
Guidelines for the Application of Event Driven Architecture in Micro
Services with High Volume of Data

Marcus V. S. Silva a, Luiz F. C. dos Santos b, Michel S. Soares c and Fabio Gomes Rocha d

Federal University of Sergipe, Av. Mal. Cândido Rondon, Rosa Elze, 1861 - São Cristóvão, Sergipe, Brazil

Keywords: Event-Driven Architecture (EDA), Microservices, Scalability, Responsiveness, Decoupling, Real-Time
Processing, State Management, Software Architecture.

Abstract: Event-Driven architecture (EDA) has proven itself as a transformative strategy within microservices, cele-
brated for its role in enabling scalable, responsive, and decoupled interactions among system components.
This paper draws on insights from diverse domains such as e-commerce, healthcare, IoT, and data processing
to showcase how EDA can revolutionize system agility and responsiveness, particularly under high commu-
nication loads and real-time processing demands. We underscore EDA’s effectiveness in optimizing critical
processes like order management, payment processing, and real-time anomaly detection through 13 case stud-
ies. These enhancements not only boost operational efficiency but also foster more informed decision-making.
Moreover, the burgeoning interest in applying EDA to complex systems that necessitate dynamic adaptation
to environmental changes, such as climate risk management and intelligent manufacturing, underscores its
potential. However, adopting EDA is not without its challenges, particularly in state management, consis-
tency, and testing, which necessitate further exploration. This paper contributes to the discourse on EDA by
reviewing its current state, challenges, and future directions, offering a comprehensive perspective on its role
and potential in modern software architecture.

1 INTRODUCTION

EDA has emerged as an essential approach in de-
veloping distributed systems, especially in contexts
where agility and flexibility are crucial for organi-
zational competitiveness. As application complex-
ity grows and the demand for scalable solutions
increases, EDA provides a resilient framework for
building systems responsive to dynamic events. EDA
enables different system components to communicate
asynchronously, fostering a smoother and more reac-
tive interaction between microservices.

EDA has proven to be indispensable in the e-
commerce sector (Gördesli and Varol, 2022) due to
the need for continuous communication among mi-
croservices, including order processing, payments,
and inventory control, which rely on dynamic event
exchanges. EDA significantly enhances operational
efficiency and enables more effective information

a https://orcid.org/0009-0000-9211-5259
b https://orcid.org/0000-0003-4538-5410
c https://orcid.org/0000-0002-7193-5087
d https://orcid.org/0000-0002-0512-5406

flow management, a critical factor in maintaining
competitiveness in a constantly evolving market.
Considering the transition from monolithic applica-
tions to microservice architectures, EDA has been
widely adopted, as it simplifies migration and pro-
vides an organized, scalable framework for intensive
microservice communication.

2 EVENT-DRIVEN
ARCHITECTURE

EDA has emerged as one of the leading approaches
for developing distributed systems, especially those
that require high scalability, flexibility, and real-time
responsiveness (Figueira and Coutinho, 2024). EDA
is based on asynchronous communication between
system components through the production, detec-
tion, and consumption of events, which allows for
constructing more decoupled and reactive systems
(Laigner et al., 2021b). Monolithic architectures face
challenges related to scalability and maintenance dif-
ficulty because their components are tightly coupled

Silva, M. V. S., Santos, L. F. C., Soares, M. S. and Rocha, F. G.
Guidelines for the Application of Event Driven Architecture in Micro Services with High Volume of Data.
DOI: 10.5220/0013348600003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 859-866
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

859



(Laigner et al., 2020), and any change in one part
of the system may require modifications in other ar-
eas. EDA offers a solution to these problems, allow-
ing components to be decoupled and scaled indepen-
dently.

EDA’s principal characteristic is that systems
based on this model can react to real-time events,
which is particularly relevant in scenarios such as
large-scale data processing, the Internet of Things
(IoT), and financial applications. For instance, in a
payment system, the completion of a transaction can
be treated as an event, triggering different services
without waiting for synchronous responses. This con-
duct reduces latency and improves user experience in
applications requiring fast responses.

However, despite its many benefits, EDA presents
challenges that must be carefully managed, such as
data consistency in distributed systems and the com-
plexity of state management. The asynchronous na-
ture of EDA can make it challenging to ensure that
all events are processed correctly and that systems
maintain consistency during failures. Monitoring and
tracking real-time events also adds complexity to im-
plementation and maintenance.

3 RELATED WORK

The cost analysis associated with EDA is also an im-
portant focus, as discussed by (Cabane and Farias,
2024), who conducted a comparative study to under-
stand the financial impacts of this approach in dif-
ferent scenarios (Cabane and Farias, 2024). Further-
more, data management in microservices, including
challenges and research directions, is explored by
(Laigner et al., 2021b), providing valuable insights
into how to deal with the complexity of data in event-
driven architectures.

(Kniazhyk and Muliarevych, 2022) discuss the
benefits and challenges of EDA in the context of cloud
computing, highlighting future research directions in
this area and suggesting the need for a deeper un-
derstanding of practical implementations (Raj et al.,
2022). Additionally, the integration of static and dy-
namic data in a hybrid traceability model, as pre-
sented by (Kuhn et al., 2022), is an example of how
EDA can be applied to improve transparency and
traceability in complex processes.

The development of adaptive microservices, dis-
cussed by (Figueira and Coutinho, 2024), emphasizes
the importance of adaptability in event-driven sys-
tems, aligning with the need for flexibility in produc-
tion environments (Giovanni and Manuaba, 2022).
On the other hand, (Henning and Hasselbring, 2021)

analyze performance of distributed stream processing
mechanisms, presenting benchmarks that can guide
developers in choosing the right tools for their appli-
cations.

4 METHODOLOGY

This article aims to characterize, in a structured way,
from a broad perspective, a guideline for EDA. A sys-
tematic mapping has been chosen as the research in-
strument to achieve this. A systematic mapping is a
comprehensive and rigorous review of a research field
or topic, allowing a broad view of the paths taken
and their respective gaps (Keele et al., 2007). The
systematic mapping presented in this article follows
the guidelines of Kitchenham and Charters (Petersen
et al., 2008) and is divided into three phases: plan-
ning, execution, and finally, communicating the re-
sults. First, the topic to be researched was defined.
Next, the applied methodology and the selection of
databases where the articles were searched were de-
tailed. Questions to be answered by this study and the
research chain related to the topic were prepared, all
using a tool named Parsifal (Parsifal, 2024).

A detailed protocol was followed to classify the
articles, ensuring the study’s transparency and repro-
ducibility. This protocol included the following steps:

• Definition of Inclusion and Exclusion Criteria

• Article selection

• Classification and Analysis of Articles

• Definition of research questions

• Number of publications per year

Articles that addressed EDA, even partially, were
included as part of the inclusion criteria. For the
exclusion criteria, duplicate articles, abstracts or ex-
panded summaries, non-English articles, those not
discussing EDA, and secondary studies were re-
moved, as shown in Table 1.

A search was conducted using the terms
(‘‘eda’’ OR ‘‘event-driven architecture’’
OR ‘‘eventual architecture’’) AND
(‘‘microservices’’ OR ‘‘faas’’ OR
‘‘function as a service’’ OR ‘‘msa’’
OR ‘‘nanoservice’’ OR ‘‘nanoservices’’),

Table 1: Criteria.

Inclusion Articles that deal with EDA

Exclusion

Duplicate articles
Articles published as abstracts or expanded summaries
Articles that are not written in English
Articles that do not discuss EDA
Secondary studies

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

860



Figure 1: Selection of Articles.

without time restrictions, in the ACM, IEEE, Web
of Science, ScienceDirect, and Scopus databases on
August 3, 2024. These selected databases are hy-
brid, serving as both search engines and bibliometric
databases, and are widely adopted in studies to ensure
comprehensive coverage for systematic reviews, as
noted in (Pan et al., 2022). A total of 257 relevant
articles were identified that addressed, even partially,
the concept of Event-Driven Architecture.

After removing duplicates and applying the inclu-
sion and exclusion criteria, 47 duplicate articles were
eliminated, resulting in 222 articles for verification.
Of these, 62 were considered relevant, as they ad-
dressed event-driven architecture in their titles and ab-
stracts, meeting the study requirements. Meanwhile,
the remaining 160 were excluded for failing to meet
the established criteria, as shown in Figure 1. In the
stages of this study, articles that met the inclusion
and exclusion criteria were analyzed to find answers
to the questions, using structured questions that can
guide future research sequences and evaluate the re-
search process (Kitchenham and Brereton, 2013), as
described in Table 1.

The annual increase between 2019-2022 in the
number of articles on event-driven architecture, re-
flecting this approach’s growing interest and adop-
tion. These publication trends provide insights into
the evolution and maturity of event-driven architec-
ture practices, highlighting the development of aca-
demic and practical interest in this topic. This in-
formation is essential as it allows the identification
of research trends, the measurement of the growth in
adopting this technology and the understanding of pe-
riods of significant development and innovation. Fur-
thermore, it helps recognize the increasing relevance
of the topic in the developer and researcher commu-
nities, providing a foundation for future investigations
and improvements in the field.

5 RESULTS

Each research question was thoroughly examined to
extract significant insights into the benefits, chal-
lenges, and trends of this architecture. Findings were

divided into subthemes to facilitate understanding and
visualization of the information. In each subtheme,
answers to the specific questions are presented.

5.1 RQ1. What Are the Benefits of
Using Event-Driven Architecture?

EDA offers several benefits for building distributed
systems and microservices, promoting scalability,
modularity, and flexibility in various contexts. One
of the main benefits of EDA is scalability, allow-
ing services to scale independently according to de-
mand (Laigner et al., 2021a) and facilitating the effi-
cient processing of large volumes of data (Pour et al.,
2023). Modularity and decoupling enable new ser-
vices to be integrated into the system without signif-
icantly impacting the existing environment (Laigner
et al., 2021a).

The flexibility of EDA is reflected in the possibil-
ity of using different technology stacks for each ser-
vice (Ren et al., 2018), as well as the independence of
updates, allowing each service to be updated indepen-
dently without affecting the entire system (Dinh-Tuan
et al., 2020).

Therefore, adopting EDA facilitates the creation
of highly scalable, flexible, and robust systems with
lower maintenance complexity and the ability to han-
dle large volumes of real-time data.

5.2 RQ2. How to Identify if One Can
Use Event-Driven Architecture?

To determine if Event-Driven Architecture (EDA) is
suitable for a solution, it is essential to assess the spe-
cific requirements and characteristics of the system
in question. EDA is often employed when there is
a need for reactivity to events, distributed process-
ing, and interactions between different system com-
ponents. One study suggests that systems requiring
real-time response to events and strict event-based
data processing requirements are ideal candidates for
EDA (Laigner et al., 2021a). Similarly, systems fac-
ing performance bottlenecks in specific modules can
benefit from migrating to an event-driven architecture
(Ren et al., 2018).

Guidelines for the Application of Event Driven Architecture in Micro Services with High Volume of Data

861



Table 2: Research Questions and Justifications.

Question
Number

Question Text Justification

Q1 What are the benefits of using the Event-Driven Architecture model? To assess the immediate benefits that this ar-
chitectural model brings.

Q2 How to identify if Event-Driven Architecture can be used in your solution? To evaluate possible scenarios already known
by the community and assist in decision-
making.

Q3 What is the impact of using this architectural model in an unsuitable con-
text?

To identify possible impacts of incorrect
decision-making.

Q4 Do engineers have a guideline for selecting Event-Driven Architecture to-
day?

To assess best practices and strategies to op-
timize the development process.

Q5 What are the main challenges when using this architectural model? To demonstrate added value to stakeholders.
Q6 In terms of cost, does this architectural model have any significant impact? To identify possible factors that increase the

cost of this architectural model.
Q7 What are the challenges and solutions to ensure data security and privacy in

Event-Driven Architecture-based systems?
To identify challenges in implementing this
architectural model.

Q8 In which scenario was Event-Driven Architecture used? To identify contexts and scenarios where this
architectural model has been applied.

Table 3: Articles Per Source.

Source Percentage

ACM Digital Library 49%
Web Of Science 14%
Scopus 18%
Science Direct 9%
IEEE 10%

EDA also excels in solutions that require dis-
tributed processing and interactions among multiple
components, ensuring that communication between
them is efficient and scalable (Khalloof et al., 2018).
In applications demanding low latency, parallel exe-
cution, and real-time responses to large volumes of
data, EDA can be successfully utilized to optimize
microservices, as shown in the application of EDA for
OLDI microservices with very low latencies (Sicari
et al., 2023).

Finally, in big data solutions, such as processing
large volumes of data generated by autonomous vehi-
cles, EDA provides a practical framework for manag-
ing real-time data streams (Zhelev and Rozeva, 2019).

5.3 RQ3. What Is the Impact of Using
EDA in an Unsuitable Context?

When applying the EDA in unsuitable contexts, sev-
eral negative impacts can arise, such as increased
complexity, maintenance difficulties, and perfor-
mance inefficiencies. First, when EDA is used in
systems that do not require high scalability or in sce-
narios where asynchronous communication is not es-
sential, it can introduce unnecessary challenges. For
instance, (Ren et al., 2018) points out that, in small
systems, using EDA can generate unnecessary over-
head, particularly regarding communication Between
services and network latency, (Laigner et al., 2021a)
emphasizes that coordinating microservices can lead
to data consistency issues and challenges in synchro-

nization and validation across services, further in-
creasing system complexity.

Finally, implementing EDA in unsuitable contexts
can directly impact the scalability and security of the
system. According to (Romanov et al., 2022), in
contexts where events are not predominant or syn-
chronous communication is preferred, EDA can in-
crease latency, hinder maintenance, and result in more
significant infrastructure costs without providing pro-
portional benefits to the system. According to (Hen-
ning and Hasselbring, 2021), applying EDA in sce-
narios where events are not central to the system re-
quirements can lead to scalability difficulties and in-
creased operational costs.

5.4 RQ4. Do Engineers Have any
Guidelines for Selecting
Event-Driven Architecture Today?

According to (Ren et al., 2018), engineers should con-
sider systems that require scalability, component au-
tonomy, and real-time response as potential candi-
dates for implementing EDA. Additionally, (Khalloof
et al., 2018) highlights the need for scalability, par-
allel execution, and asynchronous communication as
determining factors for using EDA.

On the other hand, (Pour et al., 2023) mentions
that EDA is particularly useful in systems dealing
with large volumes of real-time data, such as in ex-
treme weather events. Additionally, (Singh et al.,
2022) reinforces the use of EDA in scenarios involv-
ing high scalability, real-time event processing, and
service decoupling.

Moreover,(Tovarnitchi, 2019) suggests that using
a broker, such as RabbitMQ or Kafka, can be an effec-
tive strategy, especially in microservice architectures
requiring high availability and parallel processing.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

862



Table 4: Benefits of Event-Driven Architecture (EDA).

Benefit Description Reference

Scalability EDA allows for the independent scalability of services, en-
abling each microservice to be adjusted according to de-
mand.

(Henning and Hasselbring, 2021),
(Laigner et al., 2020), (Zhelev and
Rozeva, 2019), (Raj et al., 2022),
(Garcı́a and Anglin, 2020), (Rahmat-
ulloh et al., 2022), (Zuki et al., 2024).

Decoupling Facilitates decoupling between services, promoting a modu-
lar architecture that simplifies system maintenance and evo-
lution.

(Laigner et al., 2021b), (Figueira and
Coutinho, 2024), (Aksakalli et al.,
2021), (Laigner et al., 2020), (Garcı́a
and Anglin, 2020), (Wöhrer et al.,
2021)

Flexibility Supports multiple technology stacks in different services,
allowing updates and changes without impacting the entire
system.

(Figueira and Coutinho, 2024), (Pan
et al., 2022), (Singjai et al., 2021),
(Mathew et al., 2024), (Alulema
et al., 2023), (Laigner et al., 2020),
(Garcı́a and Anglin, 2020)

Reactivity Facilitates real-time response to events, improving the sys-
tem’s ability to react quickly to environmental changes.

(Medeiros, 2016), (Vangala et al.,
2022), (10., 2021), (Tovarnitchi,
2019)

Resilience The architecture continues operating even with individual
microservices failures, increasing fault tolerance and system
robustness.

(Hustad and Olsen, 2021), (Mon-
teiro et al., 2018), (Kuhn and Franke,
2020), (Liu and Buyya, 2020), (Wu
et al., 2022)

5.5 RQ5. What Are the Main
Challenges of Using this
Architectural Model?

One of the main challenges is synchronization and
validation between microservices, where data repli-
cation and fault tolerance are critical issues is cited
(Xie et al., 2023). The need to ensure that event-based
constraints are correctly applied is one of the points
highlighted by (Laigner et al., 2021a). The difficulty
of dealing with latency and the communication over-
head between services is also a recurring problem, as
described by (Ren et al., 2018).

Another challenge is state management, which re-
quires ensuring data consistency across multiple ser-
vices, particularly in distributed scenarios (Laigner
et al., 2021b). Additionally, event logging and track-
ing across different services can be complicated due
to the asynchronous nature of EDA, as indicated by
(Lin et al., 2021).

Finally, the challenge of ensuring data security in
transit, especially in distributed environments, is em-
phasized in (Chenouf and Aissaoui, 2022).

5.6 RQ6. In Terms of Cost, Does this
Architectural Model Have any
Significant Impact?

EDA significantly impacts distributed systems’ oper-
ational and implementation costs. First, the complex-
ity of synchronization, validation, and data replica-
tion between microservices can increase operational
costs, requiring careful management to avoid failures

and ensure proper system recovery (Kniazhyk and
Muliarevych, 2022). Additionally, migrating applica-
tions from a monolithic framework to microservices
can incur extra costs in managing communication and
latency between microservices and maintaining mul-
tiple instances.

Operational costs may be increased by the need
for dynamic adjustments in systems using EDA, re-
quiring an adaptable thread model and the ability to
respond quickly to changes in workload. In sce-
narios where scalability is crucial, such as applica-
tions requiring high-demand processing, EDA may
lead to higher initial costs due to the necessary infras-
tructure. Still, it can also provide long-term savings
by enabling more efficient reactivity and scalability
(Alulema et al., 2023).

In conclusion, while Event-Driven Architecture
may initially raise costs due to its complexity and the
need for robust infrastructure, scalability, efficiency,
and reactivity benefits can justify these long-term in-
vestments.

5.7 RQ7. What Are the Challenges and
Solutions for Ensuring Data
Security and Privacy in
Event-Driven Architecture-Based
Systems?

EDA presents several challenges concerning data se-
curity and privacy, mainly due to its distributed nature
and asynchronous communication between microser-
vices. The main challenges identified include the
transmission of sensitive data, the need for robust au-

Guidelines for the Application of Event Driven Architecture in Micro Services with High Volume of Data

863



thentication and authorization, and protection against
malicious events. Data transmission frequently oc-
curs between different microservices, increasing the
risk of vulnerabilities, as it is crucial to ensure that
unauthorized events do not compromise the integrity
of services (Singh et al., 2022).

Various solutions have been proposed in the liter-
ature to address these challenges. Implementing au-
thentication, authorization, encryption, and proper ac-
cess control mechanisms is essential for ensuring data
security (Laigner et al., 2021a). Encryption to protect
data in transit, coupled with continuous monitoring
and event auditing, is considered a best practice for
detecting suspicious behaviour and mitigating risks
(Romanov et al., 2022).

In summary, security and privacy in EDA-based
systems require a comprehensive approach that com-
bines robust security mechanisms with the implemen-
tation of continuous monitoring and auditing prac-
tices, thus ensuring the integrity and protection of data
throughout the entire lifecycle of the services.

5.8 RQ8. in What Scenarios Has
Event-Driven Architecture Been
Used?

EDA has been widely applied in various scenarios,
demonstrating its flexibility and effectiveness in dis-
tributed systems. One notable example is the e-
commerce context, where EDA facilitates interaction
between different microservices to process orders,
payments, and inventory updates asynchronously en-
abling systems to respond quickly to dynamic events,
improving user experience and operational efficiency.

Beyond e-commerce, EDA has been utilized in
scenarios optimizing latency for OLDI microservices
applications, where quick response is critical for
maintaining scalability under high processing loads
(Sicari et al., 2023) or logistics services how demon-
strated (Leveling et al., 2018). In IoT systems, EDA
enables real-time responses to events by promoting an
architecture that adapts to rapid changes in the envi-
ronment (Lin et al., 2021).

In the financial context, EDA is applied in pay-
ment services and transaction settlement, demonstrat-
ing its effectiveness in real-time information process-
ing (Vangala et al., 2022).

6 DISCUSSION

EDA has proven to be a practical and flexible ap-
proach to building modern systems, especially in en-

vironments where scalability and resilience are cru-
cial. The discussed benefits, such as scalability,
decoupling, flexibility, low latency, and reactivity,
demonstrate EDA’s ability to meet the dynamic de-
mands of contemporary applications. Additionally,
the architecture’s resilience is a crucial factor, as it al-
lows the system to continue operating even in the face
of failures in individual microservices, enhancing the
system’s robustness and reliability.

However, it is essential to highlight the need for
a deeper exploration of two critical aspects: costs
and security. Analyzing the costs associated with
implementing and maintaining EDA is fundamental
for organizations seeking to adopt this architecture.
The initial setup and training costs can often be high,
especially if the team is unfamiliar with EDA con-
cepts. Furthermore, operating multiple microservices
can result in additional expenses, such as communi-
cation costs between services and infrastructure man-
agement. Thus, a thorough evaluation of costs should
be a priority to ensure that the expected benefits out-
weigh the incurred expenses.

Security also represents a significant challenge in
adopting EDA. The distributed nature of microser-
vices increases the attack surface, making the sys-
tem more vulnerable to threats and cyberattacks, as
explored by (Molina et al., 2018).

To illustrate all the points discussed, Table 5 has
been created, summarizing the main benefits, chal-
lenges, and considerations related to EDA. This vi-
sual resource is a valuable tool to help stakeholders
better understand the complexity and nuances of this
architecture.

Table 5: Recommended Style Guide for EDA.

Aspect Technologies and Considerations

Database NoSQL: MongoDB; SQL: SQL Server, Ora-
cle, MySQL.

Application
Domains

IoT, Flight Simulation, Book Retail, Big Data,
E-commerce, Financial Systems.

Key Benefits Availability, Scalability, Elasticity, Small Ser-
vice Modularity.

Challenges Traceability, Observability, Rollback Process,
Data Consistency (Strong and Eventual), Saga
Patterns (Choreography and Orchestration),
Security.

Patterns CQRS, Event Sourcing.
Message Bro-
kers

Kafka, RabbitMQ, Service Bus.

7 CONCLUSIONS

EDA significantly evolves how software systems are
designed and implemented. As discussed, EDA en-
hances scalability and flexibility and promotes excel-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

864



lent decoupling between services, which is essential
for building modern and resilient applications. EDA
is particularly relevant in high-load scenarios and sys-
tems that require real-time responses, as evidenced by
research on microservices and distributed systems.

However, the adoption of EDA should be accom-
panied by a careful analysis of costs and security chal-
lenges. The costs associated with implementing EDA
can be high, especially in organizations needing more
microservices experience. Companies must conduct a
cost-benefit analysis before migrating to this architec-
ture, considering the initial costs and ongoing main-
tenance and operation expenses.

Furthermore, security is a critical aspect that re-
quires special attention. The distributed nature of
EDA can increase the vulnerability of systems to cy-
berattacks. Thus, organizations must establish ro-
bust security guidelines covering authentication, au-
thorization, and encryption to protect data and ensure
user privacy.

In summary, EDA is not just a technical solution
but a strategic approach that, when effectively imple-
mented, can provide significant competitive advan-
tages. However, organizations need to continue inves-
tigating EDA’s financial and security implications to
maximize benefits while minimizing associated risks.
Future research should focus on developing frame-
works and guidelines that help organizations navigate
cost and security issues, ensuring that EDA is a viable
and secure choice for software development.

REFERENCES

(2021). SCOPES ’21: Proceedings of the 24th International
Workshop on Software and Compilers for Embedded
Systems, New York, NY, USA. Association for Com-
puting Machinery.

Aksakalli, I. K., Çelik, T., Can, A. B., and Tekinerdoğan,
B. (2021). Deployment and communication patterns
in microservice architectures: A systematic literature
review. Journal of Systems and Software, 180:111014.

Alulema, D., Criado, J., Iribarne, L., Fernández-Garcı́a,
A. J., and Ayala, R. (2023). Si4iot: A methodology
based on models and services for the integration of
iot systems. Future Generation Computer Systems,
143:132–151.

Cabane, H. and Farias, K. (2024). On the impact of event-
driven architecture on performance: An exploratory
study. Future Generation Computer Systems, 153:52–
69.

Chenouf, M. A. and Aissaoui, M. (2022). An event-driven
architecture (eda) adapted to cloud-based hospital in-
formation systems (his). In Proceedings of Sixth In-
ternational Congress on Information and Communi-
cation Technology: ICICT 2021, London, Volume 1,
pages 651–659. Springer.

Dinh-Tuan, H., Mora-Martinez, M., Beierle, F., and
Garzon, S. R. (2020). Development frameworks
for microservice-based applications: Evaluation and
comparison. In Proceedings of the 2020 European
Symposium on Software Engineering, pages 12–20.

Figueira, J. and Coutinho, C. (2024). Developing self-
adaptive microservices. Procedia Computer Science,
232:264–273.

Garcı́a, M. M. and Anglin (2020). Learn Microservices with
Spring Boot. Springer.

Giovanni, E. D. and Manuaba, I. B. K. (2022). Event-driven
approach in microservices architecture for flight book-
ing simulation. ICIC Express Letters, 16(5):545–553.

Gördesli, M. and Varol, A. (2022). Comparing interservice
communications of microservices for e-commerce in-
dustry. In 2022 10th International Symposium on Dig-
ital Forensics and Security (ISDFS), pages 1–4. IEEE.

Henning, S. and Hasselbring, W. (2021). Theodolite: Scal-
ability benchmarking of distributed stream processing
engines in microservice architectures. Big Data Re-
search, 25:100209.

Hustad, E. and Olsen, D. H. (2021). Creating a sustainable
digital infrastructure: The role of service-oriented ar-
chitecture. Procedia Computer Science, 181:597–604.

Keele, S. et al. (2007). Guidelines for performing system-
atic literature reviews in software engineering. Tech-
nical report, Technical report, ver. 2.3 ebse technical
report. ebse.

Khalloof, H., Jakob, W., Liu, J., Braun, E., Shahoud, S.,
Duepmeier, C., and Hagenmeyer, V. (2018). A generic
distributed microservices and container based frame-
work for metaheuristic optimization. In Proceedings
of the genetic and evolutionary computation confer-
ence companion, pages 1363–1370.

Kitchenham, B. and Brereton, P. (2013). A systematic re-
view of systematic review process research in soft-
ware engineering. Information and software technol-
ogy, 55(12):2049–2075.

Kniazhyk, T. and Muliarevych, O. (2022). Cloud computing
with resource allocation based on ant colony optimiza-
tion. Advances in Cyber-Physical Systems, 8(2):104.

Kuhn, M. and Franke, J. (2020). Smart manufacturing trace-
ability for automotive e/e systems enabled by event-
driven microservice architecture. In 2020 IEEE 11th
International Conference on Mechanical and Intelli-
gent Manufacturing Technologies (ICMIMT), pages
142–148. IEEE.

Kuhn, M., Kaminski, E. T., and Franke, J. (2022). Track
and trace: Integrating static and dynamic data in a hy-
brid graph-based traceability model. Procedia CIRP,
112:250–255.

Laigner, R., Kalinowski, M., Diniz, P., Barros, L., Cassino,
C., Lemos, M., Arruda, D., Lifschitz, S., and Zhou, Y.
(2020). From a monolithic big data system to a mi-
croservices event-driven architecture. In 2020 46th
Euromicro conference on software engineering and
advanced applications (SEAA), pages 213–220. IEEE.

Laigner, R., Zhou, Y., and Salles, M. A. V. (2021a). A
distributed database system for event-based microser-
vices. In Proceedings of the 15th ACM International
Conference on Distributed and Event-based Systems,
pages 25–30.

Guidelines for the Application of Event Driven Architecture in Micro Services with High Volume of Data

865



Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., and Kali-
nowski, M. (2021b). Data management in microser-
vices: State of the practice, challenges, and research
directions. arXiv preprint arXiv:2103.00170.

Leveling, J., Weickhmann, L., Nissen, C., and Kirsch, C.
(2018). Event-driven architecture for sensor data in-
tegration for logistics services. In 2018 IEEE Inter-
national Conference on Industrial Engineering and
Engineering Management (IEEM), pages 536–540.
IEEE.

Lin, C., Khazaei, H., Walenstein, A., and Malton, A. (2021).
Autonomic security management for iot smart spaces.
ACM Transactions on Internet of Things, 2(4):1–20.

Liu, X. and Buyya, R. (2020). Resource management and
scheduling in distributed stream processing systems:
a taxonomy, review, and future directions. ACM Com-
puting Surveys (CSUR), 53(3):1–41.

Mathew, A., Andrikopoulos, V., Blaauw, F. J., and Karas-
toyanova, D. (2024). Pattern-based serverless data
processing pipelines for function-as-a-service orches-
tration systems. Future Generation Computer Sys-
tems, 154:87–100.

Medeiros, A. (2016). Dynamics of change: Why reactivity
matters: Tame the dynamics of change by centralizing
each concern in its own module. Queue, 14(3):68–82.

Molina, J. M., Garcı́a, J. F., and Jiménez, C. K. (2018).
Archer: An event-driven architecture for cyber-
physical systems. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Compan-
ion (UCC Companion), pages 335–340. IEEE.

Monteiro, D., Gadelha, R., Maia, P. H. M., Rocha, L. S., and
Mendonça, N. C. (2018). Beethoven: an event-driven
lightweight platform for microservice orchestration.
In Software Architecture: 12th European Conference
on Software Architecture, ECSA 2018, Madrid, Spain,
September 24–28, 2018, Proceedings 12, pages 191–
199. Springer.

Pan, G.-C., Liu, P., and Wu, J.-J. (2022). A cloud-native on-
line judge system. In 2022 IEEE 46th Annual Comput-
ers, Software, and Applications Conference (COMP-
SAC), pages 1293–1298. IEEE.

Parsifal (2024). Systematic literature review tool. https:
//parsif.al. Available at: https://parsif.al.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software en-
gineering. In 12th international conference on evalu-
ation and assessment in software engineering (EASE).
BCS Learning & Development.

Pour, S., Balouek, D., Masoumi, A., and Brynskov, M.
(2023). An urgent computing oriented architecture for
dynamic climate risk management framework. In Pro-
ceedings of the IEEE/ACM 16th International Confer-
ence on Utility and Cloud Computing, pages 1–4.

Rahmatulloh, A., Nugraha, F., Gunawan, R., and Dar-
mawan, I. (2022). Event-driven architecture to im-
prove performance and scalability in microservices-
based systems. In 2022 International Conference Ad-
vancement in Data Science, E-learning and Informa-
tion Systems (ICADEIS), pages 01–06. IEEE.

Raj, P., Vanga, S., and Chaudhary, A. (2022). Cloud-Native
Computing: How to Design, Develop, and Secure Mi-

croservices and Event-Driven Applications. John Wi-
ley & Sons.

Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J., and
Huang, T. (2018). Migrating web applications from
monolithic structure to microservices architecture. In
Proceedings of the 10th Asia-Pacific Symposium on
Internetware, pages 1–10.

Romanov, O., Mankivskyi, V., Saychenko, I., and
Nesterenko, M. (2022). Event model algorithm with
microservice architecture implementation. In 2022
IEEE 9th International Conference on Problems of
Infocommunications, Science and Technology (PIC
S&T), pages 561–566. IEEE.

Sicari, C., Balouek, D., Parashar, M., and Villari, M. (2023).
Event-driven faas workflows for enabling iot data pro-
cessing at the cloud edge continuum. In Proceedings
of the IEEE/ACM 16th International Conference on
Utility and Cloud Computing, pages 1–10.

Singh, A., Singh, V., Aggarwal, A., and Aggarwal, S.
(2022). Event driven architecture for message stream-
ing data driven microservices systems residing in dis-
tributed version control system. In 2022 International
Conference on Innovations in Science and Technology
for Sustainable Development (ICISTSD), pages 308–
312. IEEE.

Singjai, A., Zdun, U., Zimmermann, O., and Pautasso, C.
(2021). Patterns on deriving apis and their endpoints
from domain models. In Proceedings of the 26th
European Conference on Pattern Languages of Pro-
grams, pages 1–15.

Tovarnitchi, V. M. (2019). Designing distributed, scalable
and extensible system using reactive architectures. In
2019 22nd International Conference on Control Sys-
tems and Computer Science (CSCS), pages 484–488.
IEEE.

Vangala, S. R., Kasimani, B., and Mallidi, R. K. (2022). Mi-
croservices event driven and streaming architectural
approach for payments and trade settlement services.
In 2022 2nd International Conference on Intelligent
Technologies (CONIT), pages 1–6. IEEE.

Wöhrer, M., Zdun, U., and Rinderle-Ma, S. (2021). Ar-
chitecture design of blockchain-based applications.
In 2021 3rd Conference on Blockchain Research &
Applications for Innovative Networks and Services
(BRAINS), pages 173–180. IEEE.

Wu, C.-F., Ma, S.-P., Shau, A.-C., and Yeh, H.-W.
(2022). Testing for event-driven microservices based
on consumer-driven contracts and state models. In
2022 29th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 467–471. IEEE.

Xie, R., Yang, J., Li, J., and Wang, L. (2023). Impacttracer:
root cause localization in microservices based on fault
propagation modeling. In 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE),
pages 1–6. IEEE.

Zhelev, S. and Rozeva, A. (2019). Using microservices and
event driven architecture for big data stream process-
ing. In AIP Conference Proceedings, volume 2172.
AIP Publishing.

Zuki, S. Z. M., Mohamad, R., and Saadon, N. A. (2024).
Containerized event-driven microservice architecture.
Baghdad Science Journal, 21(2 (SI)):0584–0584.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

866


