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Abstract: Accurate motion understanding of the dynamic objects within the scene in bird’s-eye-view (BEV) is critical
to ensure a reliable obstacle avoidance system and smooth path planning for autonomous vehicles. However,
this task has received relatively limited exploration when compared to object detection and segmentation with
only a few recent vision-based approaches presenting preliminary findings that significantly deteriorate in low-
light, nighttime, and adverse weather conditions such as rain. Conversely, LiDAR and radar sensors remain
almost unaffected in these scenarios, and radar provides key velocity information of the objects. Therefore,
we introduce BEVMOSNet, to our knowledge, the first end-to-end multimodal fusion leveraging cameras,
LiDAR, and radar to precisely predict the moving objects in BEV. In addition, we perform a deeper analysis to
find out the optimal strategy for deformable cross-attention-guided sensor fusion for cross-sensor knowledge
sharing in BEV. While evaluating BEVMOSNet on the nuScenes dataset, we show an overall improvement in
IoU score of 36.59% compared to the vision-based unimodal baseline BEV-MoSeg (Sigatapu et al., 2023), and
2.35% compared to the multimodel SimpleBEV (Harley et al., 2022), extended for the motion segmentation
task, establishing this method as the state-of-the-art in BEV motion segmentation.

1 INTRODUCTION

Recent research in accurate modeling of dynamic ob-
stacles (Das et al., 2024) has stimulated rapid progress
in achieving autonomous navigation in intricate envi-
ronments, ensuring effective collision avoidance. Key
components for safe and efficient autonomous driving
include comprehending the movements of nearby ob-
jects and planning the vehicle’s trajectory based on
their anticipated future states. In recent times, the
realm of autonomous driving has experienced notable
progress, with leading car manufacturers integrating
multiple sensor technologies (Xu et al., 2017; Li et al.,
2018; Dasgupta et al., 2022) to enhance the reliability
of their autonomous systems.

Rich semantic information in the image pixels has
motivated the research community to pursue percep-
tion in Bird’s-Eye-View (BEV) space (Roddick and
Cipolla, 2020; Philion and Fidler, 2020). Despite the
low cost and several other advantages, cameras are
prone to failure in low illumination (low light, low
contrast) and adverse weather conditions (Das et al.,

Figure 1: We propose BEVMOSNet for motion understand-
ing within the scene. We demonstrate that our multi-modal
fusion encompassing 6-cameras (C), LiDAR (L), and radar
(R) yields better IoU across all distance ranges when com-
pared to camera-only and other multimodal models. * de-
notes the SimpleBEV baseline model extended for the mo-
tion segmentation task.

2020). We aim to alleviate the failure in low illumina-
tion conditions by using LiDAR technology (another
rich semantic 3D information-providing sensor).
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Despite all the advantages of the camera and Li-
DAR sensor, they are prone to failure in adverse
weather conditions (Godfrey et al., 2023). We aim
to address this key shortcoming by integrating an-
other cost-effective sensor, such as radar (Dong et al.,
2020). It is highly reliable in adverse weather con-
ditions and supports long-range perception. In addi-
tion, it holds key velocity information that catalyzes
the detection of moving vehicles. However, radar has
limitations such as the sparsity of the points in a sin-
gle frame (Lippke et al., 2023) when compared to Li-
DAR in the nuScenes dataset (Caesar et al., 2020).
We aim to make use of the complimentary features
from all three sensors. Figure 1 shows the superior-
ity in terms of distance-based IoU metrics of all three
sensors when fused together over camera only, cam-
era + radar, and camera + LiDAR fusion proposals,
respectively on the nuScenes dataset.

Recent works such as (Man et al., 2023; Liang
et al., 2022) focus on producing an accurate BEV se-
mantic representation of the surrounding 3D space
using a fusion of multiple sensors like multi-view
cameras, radar, and LiDAR, as the BEV coordinates
acts as a common ground for representing the sensor-
agnostic information. Methods similar to (Chen et al.,
2023) are prone to errors, as the imaging modality re-
quires explicit depth estimation, the reason being the
transformation process is quite complex, and any er-
ror in this process will have an impact on the subse-
quent fusion.

This paper presents evidence highlighting the sig-
nificant impact of automotive sensors beyond cameras
for the task at hand. We essentially paid more fo-
cus on how to intelligently integrate radar and LiDAR
with camera sensors to propose a robust automotive
multisensor perception stack. Our first approach is
to project the sensor agnostic rich semantic features
into a common reference like BEV and combine all of
them by simple element-wise fusion as concatenation
(Harley et al., 2022). However, the fused features suf-
fer from misalignment due to a significant domain gap
between the modalities. For example, the camera has
rich semantic features but an inaccurate spatial rep-
resentation due to an ambiguous transformation pro-
cess. On the contrary, radar has weak semantic cues
but an accurate spatial position. We use the multi-
modal deformable cross-attention (MDCA) to share
the cross-modal knowledge in BEV space.

The main contributions of this paper are as fol-
lows.

• We present a novel multisensor deep network
BEVMOSNet, designed specifically for precise
motion understanding in a bird’s-eye-view. The
proposed network combines multi-view cameras,

LiDAR, and radar, representing the first known
endeavor of its kind.

• Deformable cross attention (DCA) guided design
of a sensor fusion module encompassing three
modalities to democratize knowledge from indi-
vidual sensors to cross modalities in BEV.

• Implementation of a single-stage end-to-end train-
able network establishing the first state-of-the-art
results on the nuScenes dataset, at the same time
improving respective state-of-the-art performance
for the camera-only proposal.

• We perform thorough ablation studies considering
a range of backbones, network components, and
diverse feature fusion techniques.

2 RELATED WORK

Moving object segmentation is the task of understand-
ing the dynamic properties in a scene. It includes
the detection of moving objects and segmenting them
from background or static components. Traditional
computer vision techniques such as optical flow have
been proposed to estimate the movement at the pixel
level in a sequence of images. The limitation of op-
tical flow is that it is only able to estimate relative
pixel displacements between two consecutive frames
and cannot distinguish dynamic and static compo-
nents. Many other methods have attempted to over-
come this limitation by estimating background mo-
tion (Wehrwein and Szeliski, 2017) and using RGB-D
data (Menze and Geiger, 2015).

With the emergence of efficient deep learning net-
works that boost the performance of perception tasks,
many researchers have been focusing on leveraging
learning-based methods for motion segmentation. In
(Patil et al., 2020) an end-to-end, multi-frame multi-
scale encoder-decoder adversarial learning network is
proposed for moving object segmentation. (Fragki-
adaki et al., 2015) uses a CNN with a dual-pathway
architecture operating on both RGB images and op-
tical flow to estimate moving objects. InstanceMot-
Seg (Mohamed et al., 2020) employs the flow field as
an extra source of information, guiding a deep learn-
ing model to understand object motion at the instance
level. In such a multimodal setup, ensuring minimal
modality imbalance (Das et al., 2023) is always chal-
lenging with automotive sensors.

In the last few years, many large-scale multi-
modal datasets for autonomous driving have been re-
leased, e.g., NuScenes (Caesar et al., 2020), Waymo
(Sun et al., 2020). These datasets provide 3D data,
such as LiDAR, radar, and surround-view camera
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Figure 2: BEVMOSNet extracts features from camera, radar, and LiDAR input and transforms them into BEV, where they
are fused together by a sensor fusion module. Consequently, a correlation block is applied to the fused BEV feature maps
from current and previous frames to extract motion cues, which are then combined with the current fused BEV feature map
as input for the segmentation decoder.

data. This facilitated the study of 3D perception.
Many researchers targeted moving object segmenta-
tion in 3D LiDAR data. For instance, (Chen et al.,
2021) segmented LiDAR points corresponding to
moving objects using range images generated from
point clouds. Instead of using range images as a sec-
ondary input, (Mohapatra et al., 2022) used only point
cloud sequences to segment LiDAR points on moving
objects and achieved real-time performance. Further
studies in LiDAR moving object segmentation are In-
sMOS (Wang et al., 2023), MotionBEV (Zhou et al.,
2023) and MambaMOS (Zeng et al., 2024).

Recently, many studies have been investigating
the environmental perception in Bird’s Eye View
(BEV) space. Because BEV is a natural representa-
tion of 3D space with the vertical dimension com-
pressed, perception models that operate in BEV are
not only more efficient, but also have competitive
performance. One of the pioneering works is BEV-
MODNet (Rashed et al., 2021) which segments mov-
ing vehicles in BEV just using a monocular front cam-
era. Similar to (Fragkiadaki et al., 2015) and (Mo-
hamed et al., 2020), this work also leverages optical
flow as the second input to predict moving vehicles in
BEV. Many other studies utilize the multi-view cam-
era data in large-scale datasets, such as Lift-Splat-
Shoot (LSS) (Philion and Fidler, 2020), which pro-
posed a learning-based method to perform semantic
segmentation in BEV using multi-view camera data.
Following LSS, BEV-MoSeg (Sigatapu et al., 2023)
added a correlation layer on top of two BEV feature
maps from two consecutive frames to predict feature
correspondence in BEV space before utilizing another
convolution layer to predict movements of moving ve-
hicles in the current frame. Beyond moving object
segmentation in BEV, some other research tackles the

dynamic perception problem in the form of motion
prediction. Fiery (Hu et al., 2021), PowerBev (Li
et al., 2023) and TBP-Former (Fang et al., 2023) uti-
lize only surround views images to target future in-
stance segmentation and motion at the same time.

Recent studies have expanded the perception tasks
to radar data, as it contains object velocity, which
is valuable information for dynamic perception. Ra-
Track (Pan et al., 2024) proposes a network for
moving object detection and tracking only based on
radar. RadarMOSEVE (Pang et al., 2024) proposes
a Spatial-Temporal Transformer Network for mov-
ing object segmentation and ego-velocity estimation.
Radar Velocity Transformer (Zeller et al., 2023) tar-
gets moving object segmentation tasks using only a
single-scan radar point cloud. This work is also ex-
tended for moving instance segmentation tasks as in
(Zeller et al., 2024). To our knowledge, there are
no previous works that tackle the MOS task in BEV
space by leveraging the multisensor data. To address
this, we introduce BEVMOSNet, a multimodal deep
learning model for precise motion understanding in
the BEV space.

3 PROPOSED APPROACH

In this section, we describe our overall architecture
and the different fusion methodologies we employed
for motion segmentation in BEV space. Our pro-
posed method consists of a multimodal feature extrac-
tion module, followed by a sensor fusion module that
includes a multi-headed deformable cross-attention
strategy. Additionally, a correlation module is used
to extract temporal features across multiple frames in
BEV, and a segmentation decoder is employed to pre-
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cisely segment objects from the correlated features.
Our proposed model utilizes camera, radar, and Li-
DAR sensor data provided in the nuScenes dataset.

3.1 Sensor-Specific Feature Extraction

The module takes the raw camera, LiDAR and radar
data as inputs and extracts three sets of feature maps
in BEV corresponding to each modality. In this
work, we follow the multi-stream setup in Simple-
BEV (Harley et al., 2022) to extract multimodal fea-
tures, which consists of a CNN-based camera feature
extractor, a LiDAR, and a radar voxelization module
respectively.
Camera Feature Extractor. We reuse the camera
feature extractor from (Harley et al., 2022), which
consists of an image encoder and a 2D-3D lifting
module. The input RGB images, shaped 3×H ×W ,
are fed into a ResNet-101 (He et al., 2016) backbone.
The output from layer 3 is upsampled and concate-
nated with the layer 2 output before being processed
by two additional CNN blocks with instance normal-
ization and ReLU activation. A final convolution
layer reduces the number of channels to create im-
age feature maps with shape C×H/8×W/8. These
2D feature maps are then transformed into BEV space
using the lifting module from (Harley et al., 2022).
Where each 3D voxel “pulls” a feature from the 2D
map, by projection and subpixel sampling. This re-
sults in a 3D feature volume with shape C×X×Y ×Z.
Finally, this volume is rearranged to yield an image
BEV feature map with shape (C×Y )×X ×Z.
LiDAR Feature Extractor. We voxelize the input
LiDAR point cloud to create a binary occupancy grid
with the shape of Y ×Z ×X . In this work, we aim to
focus on the sensor fusion and keep the point cloud
features as simple as possible. We only leverage the
LiDAR points to provide our model with the informa-
tion about object locations.
Radar Feature Extractor. In our baseline architec-
ture, we rasterize the radar point clouds to create a
radar BEV feature map. In the nuScenes dataset,
each radar point has 18 attributes; the first 3 posi-
tions are point locations, and the remainder consists
of velocity, compensated velocity, and other built-in
pre-processing information. We use the first three at-
tributes for rasterizing the radar point cloud, and we
keep the other 15 attributes as radar features. For
the MOS task, we focus on extracting dynamic infor-
mation about moving objects from velocity attributes
rather than relying on the radar point location infor-
mation.

3.2 Sensor Fusion Module

This module introduces the sensor-specific features
from the unimodal encoders. We present several fu-
sion strategies to determine the optimal configuration
among the modalities.
Concatenation. We start with the simple con-
catenation fusion method as proposed in SimpleBEV
(Harley et al., 2022). This serves as the baseline
for our proposed strategies in the following sections.
SimpleBEV (Harley et al., 2022) follows a compres-
sion of BEV features to reduce the feature dimension
of the unified BEV feature map. Hence, we followed
the same techniques for all sensor fusion approaches.
Multi-Modal Deformable Cross-Attention
(MDCA). Cross-attention has proven to yield
effective results in multimodal fusion applications.
However, the computation cost is quadratic to the
length of the input vector O(N2), where N = X × Z
and X ,Z denote the height and width of the Bird’s
Eye View feature map. Taking into account the com-
putational cost, we use the deformable multimodal
cross attention (Kim et al., 2023) in the present task.

We apply deformable multi-modal cross attention
shown in Figure 3. This mechanism selectively at-
tends to a small set of keys sampled around a refer-
ence point in the spatial dimension for each query.
This allows us to effectively identify and track mov-
ing vehicles in the neighboring pixels.

Given the sensor-agnostic BEV feature maps, we
flatten them to obtain I ∈ RCr×XZ and R ∈ RCc×XZ ,
where subscripts r and c denote radar and camera, re-
spectively. Zq ∈RXZ×C is the result of the linear pro-
jection of I⊤⊕R⊤. We aim to enrich the BEV feature
map using multi-head multi-modal cross-attention
(MDCA) as described:

MDCA(Zq,Pq,Xm) =

H

∑
h=1

[
M

∑
m=1

Am,hXm(P+∆Pm,h)W⊤
m

]
W⊤

h (1)

Where, Am,h = softmax(Wm,qZq) and ∆Pm =
W′

m,qZq are obtained by linear projection over the
queries.

P∈RX×Y×2 is the reference point matrix, ∆Pm,h ∈
RX×Y×2 is the offset matrix, and Am,h ∈ RXY×K is
the attention weight matrix of the h-th attention head,
where Am,hXm(P+∆Pm,h)∈RXY×C. Wh ∈RCv×C and
Wm ∈ RC×Cv , here h and m index the attention head
and modality, respectively.
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Figure 3: Multimodal deformable cross attention (MDCA) extracts complementary features from camera and radar sensors
individually by separately applying attention weights Am and learnable sampling offsets △Pm,h in every attention head. ⊕
denotes concatenation.

3.3 BEV Encoder

As mentioned in BEVFusion (Liu et al., 2023), de-
spite deformable cross attention being applied for
camera and radar and all sensor-specific BEV fea-
ture maps being in the same space, there are still local
misalignments between them. The camera features in
BEV are not accurately located due to errors in the
view transformation. Radar and LiDAR BEV feature
maps are also not aligned perfectly because they have
different sparsity, and radar data is noisy. To this end,
we apply a BEV encoder block, which is based on
ResNet18 to compensate for the misalignments.

3.4 Correlation for Detecting Motion

We aim to extract the motion cues from the scene by
analyzing a pair of consecutive temporal frames sim-
ilar to BEV-MoSeg (Sigatapu et al., 2023). Recent
pixel-based optical flow (Dosovitskiy et al., 2015),
initially processes each image independently using
convolutional neural networks (CNNs) to extract fea-
ture representations. Subsequently, akin to traditional
computer vision methods that compare features from
image patches, the network correlates these learned
representations at a higher level to identify relation-
ships between the two images.

We take pixel-based flow estimation a step fur-
ther by applying correlation layers to expand it into
a higher-dimensional space representing a bird’s-eye
view (BEV), these correlation layers allow the net-
work to compare sub-regions from f1 with all other
sub-regions in f2. This enables the network to capture
more complex relationships between the two images.
The ”correlation” between image patches, centered at
x1 in the first feature map and x2 in the second feature

map, was defined as in (Dosovitskiy et al., 2015):
c(x1,x2) = ∑

o∈[−k,k]×[−k,k]
⟨f1(x1 +o), f2(x2 +o)⟩ (2)

Here, K := 2k+1 represented the size of a square ker-
nel. In our experiments, we have used k = 3. While
the presented equation resembles a single step in a
standard neural network convolution, it functions dif-
ferently. In a typical convolution, the data is pro-
cessed using trainable filters. Here, however, the cor-
relation layer compares data with other data, eliminat-
ing the need for learnable weights.

3.5 Moving Object Segmentation
Decoder

We concatenate the correlation map and BEV feature
map of the current frame, thereby providing the BEV
features of the current as a context to the motion cues
from the correlation map, and the final stage of the
decoder is the linear projection to reduce the number
of filters, which consists of a 3×3 convolutional layer
followed by a 1×1 convolutional layer to achieve the
final output BEV segmentation map of moving vehi-
cles.

4 EXPERIMENTATION DETAILS

To evaluate our model, we conduct experiments with
different sensor combinations and different fusion
methods on the publicly available nuScenes dataset
(Caesar et al., 2020).

4.1 Dataset

The nuScenes dataset contains a rich collection of
point cloud data and image data from 1,000 scenes,
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each spanning a duration of 20 seconds collected over
a wide range of weather and time-of-day conditions.
The data acquisition vehicle is equipped with 6 cam-
eras, 5 radar sensors, and a 360-degree, 32-beam Li-
DAR scanner. We use the official nuScenes train-
ing/validation split, which contains 28,130 samples in
the training set and 6,019 samples in the validation
set.

4.2 Setup

In our baseline model, we use ResNet-101 (He et al.,
2016) for the image backbone. We downsample all
input images to a resolution of 224×400. For the 2D-
3D transformation, we use the same lifting strategy
as described in section 3.1. In the LiDAR path, we
voxelize point clouds and create binary occupancy 3D
grids. In the radar path, we also apply the rasterized
radar BEV feature map as described in section 3.1.

We use the setup described in SimpleBEV (Harley
et al., 2022) as a baseline for our experiments. We
use a 100m×100m region around the ego-vehicle (+/-
50m in front of and behind, +/- 50m left and right of
the ego-vehicle) with a grid cell size of 50cm. This re-
sults in a 2D BEV grid map with a shape of 200×200.
Along the vertical axis, we set the range to 10 m and
discretize at a resolution of 8. The 3D grid volume
then is shaped as 200×8×200 (X ×Y ×Z). We ori-
ent this 3D grid according to the reference camera. To
evaluate our predicted segmentation output, we use
the Intersection-over-Unition (IoU) and pixel preci-
sion metrics. IoU is the score between the predic-
tion and the ground truth (GT) of the moving vehicle
in the current frame. Precision score is the number
of true positive pixels divided by the number of all
positive pixels. Since these GTs are not available in
the nuScenes dataset, we follow BEV-MoSeg (Sigat-
apu et al., 2023) to generate them. First, we filter 3D
bounding boxes for vehicles within our defined grid
area. Next, we utilize the ’vehicle.moving’ attribute
on the filtered bounding boxes to identify vehicles that
are in motion. At the end, we project the filtered 3D
bounding boxes into the BEV space to generate binary
masks. We train our baseline model with the Adam
optimizer, a learning rate of 3e-4, and a weight decay
of 1e-7 using 4 A100 GPUs. For all experiments, we
use a batch size of 40 and train for 75,000 iterations.
We use the standard binary cross-entropy loss to su-
pervise the moving vehicle segmentation:

LBCE =
−1
N

N

∑
i=1

yi log(pi)+(1− yi) log(1− pi) (3)

where pi denotes the prediction at pixel i ∈ [1,N], and
yi ∈ {0,1} denotes the binary ground truth label at

pixel i, which specifies whether the pixel i belongs to
the vehicle class.

4.3 Baseline Experiments

Due to the limited number of state-of-the-art base-
line models for moving object segmentation in
BEV, we extended SimpleBEV (Harley et al., 2022)
for the moving vehicle segmentation task (Simple-
BEV Motion) as the second baseline model besides
BEV-MoSeg (Sigatapu et al., 2023) to investigate
the impact of each sensor modality on the MOS
task. In the fusion module, we use the simple con-
catenation fusion method. We start with experi-
ments for the camera-only model. Next, we train
the model using two sensor modalities, e.g., cam-
eras with radar and cameras with LiDAR. Finally,
we train our model with all sensor data (camera,
radar, LiDAR). Table 1 shows experiment results
with the SimpleBEV Motion model. Compared with
BEV-MoSeg (Sigatapu et al., 2023), the Simple-
BEV Motion model outperforms BEV-MoSeg (Sigat-
apu et al., 2023) with all sensor configurations. Even
in the camera-only scenario, the model uses a sim-
ple lifting strategy without any learnable parameters
and achieves an 8.04% improvement. The Simple-
BEV Motion model achieves state-of-the-art results
in camera + radar + LiDAR fusion scenarios for the
moving vehicle segmentation task.

4.4 Fusion Experiments

Based on the baseline experiments in 4.3, we se-
lected the best candidate model as SimpleBEV-
Motion (C+L+R) for further experiments with the
MDCA fusion method. To evaluate the MDCA for the
moving object segmentation task, we apply MDCA
with 3 different fusion strategies: 1. Camera-radar
fusion using DCA, then the fused feature map is
concatenated with the LiDAR BEV feature map; 2.
Camera-LiDAR fusion using DCA, then the fused
feature map is concatenated with the radar BEV fea-
ture map; 3. Radar and LiDAR feature maps are con-
catenated, then fused with the camera feature map us-
ing DCA. Table 1 shows our experiment results with
these configurations. We confirm that the MDCA
strategy can boost the performance of moving object
segmentation tasks in all fusion configurations com-
pared to the baseline. We also observe that by apply-
ing MDCA for camera and radar features, we can uti-
lize the dynamic information inherited in radar data to
help the model focus on more useful camera features,
which helps to improve the model performance.
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Table 1: MOS with different sensor setups and fusion strategies. ‘C’, ‘R’, and ‘L’ represent camera, radar, and LiDAR, ↑
indicates that a higher value is better. ⊗ denotes multimodal deformable cross attention, ⊕ denotes concatenation. * denotes
our baseline model for experiments with the MDCA fusion method.

Method Modality Image backbone Fusion
method

Precision
(%)↑

mIoU
(%)↑

MoSeg(Sigatapu et al., 2023) C EfficientNet-b0 - - 26.0
SimpleBEV Motion(Harley et al., 2022) C ResNet-101 - 49.43 34.04
SimpleBEV Motion(Harley et al., 2022) C+R ResNet-101 C ⊕ R 66.65 51.52
SimpleBEV Motion(Harley et al., 2022) C+L ResNet-101 C ⊕ L 67.44 50.27
SimpleBEV Motion(Harley et al., 2022) C+R+L ResNet-50 C ⊕ R ⊕ L 73.03 59.86
SimpleBEV Motion(Harley et al., 2022) C+R+L EfficientNet-b4 C ⊕ R ⊕ L 73.25 59.90
SimpleBEV Motion(Harley et al., 2022)* C+R+L ResNet-101 C ⊕ R ⊕ L 73.79 60.24
BEVMOSNet C+R+L ResNet-101 C ⊗ (L ⊕ R) 73.22 61.82
BEVMOSNet C+R+L ResNet-101 (C ⊗ L) ⊕ R 74.93 60.91
BEVMOSNet C+R+L EfficientNet-b4 (C ⊗ R) ⊕ L 75.05 62.22
BEVMOSNet (ours) C+R+L ResNet-101 (C ⊗ R) ⊕ L 75.35 62.59

4.5 Ablation Study

For each ablation experiment, we only train models
for 50,000 iterations for faster convergence. Table
2 shows the IoU of segmented moving objects over
different distances. The performance of the camera-
only model drops significantly when objects are far
from the ego-vehicle. With LiDAR data, the camera
+ LiDAR model performs better on far objects. Due
to the sparsity and noise of radar data, the camera-
radar model performs slightly worse at closer dis-
tances compared to camera-LiDAR, but it improves
significantly at long distances.

In Table 3, we show the result of experiments with
different numbers of aggregated LiDAR and radar
sweeps. We observe that aggregation of sweeps helps
to improve the model performance, and the baseline
model achieves the best performance with an aggre-
gation of five sweeps; therefore, we conduct all exper-
iments in Table 1 with the five-sweep aggregation. It
has been observed that when we consider more than
five sweeps, then we see performance degradation.
Although the corresponding results are not reported,
this is a critical finding, as we observed accumulat-
ing more sweeps shows almost zero overlap of the
moving object across frames. This phenomenon can
be attributed to the predominance of urban scenar-
ios in nuScenes dataset, where dynamic objects such
as vehicles traverse considerable distances over time.
In Table 4 we show the model performance in day-
time, nighttime and rain driving conditions where the
performance in rain scenes is significantly improved
by using multimodal sensor fusion. The performance
gap of the camera-only model between rain and day-
time conditions is 6.05%. By adding radar data, this
gap is shrunk to 2.81%. The camera-LiDAR-radar
model closes this gap and increases the performance

in rain conditions by 0.84% compared to the per-
formance in daytime conditions. This confirms that
radar and LiDAR are useful for perception in adverse
weather conditions. Generally, adding radar and Li-
DAR helps improve the performance of the camera-
only model in all driving conditions.

Table 2: Ablation study on the usage of unimodal vs. mul-
timodal sensor using mIoU metric with respect to distances
for moving object segmentation task.

0-20m 20-
35m

35-
50m

C 50.14 35.91 19.11
C+R 61.10 55.57 41.31
C+L 63.73 55.11 35.96
C+R+L (BEVMOSNet) 72.68 67.04 51.21

Table 3: Exploring the influence of varying numbers of ag-
gregated LiDAR and radar sweeps with camera data. The
best sweep aggregation was chosen for our experiments in
Table 1.

C+L C+R C+R+L
(baseline)

BEVMOSNet

1 frame 46.73 50.13 58.69 -
3 frames 48.20 51.01 59.68 -
5 frames 50.27 51.52 60.24 62.59

Table 4: Performance analysis of BEVMOSNet and com-
parison with other sensor proposals in adverse weather sce-
narios and low illumination conditions using mIoU.

Camera-
only

C+L C+R C+R+L
(BEVMOSNet)

Rain 28.75 50.88 49.04 63.41
Day 34.80 49.67 51.85 62.57
Night 35.10 52.76 51.44 59.64
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Figure 4: Qualitative results on MOS in various weather conditions. The camera-only model predicts distant moving objects
with lower confidence (blurred region, marked with red circles). It also fails to segment occluded moving objects, or when
operating in low light conditions, such as at night (regions marked with black circles). Generally, LiDAR helps to locate
object positions and estimate object orientation accurately; radar improves the segmentation of distant objects. By combining
camera, LiDAR, and radar we can leverage the advantages of each modality to build a robust model, which reduces false
positive predictions (marked with green circles).

4.6 Qualitative Results

Figure 4 shows qualitative results of moving vehicle
segmentation. We observe that the prediction confi-
dence of the camera-only model is lower, particularly
for objects far from ego vehicles. The camera-LiDAR
model predicts more precise object locations and
also increases prediction confidence. The camera-
radar model helps greatly predict objects at far dis-
tances. Besides that, radar sensors also provide in-
formation about dynamic objects through velocity at-
tributes, which greatly improves the prediction of oc-
cluded moving objects. On the other hand, due to
the sparse and noisy nature of radar data, the camera-
radar model produces more noisy predictions. By

combining all three sensor modalities, we achieve a
more robust model, which compensates for the weak-
nesses of each sensor type and increases the overall
segmentation performance.

5 CONCLUSION

In this work, we introduce a novel multi-sensor,
multi-camera architecture for motion understand-
ing in BEV, achieving a 62.59% IoU score on the
nuScenes moving object detection dataset. Our inves-
tigation includes extensive experiments aimed at as-
sessing the impact of each sensor modality on overall
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performance during the feature fusion stage and opti-
mal configuration for sensor fusion. Additionally, we
integrate deformable cross-attention to improve the
extraction of robust camera features, leveraging the
complementary information from LiDAR and radar
modalities. Due to the limited availability of moving
object labels within nuScenes, which are currently re-
stricted to the vehicle class, our experimental valida-
tion solely focuses on this category. However, it is
possible to boost the performance further and extend
the motion detection task to more classes, such as bi-
cyclists and pedestrians with the label availability. We
leave this work to future research.
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