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Abstract: Automatic video colorization has recently gained attention for its ability to adapt old movies for today’s mod-
ern entertainment industry. However, there is a significant challenge: limiting unnatural color hallucination.
Generative artificial intelligence often generates erroneous results, which in colorization manifests as unnat-
ural colorizations. In this work, we propose to ground our automatic video colorization system in relevant
exemplars by leveraging a face database, which we retrieve from using facial recognition technology. This
retrieved exemplar guides the colorization of the latent-diffusion-based speaker video colorizer. We dub our
system FRCol. We focus on speakers as humans have evolved to pay particular attention to certain aspects of
colorization, with human faces being one of them. We improve the previous state-of-the-art (SOTA) DeOldify
by an average of 13% on the standard metrics of PSNR, SSIM, FID, and FVD on the Grid and Lombard Grid
datasets. Our user study also consolidates these results where FRCol was preferred to contemporary colorizers
81% of the time.

1 INTRODUCTION

Colorization has a broad spectrum of applications,
whether reimagining nostalgic Hollywood classics
like Casablanca (Curtiz, 1942) to Psycho (Hitchcock,
1960), or simply feeling closer to one’s ancestors with
docuseries such as World War II in Colour (Martin,
2009). It has a vast potential to bring nostalgia and joy
to many people. If done poorly, it also has the power
to offend an audience and even distort history. There-
fore, colorization must be handled with care. How-
ever, this process can be tedious and expensive, re-
quiring massive attention to minute detail (Pierre and
Aujol, 2021).

To make colorization more accessible, automatic
colorization has been developed for both images and
videos. Automatic image colorization requires spa-
tial consistency throughout the frame, but there is no
need for temporal consistency, unlike automatic video
colorization. Many tools and techniques have been
created for video and image applications, with a rich
literature associated with both (Chen et al., 2022).
Some notable examples include histogram matching
(Liu and Zhang, 2012), Convolutional Neural Net-
work (CNN) (Zhang et al., 2016), Generative Ad-
versarial Network (GAN) (Kouzouglidis et al., 2019),
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Transformer (Weng et al., 2022) and Diffusion-based
(Saharia et al., 2022) systems.

One particular category of videos that we will
choose to pay particular attention to in this work is
speaker videos. We make this decision because hu-
man faces are important in everyday life. Humans
have evolved to pay special attention to faces over
millennia as they can transmit non-verbal information
from person to person (Erickson and Schulkin, 2003).
Therefore, if a colorization system is poor at coloriz-
ing faces, it will struggle to convince any human eval-
uator of its authenticity.

With this in mind, there exists a significant chal-
lenge with automatic video colorization: limiting un-
natural color hallucination (Zhao et al., 2024). As col-
orization is a poorly-constrained problem with multi-
ple plausible colorizations for any given colorization,
how do we guide the system to the “correct” output?
We propose to incorporate exemplar frames into the
colorization process. We suggest a facial recognition
algorithm to retrieve the most relevant exemplar from
a pre-populated exemplar frame database. We can
then use this pertinent exemplar to guide the coloriza-
tion process.

In addition to the massive increase in the capa-
bilities of automatic colorization due to deep learn-
ing and artificial intelligence, there has also been a
huge increase in the capabilities of the adjacent field
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Figure 1: Colorization of The Adventures of Sherlock Holmes (1984). The grayscale version is shown on the top, and the
FRCol colorization is shown on the bottom. The output has been upscaled with Topaz Labs.

of face recognition. Face recognition is the process
of matching a person’s identity to a reference im-
age stored in a database (Wang and Deng, 2021),(S,
2023). It has many applications, including fraud de-
tection (Choi and Kim, 2010), cyber security (Dod-
son et al., 2021), airport and border control (Sanchez
del Rio et al., 2016), banking (Jain et al., 2021) and
healthcare (Sardar et al., 2023). While this technol-
ogy has huge potential to benefit people’s lives posi-
tively, some associated challenges and concerns exist.
Some of the main issues with this technology have to
do with privacy and representation (Raji et al., 2020).
There may be issues around using personal informa-
tion, such as images of faces without consent, and the
systems being biased through the underrepresentation
of groups within the training sets. In recognition of
the advances in facial recognition technology, we pro-
pose to leverage it in our system to reduce the amount
of unnatural colorization that plagues automatic video
colorization. Summarizing the contributions of our
work:

• We propose a novel automatic speaker video col-
orization system augmented by exemplars re-
trieved using facial recognition technology called
FRCol.

• FRCol achieves state-of-the-art performance on
the automatic speaker video colorization task
across various datasets and metrics. Specifically,
we achieved a 13% average increase across the
Grid and Lombard Grid datasets on the PSNR,
SSIM, FID, and FVD scores compared to the pre-
vious SOTA DeOldify. Our user study also con-

solidates these results where FRCol was preferred
to contemporary colorizers 81% of the time.

• We developed an intuitive user application to in-
teract with FRCol easily. It takes a grayscale
video and an optional path to a custom faces
database as input. It outputs the resultant coloriza-
tion played parallel to the input grayscale video.

2 RELATED WORK

2.1 Automatic Image Colorization

Automatic image colorization is a well-established
task with an extensive body of text associated with it
(Liang et al., 2024),(Chang et al., 2023),(Cao et al.,
2023). (Mohn et al., 2018) propose to use a ran-
dom forest to train an automatic image classifier with
orders of magnitude less training data required than
would be required for a CNN-based colorizer. (Oh
et al., 2014) propose to use colorization as a method
to improve image coding based on local regression.
Two of the main methods that we used to compare
against are DeOldify (Antic, 2019) and Generative
Color Prior (GCP) (Wu et al., 2022). DeOldify
(Antic, 2019) is a self-attention generative adversar-
ial network-based automatic image colorizer (Zhang
et al., 2018). It is trained with a two-time scale up-
date rule (Heusel et al., 2017). GCP (Wu et al.,
2022) is a generative adversarial network-based auto-
matic image colorization-based system which lever-
ages a learned generative prior to colorizing images.
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As none of these methods have temporal consistency
developed they cannot colorize videos as well as a
system like FRCol, which is designed specifically for
videos.

2.2 Automatic Video Colorization

One of the simplest ways of attempting automatic
video colorization is to decompose the video into a
sequence of frames, colorize each frame individually
using an automatic image colorizer and then recom-
pile the video sequence from the colorized frames.
The problem with this approach is that the frames are
colorized independently, so temporal consistency is
not ensured. This can result in colorization, which
appears to change color or frequently flicker, giving a
very unnatural finish to the colorizations. Some more
sophisticated approaches exist that design for tem-
poral consistency by default (Liu et al., 2023),(Wan
et al., 2022),(Blanch et al., 2023). (Ramos and Flores,
2019) propose to colorize one frame of a sequence
and then propagate that frame’s color through the
video sequence by matching intensity and texture de-
scriptors. (Ward et al., 2024) propose LatentColoriza-
tion, a temporally consistent automatic speaker video
colorization system which leverages latent-diffusion
priors and a temporal consistency mechanism. Our
approach improves over LatentColorization in that
FRCol can accept the additional condition of retrieved
exemplars, which can reduce color hallucinations.
We compared against Video Colorization with Video
Hybrid Generative Adversarial Network (VCGAN)
(Zhao et al., 2023) in our evaluation section. VCGAN
is a recurrent colorization system designed with tem-
poral consistency in mind, as it uses a feed-forward
feature extractor and a dense long-term temporal con-
sistency loss. As VCGAN is a GAN-based system,
it is susceptible to mode collapse and, in particular,
bland colorizations, which our model is not as it is
diffusion-based.

2.3 Exemplar Guided Video
Colorization

One subsection of automatic video colorization par-
ticularly relevant to this work is exemplar-guided
video colorization. Exemplar-guided video coloriza-
tion takes an exemplar frame and grayscale video
as input. It then uses the color information pro-
vided in the exemplar frame to guide the resultant
colorization (Ward and Breslin, 2022),(Endo et al.,
2021),(Xu et al., 2020),(Akimoto et al., 2020),(Lu
et al., 2020),(Zhang et al., 2019). (Iizuka and Simo-
Serra, 2019) propose DeepRemaster, an automatic

video colorization system based on temporal convo-
lutional neural networks with attention mechanisms.
It was trained with artificially deteriorated videos.
DeepRemaster has no exemplar retrieval system in-
corporated into its design, so it is more susceptible to
unnatural colorization than FRCol.

2.4 Face Recognition

There are generally four steps involved in face recog-
nition: face detection (Kumar et al., 2019), normal-
ization (Djamaluddin et al., 2020), feature extraction
(Benedict and Kumar, 2016) and finally, face recogni-
tion. Plentiful textual resources exist on facial recog-
nition technologies (Chen and Jenkins, 2017),(Filali
et al., 2018),(Geetha et al., 2021). (Chen and Jenk-
ins, 2017) propose using Principal Component Anal-
ysis (PCA) and K-Nearest Neighbours (KNN), Sup-
port Vector Machine (SVM) and Linear Discriminant
Analysis (LDA). (Filali et al., 2018) propose Haar-
AdaBoost, LBP-AdaBoost, GF-SVM and GFNN.
Haar-AdaBoost is a combination of Haar cascade
classifiers and AdaBoost machine learning algorithm.
Local binary patterns (LBP) are used instead of the
Haar cascade classifiers in the LBP-AdaBoost for-
mulation. Gabor Filters are used for GF-SVM and
GFNN, with the difference between the two being
that a support vector machine is used for GF-SVM
and a neural network for GFNN. (Geetha et al., 2021)
compare an Eigenface method, PCA, CNN, and SVM
for face recognition. Technical challenges associated
with face recognition technologies exist. Three of
the most common ones are improper lighting (Fahmy
et al., 2006), low-quality images (Li et al., 2019), and
various angles of view (Troje and Bülthoff, 1996).
More recently, there has been a tendency in the lit-
erature towards systems that leverage deep learning
to handle specific constraints such as low power con-
sumption (Alansari et al., 2023) or occlusions (Mare
et al., 2021).

3 METHODOLOGY

3.1 Data Processing

Following on from (Ward et al., 2024), we use the
Grid (Cooke et al., 2006) and Lombard Grid (Al-
ghamdi et al., 2018) datasets. The Grid dataset con-
sists of high-quality video recordings of 1000 sen-
tences spoken by each of the 34 talkers. The Lombard
Grid dataset is a high-quality collection of speaker
videos of 54 subjects saying 5400 utterances. All of
the frames were resized to 128x128 pixels. The orig-
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Algorithm 1: FRCol.

Require: Input: Face Database F ,
Grayscale Video V

Require: Modules:
Face Recognition Module FR : V → D
Automatic Colorizer AC : V → Ṽ
Exemplar Selection Module ESM : V,D → ẽ
Exemplar Guided Colorizer EGC : V, ẽ → Ṽ

Ensure: Colorized Video Ṽ
1: Prompt FR to generate the Decision D given the

Grayscale Video V .
2: If Decision D is no, use AC to colorize the

Grayscale Video V without guidance.
3: Else choose the most relevant Exemplar ẽ from

the Face Database F using the Exemplar Selec-
tion Module ESM.

4: Then colorize the Grayscale Video V with the Ex-
emplar Guided Colorizer EGC given the selected
Exemplar ẽ.

5: return Colorized Video Ṽ

inal frames were in color and needed to be converted
to grayscale. 10,000 frames were used for training
and 1,500 for testing, giving approximately a standard
90/10 split.

3.2 FRCol System Description

The proposition is to guide colorization using exem-
plars retrieved from the face database using the exem-
plar selection module if the face recognition module
identifies a face. The concept is that instead of relying
on an end-to-end colorizer to learn what color par-
ticular objects are, it can be guided using exemplars
retrieved via face recognition. See Fig. 2 and Algo-
rithm 1.The black-and-white video is initially passed
through the face recognition module, Step 1. If the
face recognition module does not recognize a face in
the video, it reverts to colorization without exemplar
conditioning, Step 2a. If the face recognition mod-
ule detects a face in the frames, it queries the faces
database for the most similar face using the exem-
plar selection module. This face is passed onto the
conditioning mechanism of the colorizer. Finally, the
colorizer takes the conditions that it has been passed,
the black-and-white video and the exemplar frame if
a face has been detected, and it performs its coloriza-
tion process. This results in the colorized video, Step
2b.

3.3 Face Recognition Module

The face recognition algorithm used for this project
is a pre-trained ResNet-34 similar to that used in (He

et al., 2015). It was trained on 3 million faces taken
from the FaceScrub (Ng and Winkler, 2014) and VGG
(Parkhi et al., 2015) datasets. It was then tested on
the Labelled Faces in the Wild (Huang et al., 2007)
benchmark, where it achieved an accuracy of 99.38%.

3.4 Exemplar Selection Module

The exemplar selection module calculates the mini-
mum Euclidean distance min(∥∥) between the embed-
ding of the black-and-white face Zbw and the embed-
ding of every exemplar face Zi in the faces database
∀i ∈ I, see eqn 1. It then returns the exemplar with the
lowest value Ze.

Ze = min(∥Zbw −Zi∥)∀i ∈ I (1)

3.5 Face Database

The face database consists of faces taken from the
train set of the Grid and Lombard Grid datasets. The
relevancy of the faces in the face database substan-
tially impacts the quality of the resultant coloriza-
tions. For our experiments, we allowed the model
to use subjects from the train set of the datasets on
the test set inferences. This limits the application of
this approach to cases where similar exemplar images
exist of the faces of the persons in the video being
colorized.

3.6 Colorizer

During training, the current frame ground truth, the
black-and-white current frame, the previous frame,
and the exemplar frame are input to the colorizer.
During inference, the current frame ground truth is
replaced with Gaussian noise as the model will not
have access to the ground truth. See Fig. 3. The criti-
cal elements of the colorizer are:
Image Encoder. This component (implemented as
a Vector Quantised-Variational AutoEncoder (VQ-
VAE) (van den Oord et al., 2018)) encodes the input
frames into embedding representations. It generates
the ground truth embedding or the Gaussian noise em-
bedding ZT depending on whether the system is in
training or inference mode, the embedding of the cur-
rent black-and-white frame ZBW , the embedding of
the previous color frame ZP, and the embedding of
the exemplar frame ZE .
Denoising U-Net. The denoising U-Net is respon-
sible for denoising the embeddings generated by the
image encoder ZT−1. It is sampled T (timesteps) until
a satisfactory level of noise removal has occurred. T
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Figure 2: This diagram depicts the overall system architecture. Initially, face recognition is performed on the black-and-
white video to check whether a face exists in the video, Step 1. If a face is nonexistent, the black-and-white video is colorized
without exemplar conditioning, Step 2a. If a face is detected, the face database is queried for the closest exemplar face. This
exemplar face is then used to guide the latent diffusion-based colorizer to colorize the video, Step 2b.

is a hyperparameter set to 1000 for training and 50 for
inference in our experiments.
Conditioning Mechanism. The conditioning mecha-
nism provides contextual information and condition-
ing signals to guide the colorization process. It con-
catenates the various embeddings, including ZBW , ZP,
ZT , and ZE , which represent the black-and-white in-
put frame, the output of the model for the previous
frame, the noisy frame to be denoised, and the exem-
plar frame.
Image Decoder. This component (the same VQVAE
as the image encoder) decodes the predicted frames
from their embedding representations. It generates
the predicted frame from the predicted frame embed-
ding ZT .

4 EVALUATION AND
DISCUSSION

FRCol was tested under various circumstances to
determine its performance. The metrics used to
parametrize the evaluation are defined in subsection
4.1. The colorizers are compared visually in sub-
section 4.2. This is followed by a numeric evalua-
tion using the objective metrics in subsection 4.3. An
ablation study is conducted to determine the impor-

tance of the various aspects of FRCol in subsection
4.4. This is followed by gathering user opinions in
subsection 4.5. A real-world example concludes this
section in subsection 4.6.

4.1 Metrics

Evaluating colorizers is challenging as it is a sub-
jective task with no consensus on the best way to
achieve it. We will follow the most standard prac-
tice of employing subjective and objective metrics.
Specifically, we choose to use four objective and one
subjective metric. The objective metrics are Peak Sig-
nal to Noise Ratio (PSNR) (Fardo et al., 2016), Struc-
tural Similarity Index (SSIM) (Wang et al., 2004),
Fréchet Inception Distance (FID) (Heusel et al., 2018)
and Fréchet Video Distance (FVD) (Unterthiner et al.,
2019). The subjective metric we used is Mean Opin-
ion Score (MOS) (Mullery and Whelan, 2022). PSNR
compares a source and target image on a per-pixel ba-
sis. A higher PSNR indicates two more similar im-
ages from a pixel difference perspective. The diffi-
culty with this metric is that humans do not evaluate
images on a per-pixel metric but instead on more of
a per-image basis. This means that PSNR sometimes
does not correlate with human perception. SSIM im-
proves this limitation by comparing a source and tar-
get image on an object similarity level instead of per
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Figure 3: The colorizer architecture during training and testing is depicted in the diagram. This illustrates the network’s
key elements and interactions: image encoder and decoder (VQVAE), denoising U-Net and conditioning mechanism.

pixel. A higher SSIM indicates two images that have
more similar objects. The challenge with SSIM is that
it compares images pairwise instead of their distri-
butions. FID improves upon this limitation by con-
sidering the distribution of the colorizations instead
of pairwise image comparison. A lower FID indi-
cates two color distributions which are more closely
aligned and therefore a better colorization. The is-
sue with using FID is that it is designed to com-
pare images and does not account for temporal con-
sistency, which is essential for automatic video colo-
nization. FVD builds upon this limitation in that, as
well as considering the distributions of the coloriza-
tions; it also considers the temporal consistency be-
tween frames. Each metric mentioned above is ob-
jective, calculating a difference from a ground truth.
However, as colorization is subjective, we must also
deploy a subjective metric, specifically MOS. We cal-
culate MOS as the percentage preference of a specific
method in a user study. In recognition of the different
capabilities of each of the metrics, we have chosen to
report on all of them to give a holistic evaluation.

4.2 Qualitative Analysis

Fig. 4 provides a visual representation of the com-
parison of FRCol with contemporary automatic video
colorization methods. The Grid (top) and the Lom-
bard Grid (bottom) datasets are used to evaluate the
methods. The observations mirror each other for both
datasets. The outputs of each of the systems are
shown column-by-column. Each previous state-of-
the-art has either colorized the outputs dull (DeOld-
ify, DeepRemaster) or with poor fidelity to the ground
truth (GCP, VCGAN, LatentColorization) apart from
FRCol. DeOldify’s lack of colorfulness is consistent
with the idea that GANs, which DeOldify is based on,
can be susceptible to mode collapse, where they pro-
duce limited and less diverse color variations. GCP
has produced colorful output but is different in color
from the ground truth. It has not succumbed to the
mode collapse of its GAN-based architecture, espe-
cially on the Lombard Grid dataset. This could poten-
tially be a result of its retrieval mechanism. VCGAN
has produced a blue filter-type effect on the frames.
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Figure 4: The qualitative comparison of colorization results from various systems. Included in this diagram are DeOldify,
GCP, VCGAN, LatentColorization, DeepRemaster, FRCol, and the ground truth for both the GRID dataset (top) and the
Lombard Grid dataset (bottom) is shown.

DeepRemaster performs better when given plentiful
exemplars; when it does not have this, it resorts to
bland, dull colors. LatentColorization has colorized
with high color fidelity to the ground truth. One com-
ment that can be made is that frame 3 of the Grid
dataset LatentColorization has failed to ensure spa-
tial consistency of the subject’s top, with one shoul-
der being red and the other navy. It is challenging
to differentiate between FRCol and the ground truth
visually.

4.3 Quantitative Analysis

An important point to make before comparing the
methods quantitatively is that the amount of comput-
ing each method has used in training should be pro-
portional to their results. This is particularly rele-
vant for LatentColorization, which has used 33 more
epochs to train than FRCol. In light of this, we chose
the next highest-performing system, DeOldify, as the
previous state-of-the-art.

Comparing the approaches quantitatively in Table
1, we can see that FRCol has achieved strong results
across all datasets and metrics. FRCol achieves the
best score on all metrics except PSNR in the Grid
dataset experiment, where it is only bested by La-
tentColorization. In the Lombard Grid dataset, FR-
Col achieves the best FVD score. FRCol achieves
the optimal FVD score on average across the exper-
iments. Normalizing and comparing the averaged
scores shows that our approach performs 13% bet-
ter than the previous SOTA, DeOldify. On the Grid
dataset, FRCol performs on average 17% better than
DeOldify. On the Lombard Grid dataset, FRCol per-
forms, on average, 8% better than DeOldify.

Although LatentColorization achieves the optimal
score in many metrics, on average, across the datasets,
FRCol performs 1% better, indicating that even with
less training compute, it can perform at a similar level
to LatentColorization.
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Table 1: The quantitative comparisons provide a detailed evaluation of different colorization methods across various
datasets. These methods include DeOldify, GCP, VCGAN, LatentColorization, DeepRemaster, and FRCol. The evaluation
criteria encompass several metrics, including PSNR, SSIM, FID, and FVD. It also outlines what conditions the approaches
accept and how much computing was used to train them. Arrows indicate the optimal direction of the score, i.e. ↑ indicates
higher is better, ↓ indicates lower is better.

Dataset Conditions Compute Method PSNR ↑ SSIM ↑ FID ↓ FVD ↓
Grid None Unknown DeOldify (Antic, 2019) 28.16 0.81 58.04 694.62

None ImageNet @ 20 epochs GCP (Wu et al., 2022) 27.92 0.80 79.78 844.93
None Unknown VCGAN (Zhao et al., 2023) 27.95 0.85 63.15 931.00
None Grid + Lombard Grid @ 376 epochs LatentColorization (Ward et al., 2024) 30.00 0.85 38.63 311.73

Exemplar Unknown DeepRemaster (Iizuka and Simo-Serra, 2019) 27.83 0.79 90.15 993.49
Exemplar Grid + Lombard Grid @ 343 epochs FRCol 29.69 0.85 37.60 280.25

Lombard Grid None Unknown DeOldify (Antic, 2019) 29.73 0.92 35.08 385.21
None ImageNet @ 20 epochs GCP (Wu et al., 2022) 30.01 0.96 36.12 314.55
None Unknown VCGAN (Zhao et al., 2023) 29.19 0.97 57.24 813.83
None Grid + Lombard Grid @ 376 epochs LatentColorization (Ward et al., 2024) 31.14 0.94 25.67 245.71

Exemplar Unknown DeepRemaster (Iizuka and Simo-Serra, 2019) 30.55 0.93 99.50 460.36
Exemplar Grid + Lombard Grid @ 343 epochs FRCol 30.51 0.94 27.20 218.57

Overall None Unknown DeOldify (Antic, 2019) 28.95 0.86 46.56 539.92
None ImageNet @ 20 epochs GCP (Wu et al., 2022) 28.96 0.88 57.95 579.74
None Unknown VCGAN (Zhao et al., 2023) 28.57 0.91 60.20 872.41
None Grid + Lombard Grid @ 376 epochs LatentColorization (Ward et al., 2024) 30.57 0.89 32.15 278.72

Exemplar Unknown DeepRemaster (Iizuka and Simo-Serra, 2019) 29.19 0.86 94.82 726.92
Exemplar Grid + Lombard Grid @ 343 epochs FRCol 30.10 0.89 32.40 249.41

Table 2: Ablation test of the FR module. ↑ and ↓ indicates
the direction of optimal performance. The best scores are
highlighted in bold. - FR refers to the method that does not
leverage face recognition.

Dataset Method PSNR ↑ SSIM ↑ FID ↓ FVD ↓
Grid FRCol 29.69 0.85 37.60 280.25

- FR 28.03 0.71 56.64 571.33
Lombard Grid FRCol 30.51 0.94 27.20 218.57

- FR 30.03 0.94 35.19 247.90
Overall FRCol 30.10 0.89 32.40 249.41

- FR 29.03 0.82 45.91 409.61

4.4 Ablation Study

An ablation study was also carried out to evaluate the
significance of certain system aspects on overall per-
formance; see Table 2. The central element of the
system being ablated was the face recognition mod-
ule. To achieve this, FRCol was compared against the
system without facial recognition technology, namely
- FR. - FR was constructed by using a random face
as the condition so the impact of a relevant exemplar
could be investigated. FRCol performs on average
16% better across the metrics than - FR on the Grid
dataset. FRCol performs on average 3% better across
the metrics than - FR on the Lombard Grid dataset.
FRCol performs on average 9% better across the met-
rics than - FR on the overall dataset. The face recog-
nition has much more of a performance gain on the
Grid than the Lombard Grid dataset. This could be
due to Grid having more similar faces and, therefore,
a more relevant set of exemplars.

4.5 User Study

A user study was conducted to get a more subjective
view of FRCol’s performance. This study aimed to
evaluate the difference in performance between our
proposed approach, FRCol, and the previous SOTA
DeOldify. 16 participants were shown two sets of
three videos and asked a question on each set.

For the Grid dataset, the participants were shown
three versions of the same video taken from the
dataset side-by-side. One video version had been col-
orized by FRCol, the other by DeOldify, and the third
was the ground truth. The ground truth video was la-
belled as such, whereas the FRCol and DeOldify ver-
sions of the video were anonymous. To distinguish
the FRCol version of the video from the DeOldify ver-
sion they were labelled with 1 and 2. After the partic-
ipants had watched the videos, they were asked which
video they thought was closer to the ground truth. The
purpose of this question (Question 1) was to differen-
tiate in a head-to-head competition in which the col-
orization system was able to produce outputs which
were similar to the ground truth colors of the video.

For the Lombard Grid dataset, the participants
were shown three versions of an example video taken
from the dataset shown side-by-side. Again, one ver-
sion was colorized by FRCol, the other by DeOldfiy,
and the third was the ground truth. In contrast to the
previous question, the ground truth video was anony-
mous this time, and the three videos were titled 1,2
and 3. After the participants watched the video, they
were asked to rank the three videos based on which
one looked the most realistic. Therefore, this ques-
tion (Question 2) acted as a visual Turning test (Tur-
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ing, 1950) where humans were tested to see if they
could tell the difference between a colorization and a
ground truth video. The idea behind this is that the
better the performance of the colorization system, the
more difficult it should be to distinguish between the
colorization system and the ground truth.

We then collated, analysed, and visualized the
user study results; see Fig. 5 and Fig. 6. In Fig. 5,
the X axis represents the MOS score for each method,
and the Y axis differentiates between DeOldify and
FRCol. The MOS score is the percentage preference
for each technique. In Fig. 6, the X axis represents the
average score for each method, and the Y axis differ-
entiates between DeOldify, the ground truth and FR-
Col. The average score is the tally of each score per
method divided by the number of participants. We
used the average score for this figure as this more
accurately displayed the relevant information for a
multi-class ranking question.

Figure 5: The head-to-head user study results between FR-
Col and DeOlidfy on the Grid dataset. The X-axis repre-
sents the (MOS) for each question’s methods. The Y axis
indicates the relevant method. The participants were un-
aware of which video was from which colorizer. They were
asked which video was closer to the ground truth.

From the graph, we can see that overall, FRCol
was preferred to DeOldify. For Question 1, DeOldify
received a MOS score of 19%, and FRCol received a
MOS score of 81%, indicating a strong preference for
FRCol on this question. For Question 2, the ground
truth received the highest average score of 2.81, fol-
lowed by FRCol at 1.94 and DeOldify at 1.25. Sum-
marising this result, the ground truth was followed by
FRCol and finally DeOldify in terms of average score.

4.6 Real World Example

To fully evaluate an automatic video colorization sys-
tem, it must work on authentic archival material as
well as dataset videos. In recognition of this, we col-
orize an excerpt from “The Adventures of Sherlock
Holmes (1984)”; See Fig. 1. The output of FRCol

Figure 6: The user study results for Question 2 (Lombard
Grid). The X-axis represents the average score, with 0 be-
ing the worst and 3 best. The Y axis indicates the relevant
method. The participants were unaware of which video was
which. They were asked to rate each video regarding its re-
alism and consistency.

is shown at the bottom, and the grayscale version is
shown at the top. The comparison demonstrates that
FRCol applies to authentic archival material. It cor-
rectly segmented the subject from the background and
applied realistic colors to both the actor and the back-
ground.

We developed a user interface to facilitate inter-
action with the FRCol system; see Fig. 7. The in-
terface allows the user to specify the grayscale video
they wish to colorize and a file path to a custom faces
database from which they would like the algorithm to
choose the most relevant exemplar. The system de-
faults to the standard faces database if no file path is
provided. Once the grayscale video and optional faces
database file path have been entered into the user in-
terface, there is a simple colorization button to sub-
mit the request to colorize. Once the colorization has
been performed, the colorized video is returned to the
user interface, where it is presented beside the input
grayscale video.

5 CONCLUSION

Automatic speaker video colorization performance
can be improved by augmenting a system with ex-
emplars retrieved using facial recognition technol-
ogy. This performance gain has been demonstrated
to span various datasets and metrics. Specifically,
we achieved a 13% average increase across both
datasets on the Grid and Lombard Grid on the PSNR,
SSIM, FID, and FVD scores compared to the previ-
ous SOTA DeOldify. This objective evaluation was
further shown in our subjective user study, where FR-
Col was preferred to contemporary colorizers 81% of
the time. Such a system applies to authentic histor-
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Figure 7: User interface for the FRCol application. It takes a grayscale video and an optional path to a custom faces database
as input. It outputs the resultant colorization played parallel to the input grayscale video.

ical material, such as old Sherlock Holmes movies
and modern datasets. It can also be easily deployed in
an intuitive user application, which colorize grayscale
videos based on custom face databases.

LIMITATIONS & FUTURE WORK

FRCol, like any system, has its limitations. Firstly,
it is fine-tuned on speaker data and has limited
generalizability to out-of-domain data. Secondly,
training and testing large computer vision models
are compute-intensive and costly for the environ-
ment. Thirdly, there are ethical implications asso-
ciated with colorization, the most prominent being
concerns around the model learning biases from the
datasets and reflecting that in its colorizations. Fi-
nally, the quality of the colorizations is highly depen-
dent on the relevancy of the exemplar images con-
tained in the faces database. This approach assumes
that exemplar images from the train portion of the
same dataset being tested are available in the faces
database. If this assumption is untrue, there is a degra-
dation in performance.

In the future, we would like to improve this work’s
limitations. The system should be able to generalize
to out-of-domain data. We plan to achieve this by en-
hancing the diversity of data on which the system is
trained and incorporating an object detection module.
We want to improve our system’s efficiency by inves-
tigating more effective sampling methods to reduce
the number of iterations required to train and infer.
We plan to consider the ethical implications of our
work more deeply. An actionable item in this topic

could be creating a model card describing the sys-
tem, dataset, biases and limitations. Some work can
be done on the model’s ability to perform when less
relevant exemplars are exclusively available.

ACKNOWLEDGEMENTS

This work was conducted with the financial support of
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