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Abstract: Can we control the writing style of large language models (LLMs) by specifying desired linguistic features?
We address this question by investigating the impact of handcrafted linguistic feature (HLF) instructions on
LLM-generated text. Our experiment evaluates various state-of-the-art LLMs using prompts incorporating HLF
statistics derived from corpora of CNN articles and Yelp reviews. We find that LLMs demonstrate sensitivity to
these instructions, particularly when tasked with conforming to concrete features like word count. However,
compliance with abstract features, such as lexical variation, proves more challenging, often resulting in negative
impacts on compliance. Our findings highlight the potential and limitations of utilizing HLFs for guiding
LLM text generation and underscore the need for further research into optimizing prompt design and feature
selection.

1 INTRODUCTION

Large language models (LLMs) have become a com-
monplace research topic today. Because language mod-
els such as BERT (Devlin et al., 2019) or GPT (Rad-
ford et al., 2018; Radford et al., 2019; Brown et al.,
2020) constantly advance the state of the art on many
natural language processing tasks, it is interesting to
evaluate them on more specialized tasks. Multiple
surveys (Minaee et al., 2024; Zhao et al., 2023) and
benchmarks (paperswithcode.com, 2024; Chiang et al.,
2024) show that large language models are good at fol-
lowing instructions. We intuit that training LLMs on
diverse data (for instance the Pile (Gao et al., 2020))
uniquely qualifies them to produce text in a wide vari-
ety of styles.

Text style transfer (TST) is defined as the “task of
transforming the stylistic manner in which a sentence
is written, while preserving the meaning of the orig-
inal sentence” (Toshevska and Gievska, 2022). This
definition can be extended to entire articles or corpora
of text because these are also the object of linguistic
style and stylistics (Lugea and Walker, 2023). The task
of transferring text style has a certain maturity. The
interest in this task is renewed by the advancements
made with LLMs.

Handcrafted linguistic features (HLFs) are sin-
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gle numerical values produced by a uniquely identi-
fiable method on any natural language (Lee and Lee,
2023). Examples of HLFs range from simple con-
structs such as counts or averages of words, sentences
or specific parts of speech (adjectives, verbs, a.s.o)
to more complex statistics based on heuristics. All
HLFs share the characteristics of computational ease
and idempotence. This makes HLFs very attractive
because of their dual potential. On the one hand, an
LLM might be instructed using a prompt containing
the value of an HLF. An example prompt instruction
which asks the LLM to conform to a maximum sen-
tence count of 10 could be “write no more than 10
sentences”. On the other hand, HLFs can be computed
on the text output by an LLM, too. This dual nature of
HLFs allows inspecting how closely does LLM gen-
erated text conform to the goal outlined in the input
prompt HLF instruction.

Syntax differs from meaning (Chomsky, 2002) and
the intuition is that writing style is defined in terms
of both. The distinction is important in order to set
boundaries. HLFs are largely focused on syntax and
similarly orderly constructs. Therefore, we cover the
influence of meaning on author style minimally and
superficially at best.

This limitation should not deter readers because,
traditionally, linguistic style is centered around mor-
phological and syntactic arrangements (Lugea and
Walker, 2023). Although recent descriptions find se-
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mantics and pragmatics to be inextricably linked to
author style (Verma and Srinivasan, 2019), they too ar-
gue that a great deal can still be inferred from lexicon,
syntax and a ‘surface’ level which contains basic HLFs
such as the number of words in a sentence. Some have
observed that many characteristics of written text can
be computed as HLFs (Hovy, 1987; Lugea and Walker,
2023). Combining multiple HLFs that are revelatory
of linguistic style could provide us with an easily in-
terpretable and verifiable stylistic profile.

These are the strands of thought that have inspired
us to pursue two research questions in the age of
LLMs.

Firstly, is it possible to influence an LLM’s writ-
ing style by instructing it to generate text that com-
plies to certain HLFs? This problem of controlled
text generation has implications for text style transfer
and authorship verification. Answering this question
might point to cheaper, less intrusive and more user
friendly solutions than fine tuning large language mod-
els for these tasks. Fine tuning LLMs also incurs some
loss of generality (Yang et al., 2024), going directly
against the purpose of generic language models.

Secondly, we ask if it’s possible to quantify how
closely an LLM is able to follow prompts concern-
ing the compliance of the generated text to HLFs?
The answer to this question could hint at a relatively
simple and accurate way of evaluating the quality
of (partial) text style transfer using a large language
model.

2 RELATED WORK

Text style transfer reviews and surveys (Toshevska
and Gievska, 2022; Jin et al., 2022) were helpful for
informing our selection of HLFs. Studies on attaining
fine-grained text style transfer using language models
have served as inspiration (Lyu et al., 2023).

Linguistic style is the sum of identifiable language
choices manifest in a text made from the language
system by the text producer (Lugea and Walker, 2023).
Another way to think about it is that style is the form
used for delivering meaning (Hu et al., 2022). Opin-
ions seem to converge that style depends on context
and author choice vis-a-vis a communication goal (Mc-
Donald and Pustejovsky, 1985; Hovy, 1987). The
author’s choice is available at all linguistic levels, in-
cluding the morphological, lexical, syntactic, seman-
tic and pragmatic levels (DiMarco and Mah, 1994;
Lugea and Walker, 2023). The influence of syntactic
structure over text style is apparent from a formal per-
spective (Chomsky, 2002). Our selection of HLFs is
informed by the various aspects of linguistic style.

Constructing style from fine-grained aspects is not
new. The StylePTB authors explain this in detail with
respect to lexical, syntactic, semantic and thematic
aspects (Lyu et al., 2021). The dataset was useful for
understanding HLFs that function at the sentence level
and the interplay of HLFs.

The body of work on HLFs is extensive and well
referenced and synthesised by Lee and Lee (Lee and
Lee, 2023). To our knowledge there is no work that
connects HLFs with LLMs in the manner described
in this paper. HLFs are used in the context of other,
connected tasks such as assessing text readability (Lee
et al., 2021).

Our approach stands out through its simplicity and
focus. We propose engineering instruction prompts for
LLMs, a straightforward strategy distinct from com-
plex alternatives. With discussions on style transfer
or author verification beyond this paper’s scope, we
present a method for controlling LLM text generation
through the use of HLFs.

The presented experiment is one of controllable
text generation (CTG) (Zhang et al., 2023). Hightened
recent interest in CTG and especially in benchmark-
ing LLMs in the context of CTG (Chen et al., 2024)
is particularly relevant for this paper. This lessens
the burden of demonstrating how effectively LLMs re-
spond to varied instructions for general controlled text
generation. This paper differs from the existing CTG
work in its use of HLFs for writing the text generation
instructions. It additionally uses HLFs to measure the
performance of LLMs in terms of their ability to gen-
erate text that conforms to some chosen target HLF
values.

3 EXPERIMENT DESIGN

Our experiment aims to find out how well LLMs can
follow prompts which have instructions derived from
HLFs. Two scenarios are investigated.

The aim in the first scenario is to use an LLM to
reword an input text so that its style resembles the text
style of texts from a predetermined corpus of similarly
styled texts. In this scenario the LLM rewords the input
by following instructions which only contain HLFs.
The input text used for this scenario is necessarily from
outside the corpus.

The second scenario is designed to show how much
bearing do instructions containing HLFs have on the
way LLMs generate text. The task of the LLM remains
the same as in the first scenario. However, examples
from the chosen corpus are added to the LLM prompt
which means the LLM rewords text aided by the ex-
amples. The second scenario has two variants because
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of this particularity. In the first variant, similarly to the
first scenario, the LLM rewords input from outside the
corpus. In the second variant of the second scenario
the LLM uses input text from within the corpus.

3.1 Process

We start by choosing experiment parameter values.
The following parameters have stable values through-
out the experiment process: a selection of HLFs, a
corpus containing texts, a target LLM, examples from
the chosen corpus, one input text from the chosen cor-
pus and one input text from outside the chosen corpus.

Once the parameters have been determined, HLF
statistics are computed on the text corpus. Remember-
ing that HLFs are just floating point numbers, the fol-
lowing statistics are computed for each HLF: min (the
minimum value), max (the maximum value) and
avg (the mean).

For each HLF, an instruction is constructed in nat-
ural language, adhering to the previously calculated
minimum, maximum, and mean values. For instance,
an instruction corresponding to the total word count
HLF might be expressed as follows:

- Total Words: ensure the text
contains 14 words (min=10, max=50).

The HLF instructions are used to build system
prompts for the LLM. The prompts are assembled
using Jinja2 (Projects, 2024) templates located in the
templates directory of the experiment’s source code.

The prompt templates correspond to each of
the two experiment scenarios: ‘prompt_1’ and
‘prompt_2’, respectively. The static instruction in
‘prompt_1’ to “Write text that conveys the meaning
of the first user prompt” ensures that input text mean-
ing is preserved. In addition to the primary directive
from ‘prompt_1’, ‘prompt_2’ contains instructions
concerning the interpretation of the provided exam-
ples, as well as logic to incorporate them. Both prompt
templates contain logic to distinguish between when
HLF instructions were given or not.

Baseline HLFs for the LLM output are computed
after the preliminary steps are completed. For the
first scenario, the LLM is instructed to reword the
input text 10 times by using ‘prompt_1’ without HLF
instructions. The HLFs in our selection are computed
for each LLM output, resulting in a 10-dimensional
vector for each HLF. These vectors are the baseline
HLFs for the LLM output in the first scenario.

The second scenario baseline HLFs are computed
similarly to the first scenario baselines, using the
‘prompt_2’ template and the examples provided as
an experiment parameter. Remembering that the sec-
ond scenario has two variants, we obtain two sets of

baseline vectors, one for each variant. Note that the
input from outside the corpus is the same as the input
for the first scenario, while the input from inside the
corpus is selected along with the corpus so that its
HLFs are close to the average HLFs of the corpus.

From here on we refer to the HLFs computed using
the above process as baselines. We have 3 sets of
baselines: 1 for the first scenario and 2 for the second
scenario.

For each set of baselines, we run 10 text genera-
tions using the corresponding prompt augmented with
the HLF instructions computed earlier in the process.
Doing this results in 3 sets of 10-dimensional vectors,
each corresponding to the baselines. We refer to these
vectors as HLF results.

Lastly, we compare baselines with their corre-
sponding HLF results for each HLF in our selection,
for each scenario and variant.

The comparison result for the first scenario indi-
cates whether LLMs acknowledge HLF instructions
at all. If they do, the HLF results should be signif-
icantly different from their baseline. Both variants
of the second scenario quantify how much HLF in-
structions influence text generation. The underlying
assumption is that LLMs are able to mimic examples
when they are provided in the system prompt. In such
a case, the presence of HLF instructions would remain
among the few possible explanations for deviations
from the baseline, especially when the baseline is al-
ready statistically close to the desired HLF values.

3.2 LLM Selection

The LLMs selected for the experiment must represent
the state of the art. The Chatbot Arena (Chiang et al.,
2024) leaderboard is essential in our selection based
on this criterion. To cover more ground we encourage
vendor diversity in our selection. The final selection is
available in Table 1.

Throughout the remainder of this paper, we will
reference individual LLMs by the ID assigned to each
one in Table 1.

3.3 HLF Selection

Our main focus is to understand how susceptible LLMs
are to prompts containing instructions to conform to
HLFs. In this experiment we use LFTK (Lee and
Lee, 2023), a framework built on top of spaCy (Honni-
bal et al., 2020) which provides implementations for
computing many HLFs. LFTK categorizes HLFs by
domain and family. We select HLFs based on their
domain and family from the catalog implemented by
LFTK, with the interest to make a diverse selection
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Table 1: Large Language Model Selection.

ID Name Parameters Context Size Elo Score License

gpt OpenAI GPT-4o undisclosed 128000 1287 Proprietary
gemini Google Gemini 1.5 Pro undisclosed 1048576 1268 Proprietary
claude3 Anthropic Claude 3 Opus undisclosed 200000 1248 Proprietary
llama3_70b Meta Llama 3-70B 70 Billion 8000 1208 Llama 3 Community
command_r Cohere Command R+ 104 Billion 128000 1189 CC-BY-NC 4.0

with Acceptable Use
Addendum

with respect to both these attributes. Besides the do-
main and family, we also choose features based on the
level1 at which they influence text style as recognized
in literature (Verma and Srinivasan, 2019; Lugea and
Walker, 2023).

The instructions for each HLF are specifically
crafted using natural language. The resulting instruc-
tions can be catalogued on the concrete-abstract spec-
trum. For example, ‘write 100 words’ is a more con-
crete instruction than ‘write as if you were in junior
highschool’. We divide HLFs in five categories rang-
ing from very concrete to highly abstract and choose 2
features from each category.

Table 2 showcases our HLF selection. The LFTK
ID is used throughout tables and figures to refer to a
specific HLF.

3.4 Corpus Selection

A corpus of texts is required to perform the experiment.
We have conducted the experiment using corpora de-
rived idempotently from the datasets listed in Table 3.

The main criteria for choosing these datasets were
the difference in style between the texts contained in
one corpus versus the other and the similarity in style
between the texts from the same corpus.

The datasets are available in the Huggingface
ecosystem (Lhoest et al., 2021). Yelp reviews are
loaded from Yelp/yelp_review_full, while CNN
stories are loaded from abisee/cnn_dailymail.

The Yelp review data set provides a diverse as-
sortment of reviews from online users. The authors
employ a casual writing style, very similar to the writ-
ing style of an average person. We construct a corpus
containing the first 1000 reviews from the test split of
this dataset.

CNN/DailyMail contains stories and news with
diverse styles. The style follows the publisher’s guide-
lines, but, within those guidelines, it varies slightly for
each author. The articles are more formal, longer and

1the notion of style level is described in (Lugea and
Walker, 2023), chapter 1, page 7

more complex in structure than Yelp reviews which
makes this dataset a good alternative. The corpus that
is based on this dataset contains the first 1000 CNN
articles from the test split of the dataset.

3.5 Input Text Choice

The experiment involves using input text from both
outside the corpus and from within it.

An input text from within each corpus is chosen
so that it exhibits the closest HLFs to the averages
computed on the corpus. The inputs are chosen from
the corpora when the corpora are selected and are
stable throughout all experimental evaluations.

External input text is chosen in relation to each
corpus. The chosen texts are located in the data folder
of the experiment’s source code.

The text external to the CNN article corpus is an
extract from the classic The Life and Opinions of Tris-
tram Shandy, Gentleman, by Laurence Sterne (Sterne
et al., 2003). The text style is not similar to the style
of news articles at all. Our selected HLFs are also very
different from the average values computed for the
CNN article corpus. A text that is similarly divorced
from the style and HLFs of most Yelp reviews is Oscar
Wilde’s Sonnet to Liberty (Wilde, 1909). Both texts are
in the public domain and were obtained from Project
Gutenberg (Hart, nd).

Choosing input texts that are vastly different from
their corresponding corpus is based in the assumption
that LLMs would generate baseline results that do not
conform to the HLF statistics on that corpus.

4 EXPERIMENT RESULTS

4.1 Interpretation Conventions

HLFs are real numbers derived from text. Plot figures
show the HLF on the vertical axis and the text gen-
eration trial number on the horizontal axis. We plot
the baseline using a continuous grey line and the HLF
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Table 2: Handcrafted Linguistic Features.

LFTK ID Name Family Domain Abstraction Style Level

t_word total words wordsent surface very concrete lexical
t_sent total sentences wordsent surface very concrete syntactic
n_uverb total number of unique verbs partofspeech syntax concrete syntactic
n_uadj total number of unique adjectives partofspeech syntax concrete syntactic
simp_ttr simple type token ratio typetokenratio lexico-semantics regular pragmatic
a_verb_pw number of verbs per word partofspeech surface regular syntactic
corr_adj_var corrected adjective variation lexicalvariation lexico-semantics abstract lexical
corr_verb_var corrected verb variation lexicalvariation lexico-semantics abstract lexical
fkgl Flesch-Kincaid grade level readformula surface highly abstract pragmatic
a_kup_pw Kuperman age of acquisition worddiff lexico-semantics highly abstract lexical

Table 3: Source Datasets.

Name Task Number of Samples Content Type Reference License

Yelp Reviews Sentiment Classification 50000 Reviews (Zhang et al., 2015) Yelp Dataset
(test split) Text Style Transfer License Agreement

Text Classification

CNN / DailyMail Summarization 11490 News (Hermann et al., 2015) Apache 2.0
(test split) Question Answering Stories (See et al., 2017)

Text Generation

result using a continuous grenat line. The minimum
and maximum HLF on the corpus are plotted using
dotted black lines. A continuous black line designates
the average HLF on the corpus. We refer to the corpus
average as the target because the LLM is instructed to
generate text that primarily conforms to this value.

Result tables present an overview over an experi-
ment scenario variant. Firstly, they display significant
differences between baselines and HLF results. Sec-
ondly, they reveal the relative closeness of the baseline
and HLF results to the target average. Bold text rep-
resents significant differences between the baseline
and HLF results. Underlined text marks HLF results
that are closer to the target than the baseline. Italic
text marks HLF results that are further away than the
baseline to the target.

4.2 Measurements

Because HLFs are just real numbers highlighting char-
acteristics of text, they can be used for setting goals to
aim for (‘write a 100 word paragraph’) and for describ-
ing text attributes (‘this paragraph has 100 words’).
In our experiments we set goals for the chosen LLMs
using instruction prompts and compute the correspond-
ing HLFs on the generated text in order to measure
LLM efficacy.

As outlined in Subsection 3.1, our experiment com-
pares a baseline with the corresponding HLF results.
Remember that in the context of a scenario variant,
both the baseline and the HLF results for a specific

HLF are vectors containing 10 real numbers.
The Kolmogorov-Smirnov test (Kolmogorov,

1933; Smirnov, 1939) is useful for determining
whether the baseline and HLF results vectors differ
significantly. We use the Scipy (Virtanen et al., 2020)
implementation of the test. In our experiment, the vec-
tors are significantly different for a p_value ≤ 0.05.

For each HLF, the target HLF value is repeated 10
times to construct a vector which is compatible with
the baselines and HLF results. This allows us to com-
pute the Euclidian norm of the vectorial difference
between the baselines and HLF results on one hand
and the target vector, on the other. A similar compu-
tation can be performed based on the area between
each of the vectors and the target. Because the area
measurements are correlated with the Euclidian norm,
we present results using only the Euclidian norm.

Note that each HLF can have a different range of
values than other HLFs. While computing the Euclid-
ian norm using Numpy (Harris et al., 2020), we use
the raw values of each HLF, without preprocessing.
Therefore the norm computed for one HLF does not
imply anything in relation to another HLF or LLM.

Let us denote with Nb and Nh the Euclidian norms
for the baseline and the HLF results, respectively. We
denote the difference between the norms with Di f fN =
Nb −Nh.

The result tables show Di f fN for each LLM in the
context of a prompt and a text corpus. The paper is
focused on some key results observed on the CNN
article corpus. Additional results are available online.
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4.3 HLF Instruction Impact

Table 4 shows that LLMs take into account HLF in-
structions when running the experiment. On the CNN
article corpus, the HLF instructions lead to HLF re-
sults that are closer than the baseline to the target HLF.
On the Yelp dataset, the HLF instructions generate
results that are further away than the baseline from the
target HLF.

Figure 1 shows a positive result, where the result
obtained with the aid of HLF instructions is closer to
the target. Figure 2 shows a negative result, where
the baseline is closer to the target. Figure 3 shows an
inconclusive result.

4.4 HLF Instructions and Context
Awareness

The second scenario of our experiment uses examples
to allow the LLM to generate better baselines. As
pointed out at the end of Subsection 3.1, we assume
that the difference we measure between baselines and
HLF results is due to the HLF instructions in the sys-
tem prompt.

The first variant of the second scenario involves
using input text from outside the corpus. Table 5 con-
tains the measurements we obtained in this context.
We notice the HLF results tend to be closer to the tar-
get than the baseline results. In terms of significance
and efficacy of the HLF instructions, the results are
similar to the ones obtained in the first scenario.

We should note that there are fewer significant
differences between baseline and HLF results. This
seems to validate our assumption that using examples
in the system prompt causes the baselines to be closer
to the target HLF value.

There are exceptions to the general trend observed
for the first scenario. One such exception is high-
lighted in Figure 4. In figs. 5 and 6 we even observe
regressions in performance with significant differences
between baseline and result. Even so, these are excep-
tions and the results obtained in our first scenario are
largely confirmed on the CNN article corpus.

Finally, the second variant of the second scenario
investigates the suggestion power of HLF instructions.
By using input from the corpus, the LLM should pro-
duce baselines that comply even more to the target
HLFs statistics computed on the corpus. We expect
fewer significant differences between baselines and
HLF results. Additionally, HLF results should be
closer to the target than in our previous observations.

The results shown in Table 6 contradict these ex-
pectations. The most surprising behaviour is exhib-
ited for HLFs which are derived into more concrete

generation instructions, such as the total number of
words (Figure 8). Additionally, we notice regressive
behaviour for some models compared to the previously
explored results in Figure 7. Finally, we notice that
the abstractness of the text generation instructions for
certain HLFs leads to non-compliance in Figure 9.

The overall sentiment, taking into account the ad-
ditional results obtained on the Yelp dataset, is that
LLMs do not take much advantage of the examples
from text corpora, nor of the input from the corpora
for the tasks performed in this experiment.

5 DISCUSSION

In terms of our first question — whether HLF instruc-
tions impact an LLM’s writing, the response is affir-
mative. Not all LLMs are equally susceptible to HLF
instructions, though. The experiment design involves
choices that rely on the presence of a corpus and the
usage of a fixed external input text. This is relevant
as evidentiated by the difference in HLF results ob-
tained using the Yelp reviews corpus when compared
to the HLF results obtained on the CNN article cor-
pus. While similarly significant, the HLF results on
Yelp reviews are mostly worse than their correspond-
ing baselines failing to confirm the positive impact of
HLF instructions.

The impact HLF instructions have on LLM output
is limited. Our metrics do not show a consistent de-
sired impact on the LLM output either. There isn’t
conclusive evidence that if we improve the LLM’s
chances of producing a better baseline, this will result
in closer HLF results to the desired target values. In
fact, there is some evidence that HLF instructions have
an adverse effect when examining the HLF results ob-
tained on the Yelp reviews dataset. This is especially
true of highly abstract HLF instructions.

The choice of input text in relation to the target
HLF values is consequential. LLMs don’t yet seem
able to cover the gulf between Oscar Wilde poems and
the average Yelp review in terms of linguistic features.
We surmise that even if LLMs are able to generate text
that complies to certain target HLFs, there is a limit to
this ability.

6 LIMITATIONS AND FUTURE
WORK

Other experiments are required to better understand the
capabilities of large language models with regard to
HLFs. The selection of language models, the reliance
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Table 4: Di f fN on the CNN-DailyMail corpus. Scenario 1.

model t_word t_sent n_uverb n_uadj simp_ttr a_verb_pw corr_adj_var corr_verb_var fkgl a_kup_pw

claude3 623.16 24.74 51.18 26.68 0.06 -0.0 0.46 1.4 1.44 -1.66

gemini 985.86 34.52 100.36 53.39 0.52 0.05 2.62 4.68 -4.17 -2.43

gpt 125.87 1.46 10.95 10.77 0.02 -0.01 0.71 0.81 -1.72 0.43

command_r 1024.78 39.67 81.58 41.46 0.46 0.03 2.67 3.78 1.4 0.14

llama3_70b 459.45 17.78 36.5 19.75 0.12 0.03 1.43 2.18 1.5 -0.06

Figure 1: Command-R+ t_word. CNN-
DailyMail, Scenario 1.

Figure 2: GPT fkgl. CNN-
DailyMail, Scenario 1.

Figure 3: Claude3 a_verb_pw. CNN-
DailyMail, Scenario 1.

Table 5: Di f fN on the CNN-DailyMail corpus. Scenario 2, Input Outside Corpus.

model t_word t_sent n_uverb n_uadj simp_ttr a_verb_pw corr_adj_var corr_verb_var fkgl a_kup_pw

claude3 718.49 24.13 44.43 23.43 0.4 0.03 0.94 0.77 1.2 0.07

gemini 785.6 25.8 60.5 41.6 0.41 0.05 1.95 2.67 -4.62 -1.94

gpt 47.8 5.18 6.13 -0.13 0.02 0.0 0.05 0.3 3.06 -0.27

command_r 263.51 5.35 25.08 17.37 -0.09 -0.01 1.74 1.42 10.46 1.56

llama3_70b 376.0 15.63 38.63 15.74 0.24 0.06 1.69 2.91 0.31 -0.3

Figure 4: GPT t_word. CNN-DailyMail,
Scenario 2, Input Outside Corpus.

Figure 5: Command-R+ simp_ttr.
CNN-DailyMail, Scenario 2, Input Out-
side Corpus.

Figure 6: Gemini a_kup_pw. CNN-
DailyMail, Scenario 2, Input Outside
Corpus.

Figure 7: Claude3 n_uadj. CNN-
DailyMail, Scenario 2, Input Inside Cor-
pus.

Figure 8: Gemini t_word. CNN-
DailyMail, Scenario 2, Input Inside Cor-
pus.

Figure 9: Llama3 a_kup_pw. CNN-
DailyMail, Scenario 2, Input Inside Cor-
pus.

on a corpus for computing target linguistic features,
the fixed choice of input text and not least of all the
wording of the system prompts are all limitations of
the current approach.

Making different experiment design choices in all
these respects might yield more positive and more
powerful results. Using a selection of HLFs and not
individually analysing the behaviour of the LLM un-
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Table 6: Di f fN on CNN-DailyMail. Scenario 2, Input Inside Corpus.

model t_word t_sent n_uverb n_uadj simp_ttr a_verb_pw corr_adj_var corr_verb_var fkgl a_kup_pw

claude3 871.02 34.2 34.48 -7.38 0.27 0.01 -0.93 -0.72 1.16 -0.14

gemini 1315.41 46.19 114.47 72.38 1.17 0.03 5.25 6.64 -1.6 -2.1

gpt 521.29 23.3 43.13 19.85 0.2 0.02 1.08 1.04 5.09 0.67

command_r 371.08 13.31 22.06 17.19 0.17 0.02 0.88 1.09 4.05 -0.15

llama3_70b 1040.85 41.99 80.58 49.12 0.55 0.04 3.99 5.05 7.18 -1.94

der the influence of each individual HLF is another
limiting choice that invites to future work on the alter-
native.

7 CONCLUSIONS

We designed an experiment that tries to understand
whether it is possible to generate text that exhibits
certain linguistic features by instructing a large lan-
guage model. It turns out state of the art large language
models are receptive to instructions regarding the lin-
guistic features of the output. This is especially true
for concrete instructions.

However, the outcomes are not always good. From
a pragmatic standpoint, prompt engineering and a care-
ful choice of language features and input text seem
like the way to obtain desirable results. Providing ex-
amples in the input prompt does not seem to influence
the HLFs of the LLM output in the expected man-
ner. Rewording text which already exhibits the desired
linguistic features can have adverse effects, too.

Finally, we’ve seen how we might use handcrafted
linguistic features to assess LLM output. Setting up
“before and after” scenarios to evaluate relative im-
provements of the LLM outcome in relation to the
selected HLFs is one way to achieve this. With enough
measurements, the relative difference between base-
lines and target HLFs can be quantified using geomet-
ric or statistical means.
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