Advancing Serverless Workflow Efficiency: Integrating Functional
Programming Constructs and DAG-Based Execution

Nimréd Foldvari

4 and Florin Craciun

b

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords:
Orchestration, Cold Start.

Abstract:

Serverless Computing, Workflow Optimization, Directed Acyclic Graphs, Partial Execution, Function

Serverless computing, also known as the Function-as-a-Service (FaaS) paradigm, has become a cornerstone of

modern cloud-based applications, enabling developers to build and execute workflows by composing server-
less functions. However, current serverless platforms are limited by constrained orchestration and function
composition capabilities, which reduce their expressiveness and performance. To address these limitations,
this paper introduces three enhancements to Apache OpenWhisk: native support for currying, continuation,
and Directed Acyclic Graphs (DAGs). These enhancements are designed to improve the expressiveness of
serverless workflows, reduce latency, and enable partial execution of dynamic workflows as soon as data be-

comes available.

1 INTRODUCTION

Serverless computing has become a popular paradigm
for building and deploying native cloud applica-
tions. With serverless, developers can focus solely
on writing code without worrying about provision-
ing or managing servers (Jonas et al., 2019). Cloud
providers such as AWS Lambda, Azure Functions,
and Google Cloud Functions handle all the infrastruc-
ture management and scaling automatically.

One of the key advantages of serverless comput-
ing is its cost effectiveness. Users only pay for the
computation time their code is running, down to the
millisecond. However, serverless architecture also
faces notable performance bottlenecks, the cold start
problem being the most significant.

When a serverless function is invoked for the first
time after a period of inactivity, or when the cloud
provider scales out new instances, there is a delay
in launching the execution environment. This delay,
known as a cold start, can range from a few millisec-
onds to several seconds, depending on various factors
such as the language runtime, function package size,
and the chosen cloud provider platform (Lin and Glik-
son, 2019).

The cold start latency can become a significant

https://orcid.org/0009-0008-3531-0478
@ https://orcid.org/0000-0003-0335-8369

Féldvari, N. and Créaciun, F.

performance bottleneck in complex serverless work-
flows involving multiple chained functions (Shahrad
et al.,, 2020). If a workflow consists of multiple
functions, each experiencing a cold start, the cumu-
lative latency can be substantial, leading to a poor
user experience (Jonas et al., 2019). Equation (1)
shows the total duration of such a serverless work-
flow, where n is the number of functions in the work-
flow, Cold Start; is the cold start latency for the ith
function, and Exec Time; is the execution time of the
i'" function.
n n
Tworkfiow duration =) Cold Start; 4 Z Exec Time;
i=1 i=1
ey

Addressing the cold start problem is crucial for en-
suring reliable and efficient serverless workflows, as it
can significantly impact the overall performance and
user experience of serverless applications. It is essen-
tial to find other orchestration possibilities beyond the
existing solutions, with the aim of improving server-
less workflows and reducing latency time.

We present an expressive orchestration language
for controlling function scheduling and composition.
To maximize scheduling optimization opportunities,
we propose that this language be interpreted directly
by OpenWhisk’s scheduler. Additionally, we intro-
duce a function composition style inspired by con-
cepts such as currying and continuation — functional

239

Advancing Serverless Workflow Efficiency: Integrating Functional Programming Constructs and DAG-Based Execution.

DOI: 10.5220/0013428200003950

In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 239-246

ISBN: 978-989-758-747-4; ISSN: 2184-5042
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

constructs designed to be intuitive and familiar to de-
velopers.

The rest of this paper is organized into the follow-
ing sections. In 2, we discuss challenges in serverless
workflow orchestration, other approaches to orches-
tration and function composition, and present our mo-
tivation for enhancement in Apache OpenWhisk. In 3
we describe our enhancements, explaining the neces-
sity of their introduction and illustrating them with
examples. In 4, we present how our approach fulfills
the serverless trilemma (Baldini et al., 2017b) and a
preliminary evaluation of our prototype, demonstrat-
ing its benefits and performance improvements. In 5,
we discuss limitations and future research directions,
and finally conclude in 6.

2 BACKGROUND AND RELATED
WORK

Serverless computing has gained traction as a
paradigm that abstracts infrastructure management,
allowing developers to focus on application logic.
However, existing serverless platforms face limita-
tions in workflow orchestration, particularly in modu-
larity, latency optimization, and managing complex
dependencies. Addressing these shortcomings re-
quires introducing features such as currying, contin-
uation, and Directed Acyclic Graph (DAG) execu-
tion. The DAG should be described using a domain-
specific language (DSL) that allows a programmer to
define the relationships between the inputs and out-
puts of multiple serverless functions in a workflow.
This DSL would be interpreted directly by the server-
less platform. Additionally, native support for curry-
ing and continuation is also lacking in current solu-
tions. This section explores relevant works and their
limitations, highlighting the need for these enhance-
ments.

2.1 Challenges in Serverless Workflow
Orchestration

Traditional serverless platforms primarily rely on
control-flow orchestration, where workflows are ex-
ecuted sequentially based on predefined dependen-
cies (Baldini et al., 2017b). While straightforward,
this approach struggles with complex workflows and
lacks constructs for modularization, reuse, and dy-
namic task suspension and resumption, leading to in-
efficiencies in parallel task execution and increased
latency.

240

2.2 Advancements in Serverless
Orchestration

Recent research efforts, such as DataFlower,
Pheromone, Triggerflow, DFlow, DAGit, and
Wukong, have introduced innovative paradigms to
overcome the limitations of traditional serverless or-
chestration. However, these approaches exhibit trade-
offs in expressiveness, dependency management, and
workflow composition, particularly in their support
for DAG execution, currying, continuation, and lan-
guage flexibility—key features of our proposed solu-
tion. Below, we analyze key platforms and frame-
works, highlighting their strengths and limitations in
relation to our proposed enhancements (DAGs, curry-
ing, and continuation). Table 1 summarizes this com-
parison.

DataFlower (Li et al., 2024) adopts a decentral-
ized data-flow approach, where workflows are rep-
resented as dynamic data-flow graphs. It decou-
ples computation and communication using Function
Logic Units (FLUs) and Data Logic Units (DLUs),
enabling overlapping computation and data transfer
to improve throughput. This model is particularly ef-
fective for large-scale workflows, where overlapping
operations can significantly reduce latency. How-
ever, while DataFlower’s decentralized architecture
improves parallelism, it introduces complexity due to
the need for separate Function Logic Units (FLUs)
and Data Logic Units (DLUs), which require explicit
coordination between computation and communica-
tion components. Notably, it lacks native support
for functional constructs like currying, limiting incre-
mental processing of partial data.

Pheromone (Yu et al., 2022), on the other hand, in-
troduces a data-centric approach by using data buck-
ets to trigger functions based on data availability. This
paradigm simplifies orchestration and reduces latency
through shared-memory object stores for rapid data
exchange. However, while Pheromone significantly
enhances performance with its data-centric design,
it currently supports only C++ functions, limiting
language flexibility, and its optimization for data-
centric workflows may reduce effectiveness for purely
function-driven applications. Continuation mecha-
nisms are absent, forcing workflows to remain active
during idle periods.

Triggerflow (Garcia-Lopez et al., 2020) presents
an extensible trigger-based orchestration architecture
for serverless workflows. It enables the construction
of reactive orchestrators like state machines and di-
rected acyclic graphs (DAGs). Triggerflow focuses on
event-driven mechanisms and enhances orchestration
efficiency by allowing reactive triggers to optimize la-

Advancing Serverless Workflow Efficiency: Integrating Functional Programming Constructs and DAG-Based Execution

Table 1: Feature comparison of serverless orchestration platforms.

Platform DAG Support Currying Continuation Language Mitigates
Flexibility Double
Spending
DataFlower Partial No No Medium Partial
Pheromone No No No Low (C++ only) No
Triggerflow Yes No No High Partial
DFlow Partial No No High Partial
DAGit Native No No Medium No
Wukong No No No High Partial
Proposed Solution Native Yes Yes High Yes

tency and resource utilization. Despite its flexibility,
it does not support partial execution or incremental
data processing, leading to inefficiencies in workflows
with dynamic dependencies.

DFlow (Shi et al., 2023) introduces a dataflow-
based serverless workflow system aimed at reducing
end-to-end execution time by enabling partial execu-
tion of tasks based on data availability. DFlow em-
phasizes dynamic scheduling and parallel task invo-
cation, aligning with the goals of currying and con-
tinuation by allowing functions to execute incremen-
tally based on data readiness. However, DFlow fo-
cuses on dataflow orchestration rather than leveraging
functional programming constructs like currying and
continuation for modularizing and reusing workflow
components.

DAGit (Jana et al, 2023) is an open-source
platform designed to streamline serverless applica-
tion development through native support for Directed
Acyclic Graphs (DAGs). It provides a declarative
framework for defining workflows as DAGs, enabling
developers to express complex dependencies, paral-
lel execution, and conditional logic. Unlike platforms
that rely on external orchestration layers, DAGit inte-
grates DAG execution directly into its runtime, opti-
mizing task scheduling and reducing overhead.

Wukong (Fouladi et al., 2019) addresses server-
less workflow inefficiencies by optimizing parallelism
and locality-aware scheduling. Its architecture maps
workflows to distributed systems, leveraging fine-
grained task partitioning and data locality to minimize
latency. Wukong achieves significant performance
improvements for parallel workloads, such as linear
algebra operations, by reducing cross-node commu-
nication and prioritizing colocated tasks.

A critical gap in existing platforms is their ineffi-
ciency in handling double spending, where workflows
incur costs from idle resources (e.g., waiting for de-
pendencies) or redundant invocations, as discussed in
(Kratzke, 2021; Baldini et al., 2017a). For instance,
DAG:it’s inability to suspend workflows during delays
results in unnecessary billing, while Pheromone’s

lack of continuation forces full recomputation after
interruptions.
Our proposal mitigates this through:

¢ Currying: Enables incremental execution, reduc-
ing redundant calls by processing available data
immediately.

* Continuation: Suspends workflows during idle
periods, freeing resources and avoiding costs for
inactive states.

* DAG Execution: Optimizes parallelism and re-
source reuse, minimizing idle time.

By addressing these gaps, our enhancements po-
sition Apache OpenWhisk as a versatile platform ca-
pable of supporting modern, cost-efficient workflows
while advancing the state of the art in serverless com-
puting.

2.3 Motivation for Enhancements in
Apache OpenWhisk

Apache OpenWhisk was chosen as it is an open-
source platform, which allows for modifying the
source code to implement these enhancements. The
insights from platforms like DataFlower, Pheromone,
and other research efforts underscore the need for
foundational improvements in serverless platforms.
The integration of currying would enable developers
to modularize workflows, reducing redundancy and
promoting reuse. Additionally, currying would help
reduce latency by allowing partial execution of avail-
able data, improving efficiency and responsiveness
in complex workflows. Incorporating continuation
mechanisms would allow workflows to pause and re-
sume as needed, minimizing latency caused by depen-
dencies or delays. Finally, the addition of DAG-based
execution would provide a powerful framework for
representing and managing complex workflows, al-
lowing parallel execution, partial recomputation, and
optimized resource utilization.

By addressing these gaps, Apache OpenWhisk
has the potential to evolve into a more expressive,

241

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

efficient, and flexible serverless platform, bridging
the limitations of current approaches and position-
ing itself as a leading platform for complex serverless
workflows with higher performance and modularity.

3 PROPOSED SOLUTION

Serverless workflows often face inefficiencies due to
rigid execution models that require complete readi-
ness of inputs before invoking functions. To ad-
dress these challenges, we propose three interrelated
enhancements that leverage partial execution princi-
ples to improve performance, resource utilization, and
adaptability. Each enhancement targets a specific lim-
itation in current serverless systems, collectively pro-
viding a robust solution for dynamic and efficient
workflow orchestration.

3.1 Support Native Directed Acyclic
Graphs (DAGs) Execution

Introducing native support for Directed Acyclic
Graph (DAG) execution transforms the capabilities of
serverless computing platforms by enabling direct or-
chestration of serverless functions within the core ex-
ecution framework. This approach enhances the abil-
ity to express and manage complex workflows, where
tasks have intricate data dependencies and can be exe-
cuted in parallel without external orchestration layers.

The architecture for supporting native DAG ex-
ecution involves modifying the Apache OpenWhisk
controller to interpret a domain-specific language
(DSL) designed for DAG orchestration. The con-
troller processes the DSL input, constructing a DAG
where nodes represent serverless functions and edges
represent data dependencies. These DAG definitions
and function states are stored in a CouchDB database,
ensuring persistence and traceability throughout the
execution process. The controller dynamically sched-
ules functions based on data availability, minimizing
latency and optimizing parallelism.

The design emphasizes a functional approach to
specifying complex workflows, enabling developers
to describe computations as dataflow graphs. This de-
sign choice supports parallelism and efficient schedul-
ing without requiring developers to manage explicit
synchronization. The DSL provides intuitive con-
structs for defining parallel maps and sequential re-
ductions, allowing the system to infer dependencies
and schedule functions accordingly. Each function
invocation is treated as an independent action, pre-
serving serverless principles such as statelessness and
event-driven execution.

242

The implementation extends OpenWhisk’s core
by introducing a parser and executor for the DAG
DSL. The parser translates the DSL into a JSON rep-
resentation suitable for storage and processing within
the OpenWhisk controller. During execution, the
interpreter asynchronously triggers serverless func-
tions as their input data becomes available, ensur-
ing efficient parallel execution and reducing idle time.
The minimal code footprint for this extension en-
sures compatibility with existing OpenWhisk features
while introducing powerful orchestration capabilities.

The primary benefits of this solution include dy-
namic parallelism, efficient resource utilization, and
simplified developer experience. By natively support-
ing DAG execution, OpenWhisk enables workloads
that require complex data dependencies, such as ma-
chine learning pipelines and large-scale matrix opera-
tions. Developers can focus on the computation logic,
while the platform manages concurrency and schedul-
ing.

A practical example of the Cholesky decomposi-
tion using the DAG DSL is shown in Listing 1. This
Python-based DAG representation demonstrates how
complex matrix operations can be parallelized effec-
tively using the native DAG execution model. Each
function call and dependency is captured as a node in
the DAG, and computations run as soon as inputs are
ready.

Listing 1: DAG DSL program for Cholesky Decomposition.
def cholesky (A, B, N):
nblocks = ceil (N/B)
def for_j(j):
LI3113] = chol(A[]]1[]])
par_for(i in range(j, j + nblocks)):
LI1]1[3] = mul (inv(L[3]1[3]),
A[1][3D)
def for_k(k, j):
par_for(l in range(k, nblocks)):
Alk][1] = sub(A[k][1],
mul (T(L(k)[3]), LI1](3]))
par_for(k in range(j, j + nblocks)):
for_k(k, 7)
seq_fold(L = A, j in range (0,
nblocks)) (for_7j (7))
return L

This enhancement represents a step forward in
serverless architecture design by integrating complex
orchestration capabilities directly into the execution
engine. Developers gain a powerful tool for par-
allel computing, while the underlying platform en-
sures efficient, cost-effective, and scalable execution
of serverless functions. The convergence of server-
less computing with native DAG execution opens new
horizons for scientific computing, data engineering,
and real-time analytics, providing a powerful mech-

Advancing Serverless Workflow Efficiency: Integrating Functional Programming Constructs and DAG-Based Execution

anism for modern cloud-native application develop-
ment.

3.2 Support Native Currying

Currying, a functional programming technique, trans-
forms a function with multiple arguments into a se-
ries of functions, each consuming one argument at
a time (Hutton, 2016). By adapting this concept,
serverless workflows can benefit from incremental ex-
ecution. By allowing functions to be broken into
a sequence of partial applications, currying enables
serverless workflows to handle partially available data
more efficiently. This flexibility is especially valu-
able in dynamic workflows where data dependencies
might be resolved incrementally or asynchronously.
Instead of waiting for all inputs to become available, a
curried function can process available inputs immedi-
ately and defer the computation of the remaining logic
until the required data arrives. This approach mini-
mizes idle time and enhances responsiveness, partic-
ularly in workflows with interdependent tasks that do
not all resolve simultaneously.

To illustrate the benefits of currying in a serverless
context, consider a real-time video analysis pipeline
involving multiple stages: frame extraction, object
detection, and metadata tagging. In a traditional
workflow, each stage must wait for the previous one to
fully complete before initiating its processing. For ex-
ample, object detection cannot begin until all frames
have been extracted, and metadata tagging must wait
for all object detection results. This sequential depen-
dency unnecessarily increases latency and underuti-
lizes the dynamic invocation capabilities of serverless
platforms. Listing 2 highlights this limitation.

Listing 2: Traditional serverless workflow of video analysis.
def process_video(video_url):

frames = extract_frames (video_url)

objects = detect_objects (frames)

metadata = tag_metadata (objects)

return metadata

In this approach, each function, such as
detect_objects and tagmetadata, waits for
the complete output of the preceding function,
extract_frames, before starting execution. This cre-
ates a bottleneck, particularly in workflows process-
ing large volumes of data, where intermediate results
could be used immediately.

With currying, the workflow can be restructured
to process data incrementally and trigger subsequent
stages dynamically. As shown in Listing 3, partial ap-
plications allow each function to operate on the avail-
able data as soon as it is produced.

Listing 3: Curried serverless workflow of video analysis.

def extract_frames_partial (video_url,
callback) :
for frame in
extract_frames_generator (video_url) :
callback (frame)

def detect_objects_partial (frame, callback):
objects = detect_objects (frame)
callback (objects)

def tag_metadata_partial (objects, callback):
metadata = tag_metadata (objects)
callback (metadata)

def process_video_with_currying(video_url):
extract_frames_partial (video_url, lambda
frame:
detect_objects_partial (frame, lambda
objects:
tag_metadata_partial (objects,
lambda metadata:
store_metadata (metadata))))

In this curried workflow, each frame extracted
from the video triggers object detection immediately,
and metadata tagging begins as soon as object detec-
tion results are available. This eliminates the need
for later stages to wait for the entire dataset to be pro-
cessed in earlier stages, reducing latency. By enabling
partial execution, currying enhances the responsive-
ness of the pipeline and optimizes resource utiliza-
tion, as downstream stages are invoked only when
their input data is ready.

Furthermore, currying enriches the expressive-
ness of serverless workflows by making them more
composable. For instance, the object detection and
metadata tagging functions in this example can be
reused in other workflows with minimal modification,
as their partial application makes them flexible and
adaptable. Developers can construct modular work-
flows that are easier to extend, reuse, and maintain,
reducing overall development effort.

This adoption of currying in serverless comput-
ing aligns with the goal of enabling expressive, ef-
ficient, and latency-optimized workflows. By pro-
cessing available data incrementally and construct-
ing workflows as a series of lightweight, composable
steps, currying addresses the inherent limitations of
traditional serverless orchestration while leveraging
functional programming principles to enhance cloud
computing platforms.

3.3 Support Native Continuation

Continuation, rooted in functional programming (Ap-
pel, 1992), enables workflows to suspend and re-

243

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

sume dynamically, addressing inefficiencies in long-
running serverless tasks. By pausing execution during
delays (e.g., waiting for external inputs) and resuming
only when dependencies resolve, it eliminates idle re-
source consumption — critical for cost-sensitive and
scalable workflows.

For instance, in a document processing pipeline
(text extraction — sentiment analysis — manual an-
notation), traditional workflows idle between stages,
billing continuously. Continuation suspends execu-
tion after sentiment analysis, freeing resources until
annotations arrive. This avoids wasteful billing and
preserves scalability without altering workflow logic.

Listing 4 demonstrates the limitations of a tradi-
tional serverless workflow.

Listing 4: Traditional serverless workflow of document pro-
cessing.
def process_document (doc_url):
text = extract_text (doc_url)
sentiment = analyze_sentiment (text)
annotations =
get_user_annotations (sentiment)
return apply_annotations (annotations,
sentiment)

In this approach, the function
get_user_annotations requires external input
from the user, causing the workflow to remain
idle while waiting. The entire workflow remains
active, leading to inefficient resource utilization and
potential timeouts for long-running tasks.

With native continuation, the workflow can sus-
pend itself after completing sentiment analysis and
wait for the user’s annotations to resume. This en-
sures that resources are only allocated during active
computation phases. Listing 5 illustrates how contin-
uation can be applied.

Listing 5: Continuation-enabled serverless workflow of
document processing.
def process_document_continuation(doc_url):
text = extract_text (doc_url)
sentiment = analyze_sentiment (text)
suspend_workflow (lambda:
get_user_annotations_async (sentiment,
lambda annotations:
resume_workflow(lambda:
apply_annotations (annotations,
sentiment))))

In this continuation-enabled workflow, the
suspend_workflow function pauses execution after
sentiment analysis. Once user annotations are
provided asynchronously, the workflow resumes
execution at the resume_workflow point, completing
the remaining tasks. This ensures that resources
are used only when needed and avoids unnecessary
idling or resource contention.

244

The benefits of adopting continuation in server-
less workflows extend beyond resource optimization.
By enabling dynamic pausing and resumption, con-
tinuation allows workflows to handle unpredictable
or asynchronous dependencies more gracefully. De-
velopers can design workflows that adapt to real-time
conditions, making them more robust and responsive
to external inputs. Additionally, continuation reduces
the likelihood of workflow timeouts, which is partic-
ularly valuable for long-running tasks that rely on hu-
man input or external data sources.

By integrating native continuation into serverless
platforms, workflows become more efficient and scal-
able, addressing the limitations of traditional execu-
tion models. Continuation aligns with the princi-
ples of event-driven architecture and asynchronous
programming, enhancing the capability of serverless
computing to support complex, real-world workflows.

4 EVALUATION

4.1 Serverless Trilemma Fulfillment

Baldini et al. (Baldini et al., 2017c¢) define the server-
less trilemma, which outlines three core constraints
for effective function composition: (1) no double-
billing, (2) black-box usage, and (3) substitution
principle. Our enhancements—native DAG execu-
tion, currying, and continuation—collectively resolve
these constraints:

* Native DAG Execution: By decoupling func-
tion calls and treating DAGs as atomic actions,
it eliminates double-billing (no waiting charges),
enforces black-box usage (no source code expo-
sure), and ensures substitutability (DAGs behave
as single functions).

e Currying: Partial function application processes
incremental data without redundant billing. Cur-
ried functions retain black-box integrity (no in-
ternal code access) and act as substitutable units
(same input/output behavior as non-curried func-
tions).

* Continuation: Suspends workflows during idle
periods to prevent billing, preserves black-box
constraints (execution resumption requires no
code modification), and maintains substitutability
(paused workflows behave as single logical units).

Thus, native DAG execution, currying, and con-
tinuation collectively provide a strong foundation for
serverless function composition while fully satisfying
the serverless trilemma.

Advancing Serverless Workflow Efficiency: Integrating Functional Programming Constructs and DAG-Based Execution

4.2 Preliminary Evaluation

A preliminary prototype has been developed and re-
mains under active development. This prototype in-
cludes a patch of 800 lines of code integrated into the
Apache OpenWhisk core. The codebase modification
focuses on extending the reactive core to support na-
tive DAG execution and functional programming con-
structs directly within the controller.

This preliminary version has successfully demon-
strated the fundamental principles of DAG execu-
tion. The integration enables dynamic orchestration
of serverless workflows, reducing latency and enhanc-
ing modularity, aligning with the theoretical goals
outlined in the design phase.

A preliminary evaluation of our prototype has
been conducted, demonstrating improvements over
traditional serverless execution models. Our proto-
type successfully completed identical Cholesky de-
compositions of various sizes and block numbers with
an average reduction in completion time of 28% com-
pared to numpywren (Shankar et al., 2018). The eval-
uation also showed superior parallelization and re-
source utilization, particularly for workloads involv-
ing matrix decompositions where our prototype pro-
cessed blocks in parallel, reducing idle time by 32%.

The results indicated higher worker utilization
and better parallelization with our prototype, lead-
ing to improved efficiency. CPU utilization levels on
the virtual machines were measured, with our proto-
type achieving a 27% higher saturation compared to
numpywren. Network overhead was reduced when
passing data between functions due to the optimized
execution model, showing a 30% reduction in data
transfer time.

The support for currying and continuation in our
prototype is expected to provide key benefits. How-
ever, these features are not currently supported in the
current implementation. Once integrated, they are an-
ticipated to offer improvements such as enabling par-
tial function execution for modular workflows and fa-
cilitating long-running computations through pausing
and resumption.

As the implementation matures, further testing
and optimization are required. The current focus is on
ensuring compatibility with the existing OpenWhisk
components and validating the performance benefits
in real-world scenarios. Early tests indicated promis-
ing results, with improved parallelization and reduced
cold start impact compared with traditional function
chaining models.

S FUTURE WORK

Future work on the current prototype holds signifi-
cant potential. Evaluation across diverse real-world
use cases is essential to validate our prototype scala-
bility and efficiency. Future work could focus on the
following directions:

First, DAG compilation currently occurs within
the OpenWhisk controller. A key improvement would
be shifting this compilation process to the CLI, en-
abling proactive type-checking and immediate error
detection during DAG creation. By preemptively
compiling a structured representation of function de-
pendencies, the system could facilitate advanced an-
alytics, including graph and edge analyses for work-
flow optimization.

Second, extending the scope of these features to
support more complex scenarios, such as workflows
with dynamic or conditional dependencies, would sig-
nificantly enhance their usability. For instance, en-
abling conditional branching within DAGs or natively
supporting higher-order functions would make the
platform more versatile.

Third, the integration of intelligent scheduling al-
gorithms for DAG execution could further optimize
resource utilization and reduce latency. By leveraging
reinforcement learning or heuristic-based approaches,
the system could dynamically predict resource re-
quirements, adaptively schedule tasks, and minimize
execution latency. Such improvements could lead to
more efficient resource utilization, reducing opera-
tional costs while improving performance.

Fourth, one avenue for improvement is the de-
velopment of a graphical domain-specific language
(DSL) editor, allowing users to visually design and
manage DAG workflows. This enhancement would
improve usability, reduce complexity, and provide
better observability into function execution, depen-
dencies, and performance metrics.

Finally, comprehensive evaluation of the proto-
type in real-time scenarios is critical. This includes
benchmarking execution time, worker utilization, and
resource efficiency for workflows like Cholesky de-
composition across varying matrix sizes and block
configurations. Metrics such as the number of work-
ers executing concurrently, CPU utilization levels,
network overhead between function invocations, and
database access latency must be measured to as-
sess scalability and identify bottlenecks. Addition-
ally, comparative benchmarking against state-of-the-
art orchestrations (e.g., AWS Step Functions, Google
Cloud Workflows) under diverse workloads — in-
cluding machine learning pipelines, IoT data process-
ing, and large-scale computational tasks — will help

245

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

assess performance advantages and guide further re-
finements.

By addressing these gaps, the prototype can
evolve into a robust, production-ready solution, bridg-
ing the divide between theoretical enhancements and
practical applicability in modern serverless ecosys-
tems.

6 CONCLUSION

This paper has proposed enhancements to Apache
OpenWhisk to address the limitations of existing
serverless platforms in workflow orchestration and
execution. The platform can handle dynamic, asyn-
chronous, and interdependent tasks more efficiently
by introducing native support for currying, continua-
tion, and DAG execution.

Currying allows workflows to process partially
available data incrementally, reducing latency and
enhancing modularity. Continuation enables work-
flows to suspend and resume dynamically, optimize
resource utilization, and improve scalability for long-
running tasks. DAG execution transforms workflow
orchestration by enabling parallel execution, dynamic
scheduling, and efficient handling of complex depen-
dencies. Together, these features align with the prin-
ciples of serverless computing, which offers greater
expressiveness, efficiency, and scalability.

These enhancements position Apache OpenWhisk
as a more powerful serverless platform capable of
supporting modern, complex workflows. By reduc-
ing operational overhead and improving resource uti-
lization, they bring serverless computing closer to its
promise of seamless scalability and efficiency, em-
powering developers to focus on innovation while the
platform handles the complexities of execution.

REFERENCES

Appel, A. W. (1992). Compiling with Continuations. Cam-
bridge University Press.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Slominski, A., and Suter, P. (2017a). Serverless
computing: Current trends and open problems.

Baldini, I., Castro, P,, Chang, K., Cheng, P, Fink, S. J,,
Ishakian, V., Muthusamy, V., Rabbah, R. M., Suter, P.,
and Tardieu, O. (2017b). Serverless computing: Cur-
rent trends and open problems. Research Advances in
Cloud Computing, pages 1-20.

Baldini, I., Cheng, P., Fink, S. J., Mitchell, N., Muthusamy,
V., Rabbah, R., Suter, P., and Tardieu, O. (2017c). The

246

serverless trilemma: function composition for server-
less computing. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software - Onward! 2017, pages 89-103. ACM Press.

Fouladi, S., Mitchell, E. J., Wei, H., Devanbu, P., and Zhao,
J. (2019). Wukong: A scalable and locality-enhanced
framework for serverless parallel computing. In Pro-
ceedings of the ACM Symposium on Cloud Computing
(SoCC ’19), pages 1-12, Santa Cruz, California, USA.
ACM.

Garcia-Lopez, P, Arjona, A., Sampé, J., Slominski, A.,
and Villard, L. (2020). Triggerflow: Trigger-based
orchestration of serverless workflows. arXiv preprint
arXiv:2006.08654.

Hutton, G. (2016). Programming in Haskell, chapter 5,
pages 73-77. Cambridge University Press. Discusses
the concept of currying and its applications in func-
tional programming.

Jana, A., Kulkarni, P., and Bellur, U. (2023). DAGit: A Plat-
form For Enabling Serverless Applications. In Pro-
ceedings of the 2023 IEEE 30th International Con-
ference on High Performance Computing, Data, and
Analytics (HiPC), pages 367-376.

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C.,
Yadwadkar, N., Gonzalez, J. E., Popa, R. A., Stoica,
1., and Patterson, D. A. (2019). Cloud programming
simplified: A berkeley view on serverless computing.
arXiv preprint arXiv:1902.03383.

Kratzke, N. (2021). Cloud Computing. Hanser Verlag, 2nd
edition. Section 12.6.1.

Li, Z., Xu, C., Chen, Q., Zhao, J., Chen, C., and Guo,
M. (2024). Dataflower: Exploiting the data-flow
paradigm for serverless workflow orchestration. In
Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 4, ASPLOS
’23, page 57-72, New York, NY, USA. Association
for Computing Machinery.

Lin, P-M. and Glikson, A. (2019). Mitigating cold starts in
serverless platforms: A pool-based approach.

Shahrad, M., Fonseca, R., fﬁigo Goiri, Chaudhry, G., Ba-
tum, P., Cooke, J., Laureano, E., Tresness, C., Russi-
novich, M., and Bianchini, R. (2020). Serverless in
the wild: Characterizing and optimizing the serverless
workload at a large cloud provider.

Shankar, V., Krauth, K., Pu, Q., Jonas, E., Venkataraman,
S., Stoica, 1., Recht, B., and Ragan-Kelley, J. (2018).
numpywren: serverless linear algebra. arXiv preprint
arXiv:1810.09679.

Shi, X., Li, C., Li, Z., Liu, Z., Sheng, D., Chen, Q., Leng,
J., and Guo, M. (2023). Dflow: Efficient dataflow-
based invocation workflow execution for function-as-
a-service. arXiv preprint arXiv:2306.11043.

Yu, M., Cao, T., Wang, W., and Chen, R. (2022). Following
the data, not the function: Rethinking function orches-
tration in serverless computing.

