
Exploring Communication in Multi-Agent Reinforcement Learning
Under Agent Malfunction

Rafael Pina a and Varuna De Silva b

Institute for Digital Technologies, Loughborough University London, 3 Lesney Avenue, London, U.K.

Keywords: Multi-Agent Reinforcement Learning, Agent Malfunction, Communication, Cooperation.

Abstract: Multi-Agent Reinforcement Learning (MARL) has grown into one of the most popular methods to tackle
complex problems within multi-agent systems. Cooperative multi-agent systems denote scenarios where a
team of agents must work together to achieve a certain common objective. Among several challenges studied
in MARL, one problem is that agents might unexpectedly start acting abnormally, i.e., they can malfunction.
Naturally, this malfunctioning agent will affect the behaviour of the team as a whole. In this paper, we
investigate this problem and use the concepts of communication within the MARL literature to analyse how
agents are affected when a malfunction happens within the team. We leverage popular MARL methods and
build on them a communication module to allow the agents to broadcast messages to each other. Our results
show that, while communication can boost learning in normal conditions, it can become redundant when
malfunctions occur. We look into the team performances when malfunctions happen and we analyse in detail
the patterns in the messages that the agents generate to communicate with each other. We observe that these
can be strongly affected by malfunctions and we highlight the need to build appropriate architectures that can
still leverage the power of communication in MARL when unexpected malfunctions happen.

1 INTRODUCTION

Multi-agent systems constitute a wide and growing
area of research within machine learning (Albrecht
et al., 2024; Artaud et al., 2024). These allow to repre-
sent scenarios where multiple units interact with each
other, either cooperatively or competitively. Several
real scenarios can be seen as such systems. For in-
stance, a football match can be seen as a cooperative
multi-agent system from the perspective of a single
team, or a competitive multi-agent system if we con-
sider all the players in the game as trainable entities.
In industrial applications, multi-agent systems can de-
note robots roaming in a warehouse working together,
for example (Bahrpeyma and Reichelt, 2022).

Multi-Agent Reinforcement Learning (MARL) is
one popular method to train agents in these scenar-
ios. Cooperative MARL is the most popular variation,
where agents are trained to learn coordination and co-
operation strategies to achieve a common objective
that benefits all as a team (Albrecht et al., 2024) (such
as the case in Fig. 1).

a https://orcid.org/0000-0003-1304-3539
b https://orcid.org/0000-0001-7535-141X

(a) t = 0 (b) t = 1

Figure 1: An example of a cooperative MARL task (Lum-
berjacks). In this environment, 4 agents (blue circles) must
cooperate to cut all the trees (green squares). The figure
shows a transition from timestep 0 to 1 where a tree is cut.

While MARL enables agents to anticipate the
teammates’ actions without direct interaction, some
techniques have been explored to improve how they
learn and understand each other. For instance, by
leveraging communication (Sukhbaatar et al., 2016)
each agent can broadcast messages to its teammates
based on its perceptions of the surroundings. How-
ever, these messages are given as encoded representa-
tions, since it is impractical to assume that messages
can be shared across distributed entities without loss
of information. Furthermore, this way agents learn a
common language that they can use to communicate

Pina, R. and De Silva, V.
Exploring Communication in Multi-Agent Reinforcement Learning Under Agent Malfunction.
DOI: 10.5220/0013383400003905
In Proceedings of the 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2025), pages 445-452
ISBN: 978-989-758-730-6; ISSN: 2184-4313
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

445



with each other as an understandable vocabulary for
the task that they are trying to solve (Das et al., 2019).

Despite recent advances, one problem that might
arise when deploying agents in real scenarios is that
unexpected malfunctions might happen (Khalili et al.,
2018; Pina et al., 2024; Tong et al., 2023). For
instance, battery problems might arise, or even un-
expected cyberattacks that can compromise the be-
haviour of one or more elements of a team of agents.
When such problems happen, it is important to estab-
lish mitigation measures to ensure that potential dam-
ages are minimised.

In this paper, we investigate the effects of mal-
functions within cooperative MARL agents that can
communicate. Specifically, we aim to evaluate
whether communication can contribute to mitigate the
negative effects in their behaviours when one of the
elements malfunctions and whether the team can still
accomplish the objective without being affected by
the malfunctioning agent. We evaluate our hypothe-
ses using popular MARL algorithms that are herein
adapted with a communication module in the archi-
tecture. We observe that communication has a posi-
tive impact when the right conditions are met, but it
can also confound the agents when an element mal-
functions. Overall, our results suggest that communi-
cation can boost learning and can be a useful tool to
control malfunctions in multi-agent systems, but the
learning architecture needs to be carefully considered.

2 RELATED WORK

Recently, there has been an increasing interest in the
applications of multi-agent systems both in simulated
environments and real-world applications (Skobelev,
2011; Drew, 2021). The complexity of certain real-
world tasks requires the cooperation of several en-
tities to efficiently automate them. For instance, in
(Skobelev, 2011) the authors discuss the potential of
multi-agent systems in industrial applications where
high automation is beneficial. In (Drew, 2021), it is
discussed the benefits of multi-agent systems in res-
cue and search missions, since these tasks may re-
quire several entities to ensure mission success and
spare human rescuers.

Within multi-agent systems, MARL is a popular
technique to train cooperative agents to learn strate-
gies in simulated environments and games (Rashid
et al., 2018). Problems like the exponential growth of
the action spaces and the non-stationarity have been
explored (Rashid et al., 2018), but the lazy agent prob-
lem might also arise, where one agent learns to sim-
ply wait for the others to solve the task by themselves

(Sunehag et al., 2018). In (Pina et al., 2023) and (Liu
et al., 2021) the authors use causality-based methods
to mitigate this problem. Despite the approaches pro-
posed, it is still hard to find a good balance between
all the challenges in MARL.

Studying agent malfunctions in cooperative tasks
has also triggered interest in the research community.
In (Pina et al., 2024) the authors study how the perfor-
mance of the team is affected by malfunctions under
different learning schemes. In (Khalili et al., 2018)
it is proposed a framework to promote fault toler-
ance within multi-agent systems based on a follow-
the-leader approach. Another mechanism is presented
in (Ramezani et al., 2024), as a method to control
faults within drones. We note the focus of the litera-
ture in distributed systems where resilience is built by
leveraging communication among entities. However,
communication-related faults can also occur (Kumar
and Cohen, 2000).

Communication methods have shown promise
within the MARL community. These can be crucial
to learn optimal policies in driving scenarios (Zhang
et al., 2018), negotiation strategies (Noukhovitch
et al., 2021), or even learn trust in networks of agents
(Fung et al., 2022). Agents in MARL can commu-
nicate in several different ways: they can broadcast
encodings of their observations (Sukhbaatar et al.,
2016), their actions (Liu et al., 2021), or even include
a signature in their messages (Das et al., 2019). How-
ever, finding the right communication architecture in
MARL is still challenging, and the agents may fail to
learn a useful communication language.

While the authors in (Pina et al., 2024) have
studied the impact of fully independent learning in
MARL when malfunctions occur, in this work we
aim to delve into the concepts of communication in
MARL and investigate its contribution towards en-
abling agents to react better when one of their trusted
teammates starts acting abnormally.

3 BACKGROUND

3.1 Decentralised Partially Observable
Markov Decision Processes
(Dec-POMDPs)

Cooperative MARL games can be modelled as De-
centralised Partially Observable Markov Decision
Processes (Dec-POMDPs) (Oliehoek A. and Amato,
2016). A Dec-POMDP can be defined as the tuple
G = ⟨S,A,O,P,Z,r,γ,N⟩, where S represents the state
space and A the action space. At a given timestep t

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

446



each agent i : i ∈ N ≡ {1, . . . ,N} takes an action af-
ter receiving an observation oi ∈ O(s, i) : S×N → Z.
The set of all N individual actions forms a joint action
a ≡ {a1, . . . ,aN} that is executed in the current state s
of the environment, leading to a transition of state ac-
cording to P(s′|s,a) : S×A×S → [0,1], where s′ de-
notes the next state, and from which the team receives
a reward r(s,a) : S × A → R. Each agent holds an
observation-action history τi : τi ∈ T = (Z ×A)∗ and,
during learning, a discount factor γ ∈ [0,1) measures
the importance of future values. The overall learning
objective is to find an optimal joint policy π that max-
imises the objective Qπ(st ,at) = Eπ [Rt |st ,at ], where
Rt = ∑

∞
k=0 γkRt+k is the discounted return.

3.2 Independent Deep Q-Learning
(IDQL)

Q-learning constitutes one of the foundations of rein-
forcement learning (Watkins and Dayan, 1992). This
algorithm was proposed as a dynamic programming
method that learns an optimal value for each possible
state-action pair for a given environment. Q-learning
updates the values following the rule

Q(s,a) = (1−α)Q(s,a)+α [r+ γmaxa′ Q(s′,a′)] .
(1)

Although powerful, Q-learning works as a lookup
table approach and hence does not scale well when
the state and action spaces increase in complex en-
vironments. As a solution, Deep Q-network (DQN)
was proposed (Mnih et al., 2015) by extending the
concepts of Q-learning to deep learning, and by using
a target network and a replay buffer of experiences.
Intuitively, DQN aims to minimise the loss

L(θ) = Eb∼B

[(
r+ γmaxa′ Q(τ′,a′;θ−)−Q(τ,a;θ)

)2
]
,

(2)
for a given sample b sampled from a replay buffer B,
and where θ and θ− are the parameters of the learning
network and a target. DQN was later extended to the
multi-agent case, where each agent is controlled by
an individual DQN. This simple approach has shown
to perform well in several complex environments, de-
spite still falling victim to non-stationarity (Rashid
et al., 2018).

However, due to the balance between simplicity
and performance of this method, we use the multi-
agent variation of DQN in this paper as one of the
algorithms to study the reaction of MARL agents to
malfunctions. Throughout this paper, we will refer to
this method as Independent Deep Q-learning (IDQL).

3.3 Value Function Factorisation in
MARL

As mentioned, decentralised methods such as IDQL
may suffer from non-stationarity. While centralised
approaches may overcome this limitation, these are
then affected by the exponential growth of the action
space with the number of agents (Rashid et al., 2018).
To create a balance between these two challenges, a
popular paradigm named centralised training with de-
centralised execution has been used (Sunehag et al.,
2018), where agents are trained on a centralised ba-
sis, but execute their actions based on their own ob-
servations. Value function factorisation methods rep-
resent a popular family of MARL methods that op-
erate under this paradigm (Sunehag et al., 2018). In
essence, these methods learn a factorisation of a joint
Q-function into N individual Q-functions. Formally,
this can be written as

argmax
a

Qtot (τ,a) =

 argmaxa1
Q1(τ1,a1)
...

argmaxaN
QN(τN ,aN)

 . (3)

This condition is known as Individual-Global Max
(IGM) (Son et al., 2019), and an efficient value fac-
torisation method should adhere to this condition. In
simple terms, it ensures that the consistency of op-
timal individual actions and the joint optimal action
is maintained. VDN (Sunehag et al., 2018) is one
such method that we will use in this paper to evalu-
ate the resilience of MARL agents to unexpected mal-
functions. VDN usually shows strong performances
across different tasks (Papoudakis et al., 2020), de-
spite its factorisation process following a linear sum-
mation of the individual Q-values into a Q-total, i.e.,

Qtot (τ,a)=
N

∑
i=1

Qi(τi,ai;θi). (4)

This additivity process is however sufficient to ensure
that the IGM in Eq. (3) is satisfied.

4 METHODS

4.1 Multi-Agent Reinforcement
Learning with Communication

In this paper, we use two popular algorithms to con-
duct our experiments: VDN and IDQL, as mentioned
in section 3. While in their natural form these meth-
ods do not use communication, in this work we intend
to analyse the effects of communication in MARL un-
der agent failures. Hence, we adapt a communication

Exploring Communication in Multi-Agent Reinforcement Learning Under Agent Malfunction

447



(a) IDQL+COMM (b) VDN+COMM

Figure 2: Architectures of the methods used in the experiments in this paper. The yellow box gµ denotes the communication
modules and the blue box the policy networks πθ of the agents. The architectures of the agent and communication networks
πθ and gµ are the same for both algorithms.

module to their architecture, following recent similar
approaches (Sukhbaatar et al., 2016; Das et al., 2019).

The key difference when using communication
is that the agents can broadcast information to each
other both during training and execution. For exam-
ple, VDN follows the centralised training with decen-
tralised execution paradigm, meaning that during ex-
ecution they can make decisions based only on their
individual observations. Instead, with a communi-
cation module they can share messages with others
during execution. These messages are generated by
a communication neural network, distinct from their
policy network. In this paper we aim to minimise
the standard loss used in most value-based MARL ap-
proaches, as in Eq. (2).

Therefore, the agents should then train both a pol-
icy and a communication network, πθ and gµ. In our
architecture, the communication network receives the
observations of the agent and encodes them to be sent
to the others, i.e. mi = g(oi;µ) (we use a message size
of 10). As a result, the Q-values are also conditioned
on the messages and the factorisation process of VDN
shown in Eq. (4), can now be written as

Qtot ([τ,m],a)=
N

∑
i=1

Qi([τi,m−i],ai;θi), (5)

where m−i = [m0, . . . ,mi−1,mi+1, . . . ,mN ], represent-
ing the incoming messages from all agents except i.

By using these messages, the agents should be
able to make more informed decisions and learn bet-
ter cooperation strategies. The full architecture of the
methods used can be seen in Fig. 2; on the right,
it is depicted the architecture of VDN with a com-
munication network and on the left the architecture
of IDQL with a communication network. Note that,

in the experiments, we benchmark the communica-
tion approaches with their non-communication ver-
sion, where these correspond to the same architecture
but without the communication module.

Importantly, for matters of speed, we adopt a pop-
ular convention in MARL where the parameters of the
networks are shared (Terry et al., 2020), and an ID is
added to the inputs to differentiate the agents.

4.2 Malfunctioning Agents in MARL

As described before, the main objective of this work
is to investigate the effect of communication and mes-
sages learned and shared among the agents when an
unexpected malfunction occurs.

In this work, we consider a malfunction as one
trusted agent of the team going rogue and starting to
execute random actions during training. Specifically,
we consider that agent 1 in the team will start exe-
cuting random actions at exactly 500K timesteps of
training. This means that the agent will no longer fol-
low its policy πθ(ai|τi) that has been trained up to that
point, and instead will pick a random action from the
action space A. In one of the scenarios we test, we as-
sume that the agent can recover from this malfunction
at the mark of 800K timesteps of training. The intu-
ition is to evaluate not only the resilience of the team
but also whether the team can recover if, by chance,
the affected teammate goes back to normal.

In a second set of experiments, we investigate an
additional malfunction that consists in corrupting the
messages that the agents generated before these are
sent to the other teammates. For simplicity, we apply
a simple deterministic algorithm to the messages, the
inverse Discrete Cosine Transform (IDCT). We apply

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

448



(a) Malfunctioning agent recovers (b) Malfunctioning agent does not recover

Figure 3: Average team rewards achieved during training by the tested methods in the Lumberjacks environment (Fig. 1). On
the left, one agent malfunctions at 500K timesteps of training but recovers at 800K timesteps. On the right, the same agent
malfunctions at 500K timesteps, but it never recovers until the end. The bold areas denote the 95% confidence intervals.

the inverse to ensure that the corruption of the mes-
sages will be more confusing to the agents and not just
normal information compression. We describe further
details in the experiments section.

5 EXPERIMENTS AND RESULTS

5.1 Setup

In our experiments, we adapt the lumberjacks envi-
ronment from (Koul, 2019). The goal is for a team
of cooperative agents to cut as many trees as pos-
sible within 100 episode timesteps. As depicted in
Fig. 1, the team is composed of 4 agents (blue cir-
cles) and there are 12 trees in the map (green squares).
The team receives +5×N for each tree that is cut,
and each tree is randomly assigned a different level
l : 1 ≤ l ≤ N, where l agents are needed at the same
time to cut that tree. To cut a tree, the agents need to
step into the cell where the tree is located. Note that
the reward is shared by the team since this is a cooper-
ative game, meaning that each agent’s behaviour will
have an impact on the performance of the team as a
whole. In addition, at each step there is a penalty of
−0.1 to motivate the agents to solve it faster.

To evaluate the effect of malfunctions within a
team of MARL agents, we consider two scenarios:

1. After 500K timesteps of normal training, agent 1
goes rogue and starts executing random actions;
however, at the mark of exactly 800K timesteps,
this agent recovers from the malfunction and goes
back to normal following his policy.

2. After 500K timesteps of normal training, agent 1
starts executing random actions (as in 1), but now
it is not able to recover and remains a rogue agent
until the end of training.

Figure 4: Average team rewards using VDN+COMM with
both scenarios described in subsection 5.1, but in this case
the messages generated by the agents are corrupted before
being broadcast to the others (as described in section 4.2).

5.2 Team Rewards

5.2.1 Rewards Under Agent Malfunction

From both Fig. 3(a) and 3(b) we can see that there
is an (expected) abrupt decrease in performance of
all the methods when the malfunction occurs (500K
timesteps). Before that, all the methods show grow-
ing performances and do not find problems in solving
the environment. In the communication approaches
(VDN+COMM and IDQL+COMM), we observe an
initial boost since there is more information available
when the agents make a decision.

Fig. 3(a) illustrates the scenario where the mal-
functioning agent returns to normal at the mark of
800K timesteps. At that point, we observe that the
agents can pick up again the course that they were
following before and recover from a lower reward. In
this case, it is evident the benefits of communication,
particularly in VDN+COMM that can achieve the
highest performance after recovering from the mal-
function, almost in pair with IDQL+COMM. Meth-
ods that do not use communication can also still re-
cover but not as quickly as the ones using communi-
cation. Even during the malfunction, communication

Exploring Communication in Multi-Agent Reinforcement Learning Under Agent Malfunction

449



Figure 5: Messages generated by each agent after training with IDQL+COMM in the no recovery scenario (from Fig. 3(b)).
The images on the bottom side show the environment states at three different timesteps of the episode. The messages inside
the boxes selected in the plots correspond to the messages generated by that agent in the corresponding depicted state.

methods can perform at a slightly higher level.
However, in Fig. 3(b) we see a different case when

the rogue agent does not recover from the malfunc-
tion. When it goes random at step 500K there is the
expected decrease in performance but, since this agent
does not recover, the methods cannot leave the pit-
fall caused by the malfunctioning agent, including the
communication-led methods. This is likely to be be-
cause the agents get confused by the messages sent by
the malfunctioning element, suggesting that the used
communication architecture is not sufficient to enable
agents to identify the one that went rogue. As a result,
they will trust all the elements and will fail to learn
because they will continue to be tricked by a mal-
functioning agent. This shows that communication
can be redundant in cases where unexpected malfunc-
tions happen and do not recover. In such cases, the
agents should be able to identify their trusted circle
and ignore incoming noise from the rogue ones. How-
ever, we note that approaches that use communication
(VDN+COMM and IDQL+COMM) show once again
a learning boost and tend to remain slightly above the
ones that do not use communication, even during the
malfunction of the agent.

5.2.2 Rewards Under Agent Malfunction with
Corrupted Messages

As an additional experiment, we caused a second mal-
function during the learning process of the agents. As
described in subsection 4.2, on top of agent 1 mal-
functioning, we now also consider that there is an in-
terference in the network that the agents use to com-
municate and hence the messages get corrupted. We
test this new scenario using VDN+COMM and, by
looking at Fig. 4, we observe that this method can
still learn the task even when the messages are cor-

rupted. This suggest that VDN+COMM can still ig-
nore misleading information from the messages and
is likely to learn mostly from the observations and
due to centralised training. On the other hand, when
the agent does not recover from the malfunction,
VDN+COMM fails to achieve high rewards, similarly
to what was observed in the previous scenario without
corrupted messages during communication. This ad-
ditional experiment enhances the points revealed in
the previous experiments, showing that the used com-
munication architecture can boost learning but is not
sufficient to enable agents to identify and deal with
the one that went rogue.

5.3 Learned Messages for
Communication

In this subsection, we intend to dig deeper into the
underlying patterns of the generated messages. We
saved the trained networks from the experiments in
the previous section and then tested them in the en-
vironment. Here, we opted to use the networks
from IDQL+COMM since this method only uses pol-
icy and communication networks, and not centralised
training like VDN with its additional mixing network.

Fig. 5 shows the messages generated for an
episode when we use the networks trained in the sce-
nario where agent 1 malfunctions and does not re-
cover. Here, while the messages of agents 2, 3 and
4 are close to each other, the messages from agent
1 are very different and hence can confuse the oth-
ers. On the bottom side of the figure, it is illustrated
the frames of the episode at timesteps 10, 30 and 80.
We can see that agent 1 tends to be distant from the
other elements of the team due to its malfunction-
ing behaviour that stops it from cooperating (as in

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

450



Figure 6: Messages generated by each agent with IDQL+COMM in the no recovery scenario, right before 500K timesteps of
training (before the malfunction occurs, as from Fig. 3(b)). The images on the bottom side show the environment states at
three different timesteps of the episode. The messages in the boxes selected in the plots correspond to the messages generated
by that agent in the corresponding depicted state.

timestep 10). This explains the differences in the mes-
sages, while the others are closer to each other. Even
in timestep 30 when agent 1 gets closer it still fails
to generate useful messages. Only in the last frame
(timestep 80) all the agents generate similar messages
since they are now close to each other and the field is
mostly empty, meaning that messages are prone to be
redundant at this timestep.

For means of comparison, in Fig. 6 we show the
messages generated for the same scenario, but now
the networks are saved before the malfunction occurs
(right before timestep 500K in Fig. 3(b)). In this case,
the messages are much closer to each other suggest-
ing that they are learning a similar language that they
can use to boost their performance as a team. This
opposes to the previous case when the malfunction
occurs and the messages generated from communica-
tion will end up not being beneficial to the team.

6 CONCLUSION AND FUTURE
WORK

While several challenges in multi-agent systems have
been studied, there are still problems that can harm
learning. One such problem is the occurrence of un-
expected faults or malfunctions. This is a crucial as-
pect for the translation of multi-agent applications to
the real world (Bahrpeyma and Reichelt, 2022).

Rather than just learning from individual observa-
tions, communication in MARL can be a key factor in
boosting performance in such cooperative scenarios
(Sukhbaatar et al., 2016). In this work, we explored
the impact of traditional communication in MARL
when a malfunction occurs within the team. Our re-

sults showed that, while communication can boost
performances, it can also be redundant if malfunc-
tions occur and the learning architecture is not ap-
propriate enough. Specifically, when an agent in the
team malfunctions and goes rogue, the others might
get confused. In this sense, these agents need to be
trained to understand which elements can be trusted,
and on which messages they should rely. These ob-
servations are further supported by our additional ex-
periments with corrupted messages, where the agents
show similar behaviours to a normal communication
scheme, suggesting that, despite boosting learning, a
better communication scheme is important.

Overall, communication can improve learning, but
an adequate architecture is key. In the future, we
aim to explore methods that enable agents to under-
stand which elements went rogue. Hence, we intend
to test scenarios with multiple agents fail, and we aim
to combine these concepts with other approaches that
show promise in controlling malfunctions, such as the
ones evaluated in (Pina et al., 2024). Resilience is an
important factor in MARL, and agents should be pre-
pared to react under any unexpected occurrence.

ACKNOWLEDGEMENTS

This work was funded by the Engineering and
Physical Sciences Research Council, grant number
EP/X028631/1: ATRACT: A Trustworthy Robotic
Autonomous system to support Casualty Triage.

Exploring Communication in Multi-Agent Reinforcement Learning Under Agent Malfunction

451



REFERENCES

Albrecht, S. V., Christianos, F., and Schäfer, L. (2024).
Multi-Agent Reinforcement Learning: Foundations
and Modern Approaches. MIT Press.

Artaud, C., De-Silva, V., Pina, R., and Shi, X. (2024). Gen-
erating neural architectures from parameter spaces for
multi-agent reinforcement learning. Pattern Recogni-
tion Letters, 185:272–278.

Bahrpeyma, F. and Reichelt, D. (2022). A review of
the applications of multi-agent reinforcement learn-
ing in smart factories. Frontiers in Robotics and AI,
9:1027340.

Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rab-
bat, M., and Pineau, J. (2019). Tarmac: Targeted
multi-agent communication. In International Confer-
ence on machine learning, pages 1538–1546. PMLR.

Drew, D. S. (2021). Multi-agent systems for search and
rescue applications. Current Robotics Reports, 2:189–
200.

Fung, H. L., Darvariu, V.-A., Hailes, S., and Musolesi,
M. (2022). Trust-based consensus in multi-agent
reinforcement learning systems. arXiv preprint
arXiv:2205.12880.

Khalili, M., Zhang, X., Polycarpou, M. M., Parisini, T.,
and Cao, Y. (2018). Distributed adaptive fault-tolerant
control of uncertain multi-agent systems. Automatica,
87:142–151.

Koul, A. (2019). ma-gym: Collection of multi-agent envi-
ronments based on openai gym.

Kumar, S. and Cohen, P. R. (2000). Towards a fault-tolerant
multi-agent system architecture. In Proceedings of
the fourth international conference on Autonomous
agents, pages 459–466.

Liu, Z., Wan, L., sui, X., Sun, K., and Lan, X. (2021).
Multi-Agent Intention Sharing via Leader-Follower
Forest. Technical Report arXiv:2112.01078, arXiv.
arXiv:2112.01078 [cs] type: article.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., Hassabis, D., and Sadik, A.
(2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.

Noukhovitch, M., LaCroix, T., Lazaridou, A., and
Courville, A. (2021). Emergent Communication un-
der Competition. arXiv:2101.10276 [cs]. arXiv:
2101.10276.

Oliehoek A., F. and Amato, C. (2016). A Concise Introduc-
tion to Decentralized POMDPs. Springer Publishing
Company, Incorporated, 1st edition.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht,
S. V. (2020). Benchmarking multi-agent deep rein-
forcement learning algorithms in cooperative tasks.
arXiv preprint arXiv:2006.07869.

Pina, R., De Silva, V., and Artaud, C. (2023). Discover-
ing causality for efficient cooperation in multi-agent
environments. arXiv preprint arXiv:2306.11846.

Pina, R., De Silva, V., and Artaud, C. (2024). Towards self-
adaptive resilient swarms using multi-agent reinforce-
ment learning. In ICPRAM, pages 410–417.

Ramezani, M., Amiri Atashgah, M. A., and Rezaee,
A. (2024). A fault-tolerant multi-agent reinforce-
ment learning framework for unmanned aerial vehi-
cles–unmanned ground vehicle coverage path plan-
ning. Drones, 8(10).

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Fo-
erster, J., and Whiteson, S. (2018). QMIX: Monotonic
Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80, pages 4295–4304. arXiv: 1803.11485.

Skobelev, P. (2011). Multi-agent systems for real time re-
source allocation, scheduling, optimization and con-
trolling: Industrial applications. In Mařı́k, V., Vrba,
P., and Leitão, P., editors, Holonic and Multi-Agent
Systems for Manufacturing, pages 1–14, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Son, K., Kim, D., Kang, W. J., Hostallero, D., and Yi, Y.
(2019). QTRAN: Learning to Factorize with Transfor-
mation for Cooperative Multi-Agent Reinforcement
learning. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages
5887–5896.

Sukhbaatar, S., szlam, a., and Fergus, R. (2016). Learning
Multiagent Communication with Backpropagation. In
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon,
I., and Garnett, R., editors, Proceedings of the 30th
International Conference on Neural Information Pro-
cessing Systems, pages 2252–2260.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V., Jaderberg, M., Lanctot, M., Son-
nerat, N., Leibo, J. Z., Tuyls, K., and Graepel, T.
(2018). Value-Decomposition Networks For Coopera-
tive Multi-Agent Learning. In Proceedings of the 17th
International Conference on Autonomous Agents and
MultiAgent Systems, pages 2085– 2087, Stockholm,
Sweden,.

Terry, J. K., Grammel, N., Son, S., Black, B., and Agrawal,
A. (2020). Revisiting parameter sharing in multi-
agent deep reinforcement learning. arXiv preprint
arXiv:2005.13625.

Tong, C., Harwood, A., Rodriguez, M. A., and Sinnott,
R. O. (2023). An energy-aware and fault-tolerant
deep reinforcement learning based approach for multi-
agent patrolling problems.

Watkins, C. and Dayan, P. (1992). Technical Note Q,-
Learning. In Machine Learning, volume 8, pages
279–292.

Zhang, K., Yang, Z., Liu, H., Zhang, T., and
Başar, T. (2018). Fully Decentralized Multi-
Agent Reinforcement Learning with Networked
Agents. arXiv:1802.08757 [cs, math, stat]. arXiv:
1802.08757.

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

452


