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Abstract: A model for manual carrier-based aircraft landing missions was established for high sea condition 
environments. The model includes pilot, aircraft, deck motion and carrier air wake. The pilot model uses an 
intelligent structure, include perception, decision-making and execution modules. The perception module 
considers the pilot's perception of unstructured and structured data processes, established through fuzzy 
methods and Kalman filtering. The decision-making module is based on MPC (Model Predictive Control) 
methods, considering the aircraft pilot's control characteristics based on trend prediction, enabling the 
description of the pilot's control strategy under control input and rate constraints. The established pilot model 
completed flight simulations in high sea conditions. Simulation results indicate that as sea condition levels 
increase, the longitudinal trajectory deviation of manual landings significantly increases, with reduced 
correction abilities for deviations caused by ship motion, reflecting the pilot's adaptive adjustment strategy 
based on control resource margins under control rate and input constraints. As sea condition levels rise, the 
distribution of touchdown point deviations during manual landings increases, posing significant safety risks, 
validating that the manual landing model established in this study can be used to analyse the safety of aircraft 
carrier landings in complex environments. 

1 INTRODUCTION 

Aircraft carriers are known as the most dangerous 
operating airports in the world, with naval aviators 
being the protagonists in this hazardous operating 
environment. Currently, manual landing remains the 
primary method for aircraft carrier landings. Statistics 
show that 80% of accidents involving carrier-based 
aircraft occur during the landing process (Haitao & 
Yan, 2021; Wang, Jiang, Zhang, & Wen, 2022). In 
manual landing mode, naval aviators of carrier-based 
aircraft need to control three variables: speed, 
altitude, and lateral deviation, requiring a high level 
of precision in maintaining control. Providing a 
comprehensive description of the control behaviour 
of carrier-based aircraft pilots is difficult, hence 
practical models that satisfy the closed-loop human-
machine system are typically established. Currently, 
there are various practical pilot models available in 
the field of carrier-based aircraft, categorized based 
on modelling principles into classical control theory 
models, physiology models, modern control theory 
models, and intelligent models (Xu, Tan, Efremov, 
Sun, & Qu, 2017). The classical control theory model 
is established based on frequency domain criteria 

proposed by McRuer and others. In the early days, the 
U.S. military often used quasi-linear models to 
describe the pitch channel control behaviour of pilots 
during the approach phase of carrier-based aircraft 
(D. T. McRuer & Jex, 1967). The physiology model 
is based on the structural pilot model proposed by 
Hess. Detailed explanations of this modelling 
approach can be found in references 5-9. These 
models are also based on identification results and are 
typically single-channel models based on classical 
control theory (Hess, 1980; Hess, 2006; Hess, 2019; 
R. A. J. P. o. t. I. o. M. E. Hess, Part G: Journal of 
Aerospace Engineering, 2008; M. M. Lone, Ruseno, 
& Cooke, 2012). With the widespread application of 
artificial intelligence, some scholars have also 
introduced intelligent methods to construct model 
parameters, extending this model to a wider range of 
flight control tasks (Brutch & Moncayo, 2024; 
Jakimovska, Pool, van Paassen, & Mulder, 2023). 

The two types of models mentioned above mainly 
address the description of pilot control behavior for 
single-channel flight tasks  (such as pitch angle 
tracking), but due to their inherent characteristics, 
they struggle to describe coupled control channel 
operations. NASA reports that as task complexity 

Xu, X., Hong, G. and Du, L.
Research on Manual Carrier Landing Task in High Sea Conditions.
DOI: 10.5220/0013432600003970
In Proceedings of the 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2025), pages 175-184
ISBN: 978-989-758-759-7; ISSN: 2184-2841
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

175



increases, models based on frequency domain 
identification results may prove insufficient (Baron, 
Kleinman, & Levison, 1970; Kleinman, Baron, & 
Levison, 1970).When it comes to multi-channel 
control, even if it is possible to extend the 
construction method of single-channel models to 
multiple channels, it is challenging to address the 
issue of model structure determination. It also 
requires the decoupling of each channel, which limits 
the application of quasi-linear models and structural 
models in complex conditions involving multiple 
inputs and multiple outputs. 

Optimal pilot models based on modern control 
theory have significant advantages in dealing with 
multi-loop control problems. Since these models 
describe the pilot's control behavior from the 
perspective of overall performance based on optimal 
assumptions, strict decoupling is not required (Lone 
& Cooke, 2013; D. McRuer, Schmidt, & Dynamics, 
1990). The main difference between the optimal pilot 
model and the structural model lies in its modeling, 
which is not based on frequency domain 
identification criteria but on an assumption that aligns 
with natural intuition: that human pilot control 
behavior is to some extent optimal. The validity of 
this assumption has been studied extensively (Roig, 
1962). Based on experience, pilots always aim to 
maintain a phase margin of 50°-100°for the man-
machine system. In the low frequency range, the 
pilot's control behavior is somewhat optimal, aligning 
with some theories in optimal control theory (Myers, 
Johnston, & McRuer, 1982). Based on the optimal 
assumption, discussing the pilot's control behavior 
from the perspective of overall performance 
optimization becomes feasible. By designing a 
reasonable model structure, the optimal model can be 
gradually extended to a wider range of flight tasks, 
such as the LQR pilot model, MOCM-AE pilot model, 
etc. The successful applications of these models have 
all demonstrated the validity of extrapolating models 
based on the optimal assumption (Davidson & 
Schmidt, 1992; Wierenga, 1969). 

The ship motion induced by high sea conditions 
and complex ship wakes are important environmental 
variables affecting the safety of ship landings. A 
rising ship wake increases the risk of collision. 
Stronger ship wakes and optical guidance motions 
caused by heaving and pitching movements further 
increase tracking difficulties (optical guidance 
typically operates in a line-stabilized form, only able 
to counteract ship rotations causing motion in the 
optical sphere). This necessitates pilots to focus more 
on controlling the overall flight trends. The optimal 
assumption is currently the most suitable assumption 

for establishing a MIMO human-machine system 
pilot model. Therefore, this paper adopts a 
constrained MPC method based on the optimal 
assumption to establish the pilot model. Within the 
constraint range, this model is equivalent to the LQG 
pilot model, which has been proven applicable in 
describing pilot control behavior. At the constraint 
boundaries, by setting reasonable physical constraints, 
pilot operations align more with realworld scenarios. 

The main innovation of this paper is the 
establishment of a pilot model for landing task, 
integrating the pilot's predictions and dynamic 
constraints during the landing process. Based on the 
closed-loop human-machine system established, 
which includes the ship motion, aircraft, pilot, and 
environment, research on flight safety under high sea 
conditions was conducted. This paper investigates the 
manual carrier landing task under high sea conditions. 
In this section, the research status of this field is 
elucidated. The paper describes in the second section 
the pilot model established based on the MPC method, 
and supplements necessary carrier aircraft, ship 
motion, and ship wake engineering models in the 
third section to close the human-machine system loop. 
Based on the established human-machine system, 
simulation experiments of the manual carrier landing 
task under high sea conditions are conducted in the 
fourth section, discussing the results, and 
summarizing the conclusions in the fifth section.  

2 PILOT MODEL BASED ON MPC 
METHOD 

2.1 Overview of Manual Landing Task 

The manual landing task of carrier-based aircraft is a 
complex task, requiring pilots to manage variables in 
three channels: pitch, altitude, and lateral deviation, 
based on multiple perceptual information. To 
establish a manual landing model for high sea 
conditions, it is necessary to have a comprehensive 
understanding of carrier landing missions. This 
section, based on the description of carrier landing 
missions, constructs a conceptual manual landing 
model structure: the aircraft captures the desired glide 
slope window from a distance behind the carrier. As 
shown in Figure 1, guided by FLOLS, the aircraft 
aligns with the ideal glide path and successively 
completes the landing through a safety window. 

Due to the movement of the carrier and the 
disturbance caused by the carrier's airflow wake, it is 
nearly impossible to maintain the flight path 

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

176



accurately. To minimize risks, landing signal officers 
are typically stationed on the carrier deck to assist 
pilots during landings. LSO are usually experienced 
pilots who guide the pilot by predicting aircraft trends 
for the next 2-3 seconds and ship movements. They 
provide verbal commands like "high" or "low" to help 
the pilot adjust their trajectory, which can be seen as 
a way of introducing future information into the 
guidance process. 

In addition to the verbal commands from the LSO, 
pilots also obtain the height deviation angle Δ𝑒 
through the FLOLS optical guidance system during 
the landing process. The literature outlines the 
working principles of optical guidance for carrier 
landings (Chen, Tan, Qu, & Li, 2018). The optical 
guidance system provides feedback on the deviation 
angle between the carrier-based aircraft and the ideal 
glide path. There are various modelling processes 
involved in how pilots handle this guidance 
information (Chen et al., 2018; SCHMIDT, 1988). 
This article uses the Kalman filtering method to 
establish the process by which pilots convert the 
deviation angle ∆𝑒  to height deviation ∆𝐻  as they 
approach the stern of the carrier. The pilots 
continuously self-correct based on observation 
results, incorporating observation noise v to simulate 
the pilots' observation deviation. The implementation 
is as follows: first, establish the state equations for 
optical ball displacement and height deviation. The 
relationship between the height deviation angle Δ𝑒, 
height deviation Δ𝐻, and distance from the carrier 𝑅௫ is as follows: Δ𝑒 = 83 ∗ Δ𝐻𝑅௫  (1)

It can be observed that the value of the deviation 
angle is inversely proportional to the distance from 
the carrier. By taking Xி = ቂ∆ுோೣ      ଵோೣቃ்

 , introducing 
system noise w and observation noise v, the state 
transition equation for the FLOLS system can be 
derived: 𝑋(𝑘 + 1) = 𝐴ிXி(𝑘) + 𝑤 𝑍 = 𝐶ிXி(𝑘) + 𝑣 (2)

The pilot's estimate of the height deviation ∆𝐻෡௄ 
can be represented by equation (3), where F is the 
Kalman gain, and  X෡ி  is the estimate state of  Xி: ∆𝐻෡௄ = 𝐴ிX෡ி(𝑘 − 1) + 𝐹 ∗ ቀ𝑍 − 𝐶ி ∗ 𝑋෠ி(𝑘)ቁ  (3) 

This article adopts the structure of intelligent pilot: 
perception, decision and execution to establish the 
pilot model. The manual approach landing model 

structure is shown in Figure 1, where G(s) represents 
the pilot's action execution transfer function, and the 
perception model is as shown in equations (1-3). The 
next section will establish the pilot decision model to 
obtain the final actual operational instruction 𝑢௣. 

Perception 
Information

Pilot 
Decision 
Model

Uc

G(s)

Ship, Aircraft and Environment 
Model

Up

Pilot Perception 

Model

Decision 
Information

 

Figure 1: Perception, Decision, Action-Based Pilot Model 
Structure. 

To make the model closely resemble the actual 
landing process, this article also designs the following 
assumptions to make the pilot model fit human 
capabilities to the greatest extent possible. The 
specific assumptions are as follows: 

1. Throughout the entire process, noise generated 
by the pilot's own physiological characteristics 
is assumed to be common zero-mean white 
noise in nature, with noise within each time 
interval being independent. The intensity of the 
noise is linearly related to the task load. 

2. The pilot will strive to make optimal decisions, 
but only decisions within a limited time 
interval will conform to the Bellman equation. 

3. Regarding the dynamic characteristics of the 
aircraft, the pilot has sufficient prior 
knowledge for interpretation, and with the 
assistance of the landing signal officer, can 
roughly estimate the trend of changes in the 
next 2-3 seconds. The pilot will not pre-
emptively act in response to unknown 
disturbances. 

4. The sampling time for the pilot model is 0.02 
seconds. 

2.2 Pilot Decision Making Models 
Based on MPC Methods 

The pilot model describes the process in which 
pilots make operational decisions based on the 
current state and future trends of the carrier-based 
aircraft to output the desired operational instruction 𝑢௖. Due to the need to minimize overshoot during 
the landing process to avoid the risk of colliding 
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with the carrier, trend prediction has become a key 
focus of carrier-based aircraft pilot control 
techniques. Pilots are required to smoothly mesh 
with the carrier's movements to complete the 
landing, which necessitates controlling the trends in 
the next 2-3 seconds to counteract the optical ball 
fluctuations caused by the carrier's heaving motion. 
Considering the unique nature of carrier landing 
missions, this article uses prediction and optimality 
as two fundamental features and establishes the 
pilot's decision model using MPC method. 

The MPC method, similar to the LQR pilot model, 
is based on optimal hypothesis to calculate the pilot's 
gains, while the LQR model is widely used to 
describe the pilot's control behaviour (Davidson & 
Schmidt, 1992). Additionally, using the MPC method 
can address constraint issues, which is crucial during 
the landing process. The following sets up a pilot 
model based on MPC, assuming the state space model 
of the controlled object as: 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢௖(k) + 𝐸𝑤 𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢௖(𝑘) 

(4)

Where： 𝑥(𝑘 + 𝑃) = 𝐴௉𝑥(𝑘) + 𝐴௉ିଵ𝐵𝑢௖(𝑘) + ⋯+𝐵𝑢௖(𝑘 + 𝑃 − 1) + 𝐴௉𝐸𝑤  (5)

The recursive predictive model in Equation (5) 
represents the pilot's predictive behaviour regarding 
the flight state trends, where P is the pilot's prediction 
horizon, m is the control horizon, and k is the discrete 
step. 

After establishing the mathematical model for 
the pilot's predictive behaviour, the next step is to 
establish explicit constraint equations reflecting the 
physical constraints the pilot faces during the carrier 
landing process. Constraints are common in the 
pilot's working environment. The residual throttle 
control resources left in the small perturbation 
model established at the conventional operating 
point usually range from only 10% to 15%. If hard 
constraints are used in modelling, it could 
potentially lead to divergence. Therefore, some 
studies describe the pilot's control behaviour as a 
highly constrained optimal linear controller. This 
significantly affects the pilot's decision behaviour, 
not only limiting the pilot's control performance but 
also introducing intelligent human characteristics 
based on control margins. 

The advantage of the pilot model established in 
this paper is its ability to explicitly handle constraint 
issues. By introducing control constraints as 
performance conditions into the performance index, 
solving the pilot's control behaviour becomes a 

planning problem. The control input constraints are 
expressed as: 𝑢୫୧୬(௞ା௜) ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢୫ୟ୶(௞ା௜) (6)

∆𝑈(𝑘) ≝ ൦ ∆𝑢(𝑘)∆𝑢(𝑘 + 1)⋮∆𝑢(𝑘 + 𝑚 − 1)൪ (7)

∆𝑌௣(𝑘) ≝ ⎣⎢⎢
⎡∆𝑦௣(𝑘 + 1|𝑘)∆𝑦௣(𝑘 + 2|𝑘)⋮∆𝑦௣(𝑘 + 𝑝|𝑘)⎦⎥⎥

⎤ (8)

Clearly, the objective function J contains 
inequalities, making it impossible to obtain an 
analytically optimal pilot gain solution through 
solving the Riccati equation. This is a typical 
Quadratic Programming (QP) problem. Based on 
Assumption 2, it is assumed that the pilot will 
optimize the performance function at each sampling 
instant. 

Physically, the optimal gain represents the pilot's 
control strategy that minimizes the overall deviation 
of the flight state through a combination of 
experience and the pilot's estimation of the flight 
trends. By selecting appropriate Q and R values, 
inhuman control behaviour can be avoided, typically 
requiring state variables other than altitude and lateral 
position not to exceed 1. QP problems are a classic 
type of optimization problem for which mature 
numerical optimization methods exist, making them 
well-studied problems. Therefore, transforming the 
pilot's decision problem into the standard form of a 
QP problem allows for its solution. The standard form 
of a QP problem is: 𝑚𝑖𝑛௭ 𝑧்𝐻𝑧 − 𝑔்𝑧 , Where 𝐶𝑧 ≥ 𝑏 (9)

To standardize the predictive equation as in 
Equation (8), we have: 𝑧 = 𝑈(𝑘) 𝐻 = 𝑆௨் 𝑄்𝑄𝑆௨ + 𝑅்𝑅 𝐺(𝑘 + 1|𝑘) = 2𝑆௨் 𝑄்𝑄𝐸(𝑘 + 1|𝑘)  

(10)

Therefore, the objective function transforms into: 𝐽ሚ = ∆𝑈(𝑘)்𝐻∆𝑈(𝑘) − 𝐺(𝑘 + 1|𝑘)்∆𝑈(𝑘) (11)
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Where： 
 𝐸(𝑘 + 1) = 𝑅(𝑘 + 1) − 𝑆௫∆𝑥(𝑘) − 𝐼𝑦௖(𝑘) − 𝑆ௗ∆𝑑

(12)

𝑆௫ =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝐶𝐴෍ 𝐶𝐴௜ଶ

௜ ⋮෍ 𝐶𝐴௜௣
௜ ⎦⎥⎥

⎥⎥⎥
⎥⎤ ,   𝐼 = ൦𝐼௡×௡𝐼௡×௡⋮𝐼௡×௡൪ ,   𝑆ௗ =

⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝐶𝐵෍ 𝐶𝐴௜ିଵ𝐵ଶ

௜ ⋮෍ 𝐶𝐴௜ିଵ𝐵௣
௜ ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

𝑆௨ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡

𝐶𝐵 0 0 … 0෍ 𝐶𝐴௜ିଵ𝐵ଶ
௜ 𝐶𝐵 0 … 0⋮ ⋮ ⋮ ⋱ ⋮෍ 𝐶𝐴௜ିଵ𝐵௠
௜ ෍ 𝐶𝐴௜ିଵ𝐵௠ିଵ

௜ … … 𝐶𝐵⋮ ⋮ ⋮ ⋱ ⋮෍ 𝐶𝐴௜ିଵ𝐵௣
௜ ෍ 𝐶𝐴௜ିଵ𝐵௣ିଵ

௜ … … ෍ 𝐶𝐴௜ିଵ𝐵௣ି௠ାଵ
௜ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 

Although physical plant constraints are constant, 
in the model above, control constraints depend on the 
control margin at the current sampling instant. 
Therefore, the constraints are time varying. For any 
arbitrary time 𝑡଴, after discretization, we have: ∆𝑢୫ୟ୶(௞) = 𝑢୫ୟ୶(௞) − 𝑢(𝑘) 

∆𝑈୫ୟ୶(௞) ≝ ⎣⎢⎢
⎡ 𝑢୫ୟ୶(௞) − 𝑢(𝑘 − 1)𝑢୫ୟ୶(௞) − 𝑢(𝑘)⋮𝑢୫ୟ୶(௞) − 𝑢(𝑘 + 𝑚 − 1)⎦⎥⎥

⎤
 

(13)

Therefore, by considering the form of ∆U(k), the 
inequality structure can be obtained as: 

ቂ−𝐼𝐼 ቃ ∆𝑈(𝑘) ≥ ∆𝑈௠௔௫(𝑘) (14)

Consequently, we have transformed the pilot's 
decision problem into the standard form of a QP 
problem. Numerical optimization methods for QP 
problems are well established, such as interior point 
methods, which can be used for solving. I will not 
delve into details here. Once we obtain the pilot gain 𝐾௣௜௟௢௧, we will have established a complete decision-
making model to derive the pilot's desired command 𝑢௖ .In conclusion, the overall structure of the pilot 
model with constraints added is illustrated in Figure 2. 

3 AIRCRAFT SYSTEM 

3.1 Aircraft System Model 

To study the artificial landing model of carrier-based 
aircraft in high sea conditions, it is necessary to 
establish a model of the carrier-based aircraft. The 
dynamic characteristics of the carrier-based aircraft 
model will significantly impact the pilot's landing 
performance. In landing tasks, the aerodynamic 
effects of the carrier-based aircraft generally satisfy 
the assumption of small disturbances, thus a linear 
system is used to establish the model of the carrier-
based aircraft (Sweger, 2003). The dynamic equation 
is as follows 𝑥ሶ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑤 y = 𝐶𝑥 + 𝐷𝑢௣  

(15)

 

Fuzzy Perception 
System Altitude Deviation 

ObservationΔe

Estimator

Altitude Deviation 
EstimateΔHK

Lateral Deviation 
ObservationΔe

v

Lateral Deviation 
EstimateΔHK

Ideal Track AngleShip Speed and 
Heading

Flight State 
ObservationYp

Uc
G(s)

Ship, Aircraft and Environment 
Model

Position Deviation and 
LSO Instructions

Flight State

Up

Prediction

Decision 

E(k+1)

Constraint

J(x,u,k)

Optimization 

H,G(k)

 
Figure 2: The Overall Structure of Constrained Predictive Pilot Model. 
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Where the state variable 𝑥 is: 𝑥 = ሾ𝑋, 𝑌, 𝑍, 𝜙, 𝜃, 𝜑, 𝑉, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟ሿ 
In the state vector, 𝑋, 𝑌, 𝑍  represent the 

displacements of the carrier-based aircraft in the earth 
fixed reference frame, 𝜙, 𝜃, 𝜑  are the three Euler 
angles of the aircraft, 𝑉, 𝛼, 𝛽  denote the airspeed, 
angle of attack, and sideslip angle of the aircraft, and 𝑝, 𝑞, 𝑟  are the three Euler angular velocities of the 
aircraft. 

The control input u is: 𝑢 = ሾ𝛿௘, 𝛿௔, 𝛿௥, 𝛿௧ሿ 
In the control vector, 𝛿௘  represents the elevator 

deflection command, 𝛿௔  is the aileron deflection 
command, 𝛿௥ is the rudder deflection command, and 𝛿௧ is the throttle command. 

The inner-loop control structure of the aircraft 
system is shown in figure 3, aiming to enhance the 
flight quality of the system through feedback of 𝛼 and 𝑞  (Chen et al., 2018). Due to the use of pure gain 
feedback, the system matrix containing stability 
augmentation control can be obtained through linear 
transformation. The control model used in this paper 
has been somewhat simplified, incorporating the 
effects of elevator surfaces and throttle as control rate 
constraints into the pilot model. This is done to 
analyze the impact of throttle delays and elevator rate 
limits on control performance. 

 

Figure 3: Block diagram of the aircraft system. 

3.2 Carrier Desire Target Point Model 

The position offset of the aircraft is calculated based 
on the ideal glide path, with the origin of the ideal 
glide path located above the aircraft carrier deck. 
Therefore, it is influenced by both the translational 
and angular displacements of the ship. In high sea 
conditions, the ship will experience more intense 
motion, which is a crucial factor affecting landing 
safety. Hence, to analyse the impact of high sea 
conditions on manual landings, it is necessary to 
establish a ship motion model. 

The ship motion model in this paper utilizes the 
ISSC double parameter spectrum to calculate wave 

disturbances, deriving wave interference forces. 
Based on the ship's state space response, the time 
history curve of ship motion is obtained. The ship 
state space is defined as: 𝑥ሶௌ = 𝐴௦𝑥௦ + 𝐵௦𝑢௪ (16)

The state variable 𝑥௦ represents: 𝑥௦ = ሾ𝑋, 𝑌, 𝑍, 𝜙௦, 𝜃௦, 𝜑௦, 𝑢௦, 𝑣௦, 𝑤௦, 𝑝௦, 𝑞௦, 𝑟௦ሿ 
The control input 𝑢௪  represents the wave 

disturbance force. After obtaining the ship motion, 
the ideal landing point velocity can be derived, as 
shown in the following equation: 

ቐ𝑢஽்௉ = 𝑉௦𝑐𝑜𝑠𝜑௦𝑣஽்௉ = 𝑉௦sin(−𝜓஺஽) 𝑠𝑖𝑛𝜑௦𝑤஽்௉ = 𝑤௦ + 𝑉௦(𝑠𝑖𝑛𝜃௦ − 𝑠𝑖𝑛𝜙௦𝑐𝑜𝑠𝜃௦ + 𝑐𝑜𝑠𝜃௦𝑐𝑜𝑠𝜙௦) (17)𝑢஽்௉、𝑣஽்௉、𝑤஽்௉ are the three axis velocities 
of the desired touchdown point in the landing 
coordinate system, 𝑉௦  is the speed of the ship, and 𝜓஺஽ is the deck angle. 

3.3 Carrier Air Wake Model 

In high sea conditions, due to the more intense ship 
motion and environmental winds, the disturbance 
intensity of the ship's wake will also increase 
accordingly. The ship's wake consists of four 
components, and in the landing coordinate system, 
the three axis ship wake field is as follows(Peng, Jin, 
& ASTRONAUTICS, 2000): 

൝𝑢௪ = 𝑢ଵ + 𝑢ଶ + 𝑢ଷ + 𝑢ସ𝑣௪ = 𝑣ଵ + 𝑣ସ𝑤௪ = 𝑤ଵ + 𝑤ଶ + 𝑤ଷ + 𝑤ସ (18)

In the equation, 𝑢ଵ、𝑣ଵ、𝑤ଵ  represent random 
free atmospheric turbulence components. 𝑢ଶ 、𝑤ଶ 
represent steady components of the ship's wake. 𝑢ଷ、𝑤ଷ represent periodic components of the ship's wake. 𝑢ସ、𝑣ସ、𝑤ସ  represent random components of the 
ship's wake. 

4 SIMULATION  

In the preceding sections, models for carrier-based 
aircraft, ship motion, environmental wind, and pilot 
behaviour were established. This paper focuses on sea 
conditions 4, 5, and 6 as the research subjects. The 
methods for calculating ship wakes and ship motion are 
provided in Section 3. Simulation results are shown in 
Figure 4. The results indicate that as the sea condition 
level increases, the ship's wake motion increases with 
the sea condition level, and the corresponding vertical 
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disturbances of the ship's wake flow are enhanced. 
Even under sea condition 6 conditions, the ship's wake 
motion remains less than ±1.7m, which aligns with the 
operational conditions of carrier-based aircraft in the 
literature. Therefore, the simulated conditions in this 
paper are considered reasonable. 

 

 
Figure 4: Ship motion and air wake in Level 4-6 sea 
condition. 

The above environmental conditions serve as 
inputs to the simulated study of arrested landings in 
high sea conditions. The parameters for the pilot 
model are specified in Table 1: 

Table 1: Pilot Model Parameters. 

Para- 
meter 

Control Constraints Weight Matrix 

Input 𝛿௘  𝛿௔  𝛿௥  𝛿௧  State Control 

Upper 

Bound 
10.5 25 1 90 𝑄௬ 𝑅௨ Lower 

Bound 
-25 -25 -3 75 

Vehicle 5 5 0.1 0.1 

Conducting simulated arrested landings in high sea 
conditions according to the parameters in Table 1, 
Figure 5 depicts the behavioural characterization 
  

 

 

 

 

 

 
Figure 5: Pilot Model Output in Level 4,5,6 Sea Conditions. 
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of pilots in high sea conditions. The simulation results 
indicate that the pilot's control magnitude increases in 
sea conditions 4, 5, and 6. In sea condition 6, the 
ship's wake significantly affects the pilot's landing 
operations, showing a trend of oscillation at the ship's 
wake, with a notable increase in nonlinear 
components in the control command output. 

To further conduct a safety analysis of carrier 
landings in high sea conditions, repeated simulation 
experiments are carried out to study the statistical 
characteristics and safety features of arrested landings 
in high sea conditions. The repeated simulation 
conditions are outlined in Table 2. 

Figure 6 displays box plots of the deviations of 
three landing elements in sea conditions 4, 5, and 6. 
These elements include altitude deviation, lateral 
deviation, and pitch angle deviation, which are the 
three main control quantities that pilots need to focus 
on during landing tasks. The box plot is a statistical 
chart used to display the distribution of data. In box 
plot, the data is divided into five parts: the upper 
whisker, upper quartile, median, lower quartile, and 
lower whisker. The upper whisker represents the 
maximum value of the data, while the lower whisker 
represents the minimum value. The line in the middle 
of the box represents the median (the 50th percentile), 
and there are horizontal lines at the top and bottom of 
the box representing the upper quartile and lower 
quartile, respectively. Box plots also include the 
display of outliers, which are values that are typically 
far from most data points. Box plots provide a clear 
visualization of the data's spread, median, quartiles, 
and the distribution of outliers. 

Table 2: Simulation Conditions for High Sea condition 
Deck Landing. 

Name Work Condition Unit 

Sea conditions 4，5，6 / 
Wind of deck 25 kn 

Average wind speed 6，8，14 m/s 

Aircraft speed 62 m/s 𝛾 -4 ° 
Number of Repetitions 45 / 

The results indicate that as the sea condition level 
increases, the longitudinal deviation in arrested 
landings gradually increases. The variance of lateral 
deviation remains approximately constant, but the 
distribution leans more towards the right side of the 
ship's wake. This is because pilots have lower 
tolerance for deviations in the longitudinal channel, 
prioritizing corrections in that direction. This, 
coupled with the longitudinal-lateral coupling, affects 

corrections towards the centre, resulting in 
insufficient correction for lateral deviations induced 
by carrier motion. 

 

 

 
Figure 6: Box plot of landing three elements' deviations in 
sea condition 4-6. 

Figure 7 shows the hook-to-ramp (The vertical 
distance between the hook and the ramp when the 
aircraft passes through the ramp) clearance of aircraft 
passing over the ship's wake in sea conditions 4, 5, 
and 6. The hook-to-ramp clearance represents the 
safety margin during arrested landings, typically 
requiring at least a 4-meter hook-to-ramp distance for 
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safety. It can be observed that in sea condition 4, 
manual arrested landings can ensure a hook-to-ramp 
distance of at least 4 meters, descending from a 
position slightly above the ideal trajectory towards 
the ship's wake, as described in the literature. In sea 
condition 5, the dispersion of hook-to-ramp distances 
increases, with a tendency to cross the 4-meter safety 
line. In sea condition 6, pilots struggle to maintain a 
safe margin of 4 meters for the hook-to-ramp distance, 
posing significant safety risks during arrested 
landings. 

 
Figure 7: Hook-to-ramp clearance of carrier-based aircraft 
in sea conditions 4-6. 

5 CONCLUSIONS 

This article addresses the modelling issues of carrier 
landings task in high sea conditions by establishing 
models that include a carrier-based aircraft model, 
deck motion model, carrier air wake model, and pilot 
model, taking into account the pilot's perception and 
decision-making processes. The main conclusions are 
as follows: 

1. The pilot models based on MPC method under 
optimal assumptions, representing a MIMO pilot 
model that controls based on the overall state of 
the human-machine system. Compared to the 
LQR pilot model, the MPC pilot model can 
describe the flight techniques where pilots 
control based on the trend changes of the ship's 
movement and has the structural advantage of 
explicitly handling constraints. 

2. Simulation results indicate that in high sea 
conditions, the longitudinal deviation during 
manual arrested landings increases. Due to pilots' 
low tolerance for longitudinal deviations and 
their high correction priority, corrections for 
lateral deviations induced by ship motion are 
insufficient, leading to an overall right leaning 

lateral deviation. The simulations also 
demonstrate that as sea condition levels rise, the 
dispersion of hook-to-ramp distances increases 
with a tendency to exceed the 4-meter safety line, 
posing significant safety risks. This confirms that 
the model proposed in this study can be used for 
safety analysis of manual carrier landing task in 
complex environments. 

REFERENCES 

Baron, S., Kleinman, D. L., & Levison, W. H. (1970). An 
optimal control model of human response part II: 
Prediction of human performance in a complex task. 
Automatica, 6(3), 371-383. doi:https://doi.org/10.1016/ 
0005-1098(70)90052-X 

Brictson, C. A. (1966). Measures of pilot performance: 
Comparative analysis of day and night carrier 
recoveries: University of Southern California. 

Brutch, S., & Moncayo, H. (2024). Machine Learning 
Approach to Estimation of Human-Pilot Model 
Parameters. Paper presented at the AIAA SCITECH 
2024 Forum. 

Chen, C., Tan, W., Qu, X., & Li, H. (2018). A Fuzzy 
Human Pilot Model of Longitudinal Control for a 
Carrier Landing Task. IEEE Transactions on 
Aerospace and Electronic Systems, 54(1), 453-466. 
doi:10.1109/TAES.2017.2760779 

Davidson, J. B., & Schmidt, D. K. (1992). Modified optimal 
control pilot model for compute r-aided design and 
analysis. Retrieved from  

Haitao, Y., & Yan, L. (2021, 19-22 Nov. 2021). Research 
on Key Technologies of Carrier-Based Aircraft 
Landing. Paper presented at the 2021 6th International 
Conference on Robotics and Automation Engineering 
(ICRAE). 

Hess, R. A. (1980). Structural Model of the Adaptive 
Human Pilot. Journal of Guidance and Control, 3(5), 
416-423. doi:10.2514/3.56015 

Hess, R. A. (2006). Simplified approach for modelling pilot 
pursuit control behaviour in multi-loop flight control 
tasks. Proceedings of the Institution of Mechanical 
Engineers, Part G: Journal of Aerospace Engineering, 
220(2), 85-102.  

Hess, R. A. (2019). Analysis of the Aircraft Carrier Landing 
Task, Pilot + Augmentation/Automation. IFAC-
PapersOnLine, 51(34), 359-365. doi:https://doi.org/10. 
1016/j.ifacol.2019.01.017 

Hess, R. A. J. P. o. t. I. o. M. E., Part G: Journal of 
Aerospace Engineering. (2008). Obtaining multi-loop 
pursuit-control pilot models from computer simulation. 
222(2), 189-199.  

Jakimovska, N., Pool, D. M., van Paassen, M. M., & 
Mulder, M. (2023). Using the Hess Adaptive Pilot 
Model for Modeling Human Operator's Control 
Adaptations in Pursuit Tracking. Paper presented at the 
AIAA SCITECH 2023 Forum. 

Research on Manual Carrier Landing Task in High Sea Conditions

183



Kleinman, D. L., Baron, S., & Levison, W. H. (1970). An 
optimal control model of human response part I: Theory 
and validation. Automatica, 6(3), 357-369. 
doi:https://doi.org/10.1016/0005-1098(70)90051-8 

Lone, M. M., & Cooke, A. K. J. P. o. t. I. o. M. E., Part G: 
Journal of aerospace engineering. (2013). Pilot-model-
in-the-loop simulation environment to study large 
aircraft dynamics. 227(3), 555-568.  

Lone, M. M., Ruseno, N., & Cooke, A. K. (2012). Towards 
understanding effects of non-linear flight control 
system elements on inexperienced pilots. The 
Aeronautical Journal (1968), 116(1185), 1201-1206. 
doi:10.1017/S0001924000007569 

McRuer, D., Schmidt, D. K. J. J. o. G., Control,, & 
Dynamics. (1990). Pilot-vehicle analysis of multiaxis 
tasks. 13(2), 348-355.  

McRuer, D. T., & Jex, H. R. (1967). A Review of Quasi-
Linear Pilot Models. IEEE Transactions on Human 
Factors in Electronics, HFE-8(3), 231-249. 
doi:10.1109/THFE.1967.234304 

Myers, T. T., Johnston, D. E., & McRuer, D. J. N. C.-., 
June. (1982). Space shuttle flying qualities and flight 
control system assessment study.  

Peng, J., Jin, C.-j. J. J.-B. U. O. A., & ASTRONAUTICS. 
(2000). Research on the numerical simulation of 
aircraft carrier air wake. 26(3; ISSU 103), 340-343.  

Roig, R. W. (1962). A comparison between human operator 
and optimum linear controller RMS-error performance. 
IRE Transactions on human factors in electronics(1), 
18-21.  

SCHMIDT, D. (1988). Modeling human perception and 
estimation of kinematic responses during aircraft 
landing. Paper presented at the Guidance, Navigation 
and Control Conference. 

Sweger, J. F. (2003). Design specifications development for 
unmanned aircraft carrier landings: A simulation 
approach: US Naval Academy. 

Wang, L., Jiang, X., Zhang, Z., & Wen, Z. (2022). Lateral 
automatic landing guidance law based on risk-state 
model predictive control. ISA Transactions, 128, 611-
623. doi:https://doi.org/10.1016/j.isatra.2021.11.031 

Wierenga, R. D. J. I. T. o. M.-M. S. (1969). An evaluation 
of a pilot model based on Kalman filtering and optimal 
control. 10(4), 108-117.  

Xu, S. T., Tan, W. Q., Efremov, A. V., Sun, L. G., & Qu, 
X. J. (2017). Review of control models for human pilot 
behavior. Annual Reviews in Control, 44, 274-291. 
doi:10.1016/j.arcontrol.2017.09.009. 

 

SIMULTECH 2025 - 15th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

184


