which assumes deterministic behavior, thus the
current model does not include human factors, such
as biases or conflicts that influence decision-making.
However, this would complicated the model signif-
icantly, and could instead be captured in the VSM
method. Finally, the sampling for the empirical data

collection is limited due to its small size and respon-
dents volume, however, it was collected from three
different companies including both private and public
sector.

5.3 Future Work

We are currently collaborating with one Swedish
company to evaluate the model, aiming for a case
study to further validate and refine the model. For
future work we suggest a multi-case study with sev-
eral different companies, thus potentially different de-
cision processes, to map using VSM and the model.
For more efficient analysis we also suggest that re-
search into automation of VSM analysis based on our
model should be done, including development of tools
and/or complementary support systems. Most impor-
tantly, the model itself should be further analyzed and
developed as in evaluating if additional rules or syntax
is needed. Moreover, extensions to our work could be
utility theoretic approaches where decision outcome
and prediction could be additional parameters to con-
sider.

6 CONCLUSIONS

We have provided a mathematical framework, derived
from empirical data on real-world decision-making
processes in software engineering organizations, to
be used for better analysis and optimization of orga-
nizational decision-making. The model can express
decision-making processes with a pseudo code syn-
tax and expressions based on relations between de-
cisions, actors and contexts. The model allows for
identification of mandate hierarchies, decision flows
and decision boundaries.

The proposed model is presented with the descrip-
tion of constructs, propositions with explanations,
and scope, all according to theory presentation by
(Sjøberg et al., 2008). Additionally, we also defined
a model syntax and an axiomatic rule set within the
model. From the propositions P1-P6, we conclude
that an answer to RQ1 is provided, since the model
shows that it can indeed be used for describing deci-
sion flows in accordance to VSM (or any other value
flow technique for that matter). Although not exten-
sively tested in practice, the theoretical framework
is defined. The compact notation is illustrated with
examples. We have contributed with a theoretical
model for describing and analyzing decision-making
flows in software engineering organizations, which
can support managers with organizational work-flow
or decision-making optimizations.

Building a Decision Landscape Model for Software Development: From Empirical Insights to Formal Theory

25



REFERENCES

Botero, D., Monsalve, E. S., and Pardo, C. (2024). Practices
for conducting value stream traceability in devops: A
systematic literature mapping. Periodicals of Engi-
neering and Natural Sciences (PEN), 12(3):541–564.

Burrows, M., Abadi, M., and Needham, R. (1990). A logic
of authentication. ACM Transactions on Computer
Systems (TOCS), 8(1):18–36.

Eleftherios Andreadis, J. A. G.-R. and Kumar, V. (2017).
Towards a conceptual framework for value stream
mapping (vsm) implementation: an investigation of
managerial factors. International Journal of Produc-
tion Research, 55(23):7073–7095.

Erbas, C. and Erbas, B. C. (2009). Software develop-
ment under bounded rationality and opportunism. In
2009 ICSE Workshop on Software Development Gov-
ernance, pages 15–20.

Hackman, J. (1986). The psychology of self-management
in organizations. Psychology and Work: Productiv-
ity Change and Employment/American Psychological
Association.

Helleno, A., Pimentel, C., Ferro, R., Santos, P., Oliveira,
M., and Simon, A. (2015). Integrating value stream
mapping and discrete events simulation as decision
making tools in operation management. The Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 80:1059–1066.

Huang, Z., Kim, J., Sadri, A., Dowey, S., and Dargusch,
M. S. (2019). Industry 4.0: Development of a multi-
agent system for dynamic value stream mapping in
smes. Journal of Manufacturing Systems, 52:1–12.

Kumar, R. (2025). A comprehensive review of mcdm meth-
ods, applications, and emerging trends. Decision Mak-
ing Advances, 3(1):185–199.

Kunigami, M., Kikuchi, T., and Terano, T. (2019). A Formal
Model of Managerial Decision Making for Business
Case Description, pages 21–26. Springer Singapore,
Singapore.

Liu, Q. and Yang, H. (2020). An improved value stream
mapping to prioritize lean optimization scenarios us-
ing simulation and multiple-attribute decision-making
method. IEEE Access, 8:204914–204930.

Mäkinen, S. (2024). Enhancing software development pro-
cesses through value stream mapping–a case study.
Master’s thesis.

Marković, u., Vandevelde, S., Vanbesien, L., Vennekens,
J., and Denecker, M. (2024). An epistemic logic
for modeling decisions in the context of incomplete
knowledge. In Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing, SAC ’24, page
789–793, New York, NY, USA. Association for Com-
puting Machinery.

Mendes, E., Rodriguez, P., Freitas, V., Baker, S., and Atoui,
M. A. (2018). Towards improving decision making
and estimating the value of decisions in value-based
software engineering: the value framework. Software
Quality Journal, 26:607–656.

Meudt, T., Metternich, J., and Abele, E. (2017). Value
stream mapping 4.0: Holistic examination of value

stream and information logistics in production. CIRP
Annals, 66(1):413–416.

Moe, N. B., Aurum, A., and Dybå, T. (2012). Challenges of
shared decision-making: A multiple case study of ag-
ile software development. Information and Software
Technology, 54(8):853–865.

Moe, N. B., Šmite, D., Paasivaara, M., and Lassenius, C.
(2021). Finding the sweet spot for organizational
control and team autonomy in large-scale agile soft-
ware development. Empirical Software Engineering,
26(5):101.

Murphy, G. C. and Kersten, M. (2020). Towards bridging
the value gap in devops. In Bruel, J.-M., Mazzara,
M., and Meyer, B., editors, Software Engineering As-
pects of Continuous Development and New Paradigms
of Software Production and Deployment, pages 181–
190, Cham. Springer International Publishing.

Pretorius, C., Razavian, M., Eling, K., and Langerak, F.
(2024). When rationality meets intuition: A research
agenda for software design decision-making. Journal
of Software: Evolution and Process, page e2664.

Qin, Y. and Liu, H. (2022). Application of value stream
mapping in e-commerce: a case study on an amazon
retailer. Sustainability, 14(2):713.

Ralph, P. (2018). The two paradigms of software develop-
ment research. Science of Computer Programming,
156:68–89.

Razavian, M., Paech, B., and Tang, A. (2019). Empirical re-
search for software architecture decision making: An
analysis. Journal of Systems and Software, 149:360–
381.

Salin, H., Rybarczyk, Y., Han, M., and Nyberg, R. G.
(2022). Quality metrics for software development
management and decision making: An analysis of at-
titudes and decisions. In International Conference
on Product-Focused Software Process Improvement,
pages 525–530. Springer.

Simon, H. A. (1955). A behavioral model of rational choice.
The quarterly journal of economics, pages 99–118.

Sjøberg, D. I., Dybå, T., Anda, B. C., and Hannay, J. E.
(2008). Building theories in software engineering.
Guide to advanced empirical software engineering,
pages 312–336.

Tankhiwale, S. and Saraf, S. (2020). Value stream map-
ping (vsm) led approach for waste and time to market
reduction in software product development process.
Telecom Business Review, 13(1):27.

Wallsten, T. S. (2024). Cognitive processes in choice and
decision behavior. Taylor & Francis.

Wang, Y., Liu, D., and Ruhe, G. (2004). Formal descrip-
tion of the cognitive process of decision making. In
Proceedings of the Third IEEE International Confer-
ence on Cognitive Informatics, 2004., pages 124–130.
IEEE.

Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., and Schu-
urmans, D. (2023). Foundation models for decision
making: Problems, methods, and opportunities. arXiv
preprint arXiv:2303.04129.

ICSOFT 2025 - 20th International Conference on Software Technologies

26


