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Abstract: This study addresses the challenges of manual implementation of 3D models in AR and the scalability lim-
itations of AR applications in asset management. It proposes a framework for the dynamic integration of
3D models into the AR environment, incorporating AI to enhance textual content and personalized user en-
gagement. The study presents a system architecture comprising three layers: (i) The bottom layer, which
handles the interactive capabilities of 3D models, including collision detection, mesh manipulation, dataset
preparation, and model training; (ii) The middle layer, which facilitates communication between the web asset
management platform and mobile application developed; and (iii) The topmost layer, which focuses on user
interaction with the 3D models via the web platform. To evaluate the framework, two 3D models (microscope
and centrifuge) were used as case studies for dynamic integration. The AI component was trained using a
dataset based on the microscope information obtained with web scrapping. The model was trained using both
Standard LSTM and BiLSTM architectures, with the dataset split into 60% for training, 20% for testing, and
20% for validation, over 50 epochs with a batch size of 64. The BiLSTM outperformed the Standard LSTM,
achieving a test accuracy of 94.35% and a test loss of 0.51. This research is significant in revolutionizing asset
management and promoting personalized content for quality education through technological innovation.

1 INTRODUCTION

Over the past decades, immersive technology and ar-
tificial intelligence (AI) have tremendously been in-
tegrated into many domains such as education, con-
struction, retail, tourism, and military (Limna et al.,
2022; Koumou and Isafiade, 2024). These two revo-
lutionary technologies have transformed the way we
interact with information and utilize systems. Im-
mersive technology enhances the visualization of in-
formation through interactive and engaging virtual
or three-dimensional (3D) elements or objects, and
AI has revolutionized data analysis, enabling accu-
rate predictions and personalized user experiences
(Rampini et al., 2022; Datta et al., 2024).
Immersive technology is a technology that blurs the
boundary between physical and virtual worlds by pro-
viding high quality or quantity of sensory informa-
tion, enabling users to experience a profound sense
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of immersion (Suh and Prophet, 2018). There are
three types of immersive technology, which are: (i)
augmented reality (AR), which superimposes 3D el-
ements or objects onto the user’s physical world
(Cipresso et al., 2018); (ii) virtual reality (VR),
which fully immerses users in a virtual environment
(Koumou and Isafiade, 2024); and (iii) mixed reality
(MR), which provides users with a blended environ-
ment (Karaaslan et al., 2019). These technologies im-
prove user satisfaction (Koumou et al., 2023), enrich
learning experiences (Sepasgozar, 2020), and provide
safe training environments (Braun et al., 2022).
AI is the ability of a computer program to learn and
think like a human being (Zhang and Lu, 2021; Limna
et al., 2022). AI development often uses pre-trained
models, which are trained on large datasets for spe-
cific problems and can be fine-tuned for various ap-
plications (Han et al., 2021). Research by Abdul-
hamied et al., (Abdulhamied et al., 2023) proposed
a system that can recognize and interpret American
Sign Language (ASL) using long short term mem-
ory (LSTM) networks and hand detection techniques.
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The authors used the MediaPipe tool to identify hand
movements and the LSTM model to predict which
signs and movements are being presented. However,
AR was not used in the paper; instead, the authors
suggested that superimposing features on the skele-
ton’s bones using AR mechanisms would be ideal.
Moreover, the development of this immersive tech-
nology such as AR can be expensive. For example,
retailers such as IKEA’s e-commerce platform intro-
duced an AR feature to its e-commerce platform to
provide shoppers with a more flawless presentation of
what a piece of furniture might look like once placed
in its intended spot. The company integrated over two
thousand (2000) 3D rendering models into the appli-
cation, which was developed using ARKit (Alves and
Luı́s Reis, 2020; Ozturkcan, 2021). The innovative
solution demonstrated substantial investments in time
and financial resources to enhance customer shopping
experience. Similarly, in a Southern African institu-
tion, a web-based application was developed to man-
age assets. This application incorporated AR features
to create virtual representations of assets, allowing
users to preview and understand their functionality
before making a request. This feature aimed to re-
duce the mishandling of expensive assets, particularly
among inexperienced users. Yet, a notable drawback
of the system is the inability of end-users to upload
custom 3D models when adding new assets, as it re-
lies on pre-developed 3D-based AR, which is meant
to be automatically attached to newly added assets
based on corresponding matches. It is worth high-
lighting that different owners of assets may possess
various types of assets, each potentially requiring dif-
ferent 3D models (Koumou et al., 2023). Research
by Garzon (Garzón, 2021) highlights the scalability
limitations of AR and the challenges of manually im-
plementing 3D models across platforms. The author
also notes that barriers still prevent users with spe-
cial needs from fully benefiting from AR, emphasiz-
ing that special needs require tailored solutions for a
range of diverse needs.
In line with the aforementioned research, this work
developed a framework to facilitate the dynamic in-
tegration of 3D models into an AR environment.
Furthermore, it integrates AI through an application
programming interface (API) to augment content vi-
sualization based on gesture recognition of the 3D
model’s nodes. This work used an existing web-based
platform, SciAssetHub, which is based on asset man-
agement with a limited 3D model embedded that was
developed manually. The development of the frame-
work involved three main steps: First, developing a
mobile AR platform that allows users to view an up-
loaded 3D model in both 3D and AR modes, along

with training the AI model using LSTM architecture
and integrating the trained model into the 3D mod-
els. Second, communication between the web and
mobile applications is enabled through pattern recog-
nition. Third, enabling the upload of 3D models from
the existing web application, SciAssetHub. Further-
more, this work aims to incorporate and address fu-
ture research suggested by Dyulicheva and Glazieva
(Dyulicheva and Glazieva, 2021), which emphasized
the need to incorporate AI with immersive technol-
ogy. Hence, this research aims to address this by
recommending best practices or guidelines for inte-
grating immersive technology with other technologies
such as AI.
The remainder of the paper is organized as follows:
Section II presents the literature review, the methodol-
ogy is documented in Section III, Section IV presents
the results and discussions, and Section V concludes
the research and provides future recommendations.

2 LITERATURE REVIEW

This section provides a general overview of AR and
AI, followed by case studies and proposed solutions
to demonstrate how these technologies have been in-
tegrated and applied in various settings.

2.1 AR Implementation in Different
Settings

The ability to superimpose a virtual element onto the
physical world, and accurately interact with that vir-
tual element makes AR a powerful tool for enhancing
user experiences. The key feature of AR rests on the
idea of spatial registration, where the digital object
has a physical location in the real world, considering
physical objects and the end-user’s point of view as if
they were in the physical world (Wang et al., 2013).
AR technology has been integrated into various fields
to overcome complex challenges, for example in rail-
way asset management. Due to the dispersion of as-
sets along extended rail networks, AR was introduced
to enable the faster transfer of asset information di-
rectly to track workers, regardless of their location.
This allows data to be presented in a digital format,
overlaid onto the real-world objects the workers are
working with. By providing real-time inspection and
condition monitoring data, AR supports workers by
displaying this information on detailed 3D models of
railway assets (Garramone et al., 2022). Furthermore,
in another scenario, AR has been integrated into daily
operations to enhance inventory management and im-
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prove customer engagement due to the lack of interac-
tion with physical assets in physical stores. Research
by Asta et al., (Asta et al., 2024) demonstrated that
AR significantly improves data visualization, daily
sales, and inventory management efficiency in the re-
tail sector through the developed AR application that
allows retail managers to view data in a more inter-
active format, facilitating faster and more accurate
decision-making. Furthermore, the authors pointed
out that the study participants reported high levels of
satisfaction with using these applications, indicating
that AR can overcome the limitations of traditional
data visualization methods and enhance user satisfac-
tion.

2.2 Artificial Intelligence and Text
Generation

Recurrent neural network (RNN) is a type of neural
network architecture within the field of AI. RNN con-
sists of layers of interconnected nodes with looped
connections, allowing them to use memory to pro-
cess sequences and generate text by predicting the
next word based on previous inputs (Hussein and
Savaş, 2024). Types of RNN, such as LSTM and
gated recurrent units (GRU) have been widely used
for text generation. Various researchers have consid-
ered these types of artificial neural network (ANN)
architectures to address the limitations of traditional
RNN, which struggle with long-term dependencies
due to vanishing gradients (Lipton, 2015). Research
by Abujar et al., (Abujar et al., 2019) proposed a
model that can generate text based on the Bangla lan-
guage using bi-directional LSTM (BiLSTM). The au-
thors used a sequence-to-sequence technique to pre-
dict the next word in a sentence based on the previ-
ous words. The model was trained over 100 epochs,
and two activation functions such as rectified linear
unit (ReLu) and Softmax. Similarly, Ibne Akhtar et
al., (Ibne Akhtar et al., 2021) developed a solution
for generating text in the Bangla language using a
BiLSTM, optimized GRU network. the model was
trained with 75% of the dataset and 25% for testing,
the batch size was 256, and the number of epochs
150. The model achieved an accuracy of 97%. Ad-
ditionally, research by Li and Zhang (Li and Zhang,
2021) compared the quality of generated text pro-
duced by LSTM (with peephole), GRU, and standard
(without peephole) LSTM, using bidirectional en-
coder representations from transformer (BERT) and
bilingual evaluation understudy with representations
from transformer (BLEURT) evaluation metrics. The
authors concluded that LSTM performed better.

2.3 AI-Integrated User Interaction
with Immersive Technology

Delving into the existing literature on user interac-
tion within the context of AI and immersive tech-
nology is crucial for understanding the key aspects
linking these two technologies. Bassyouni and Elhajj
(Bassyouni and Elhajj, 2021) highlight that AR can
serve as an interface for visualizing AI algorithm out-
puts in real-time. They also note that AI contributes
to making AR applications or interfaces more accu-
rate and reliable. This integration extends to MR as
well. For instance, Karaaslan et al., (Karaaslan et al.,
2019) demonstrate how combining AI with MR tech-
nology can improve infrastructure inspection. Their
approach involves attention-guided semi-supervised
deep learning (DL) and human-AI collaboration. AI
models, which are computational representations of a
real world process, are trained on extensive text data
from sources like books, articles, reviews, and online
conversations (Alessio et al., 2018). The potential of
AI in immersive environments is further illustrated
by Duricica et al., (Duricica et al., 2024) research.
Where an AI assistant is developed to elevate immer-
sive training, which leverages multimodal AI and VR
technology to support task execution within industrial
environments. The study presents a case of a VR en-
vironment simulating a juice mixer setup, where the
VR setup replicates the juice mixing process simi-
lar to machinery used in pharmaceutical and chem-
ical industries. According to the authors, this setup
immerses users in understanding operational princi-
ples and functionalities. The multimodal AI assistant,
powered by a large language model (LLM), incorpo-
rates a speech-to-text model, such as OpenAI’s gener-
ative pretrained transformer four (GPT-4), to convert
audio into text. For example, a user can ask, “What
should I do next?” and receive step-by-step guidance.

For this study, the LSTM model was chosen in
combination with AR technology due to its clear
advantages over traditional RNN. According to Li
and zhang (Li and Zhang, 2021), LSTM outperforms
other models, particularly in tasks such as text gen-
eration and sequence prediction. Based on this, this
work considered both Standard LSTM and BiLSTM
architectures for training the model, with the high-
performance model being selected for integration into
the 3D models. The following sections elaborate on
the proposed framework.
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3 DESIGN AND METHODOLOGY

This work introduces a framework for the dynamic in-
tegration of 3D models into an AR environment and
incorporates an AI model, to enhance content by aug-
menting textual information. In developing the AI
component, we trained on two LSTM architectures:
Standard LSTM and BiLSTM, and then selected the
one with the highest accuracy and lowest loss.
The framework consists of three components, as
shown in Figure 1: (a) Data preparation and model
training (Bottom Layer); (b) Cross-platform com-
munication (Middle Layer); and (c) Data input,
API communication and presentation, and animation
(Topmost Layer).

Figure 1: Conceptual Framework of the proposed solution.

3.1 Bottom Layer

This layer encompasses key components that consti-
tute the embedded processes required for text gen-
eration. The model trained was integrated into the

3D model to generate textual content that enhances
the immersive 3D visuals, with content dynami-
cally adapting based on user interactions with various
nodes in the 3D model’s structure. The following sec-
tions outline the steps taken to develop and train the
AI model.

3.1.1 Data Collection and Preparation

A. Data Collection. This was done using web scrap-
ing such that an asset’s (e.g., microscope) textual data
were collected from at least 18 URLs using the re-
quests library. The HTML content was parsed using
BeautifulSoup to extract relevant textual information
from tags such as <p>, <h1>, <h2>, <h3>, <h4>, <h5>,
and <h6>. Additionally, four PDF URLs were down-
loaded through Gdown library and processed with
python PDF version 2 (PyPDF2) library. The size of
the extracted data was 1.43 MB.
B. Data Preparation. The raw text retrieved was
cleaned by removing non-alphabetical characters,
symbols, and unwanted formatting. This was then
augmented to enhance the diversity of the dataset
by considering the synonym replacement technique
while preserving meaning. Additionally, a text tok-
enizer was employed to divide the final dataset into
chunks of 100 words, and further split into n−grams
(a sequence of n words) to form sequences that were
used as inputs to the model to be trained.

• Text Tokenization: The text is divided into chunks
of 100 words. Furthermore, the chunks are pro-
cessed to create a word index, which maps each
unique word to a unique integer. The vocabulary
size was then created.

• Sequence Creation: The text is split into n −
grams to form sequences using the algorithm im-
plement as shown in algorithm 1, which generates
the n − grams for each tokenized chunk, where
for each index i, a sequence n gram seq is created
which includes all tokens from the start of tk list
up to index i.

• Dataset Splitting: The final dataset 3.24 MB
(388085 words excluding spaces). Lastly, the cus-
tom dataset is split into training (60%), test (20%),
and validation (20%) sets.

C. Model Architecture. The LSTM model was
used as a model architecture because it introduces
an intermediate type of storage via the memory cell,
which overcomes a key limitation of traditional RNN
(i.e., the vanishing gradient problem, by preventing
the network from forgetting information throughout
a sequence (Lipton, 2015).
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Algorithm 1: Sequence Creation from Text Chunks.

Data: chunks of text, tokenizer
Result: sequence of input tokens
initialization: input seq = [ ];
for text in chunks do

tk list = tokenizer.text to seq([text])[0];
for i = 1 to len(tk list) - 1 do

n gram seq = tk list[:i + 1];
n gram seq to input seq;

end
end
return input seq

This section presents two neural network architec-
tures developed to train models for text generation,
which are (a) Standard LSTM and (b) BiLSTM. The
default structure used in the architectures is as fol-
lows:

• EmbeddingLayer: This layer maps tokens to
dense vectors, making it easier for the network
to learn relationships and patterns within the data
(Boykis, 2023).

• LST MLayers: This processes sequential captures
long-term dependencies in the data.

• DropoutLayer: This was incorporated to prevent
overfitting (Özgür and Nar, 2020).

• DenseLayer: Softmax layer was used for predict-
ing the next word based on input sequences (Chen
et al., 2018).

(i) Sequential LSTM

Algorithm 2: Standard LSTM Architecture.

Data: total words, max sequence len
Result: Compiled LSTM model
initialization: model = Sequential();
Add Embedding(total words, n,
input length=max sequence len - 1);

Add LSTM(n, return sequences=True);
Add Dropout(0.2);
Add LSTM(n);
Add Dense(total words, activation =
‘Softmax’);

return model

(ii) BiLSTM

It is important to highlight that, in algorithm 2, the
line 2 layer returns sequences, and the layer in line 4
passes the final output, after processing the sequence
forward, to the next layer. In algorithm 3, the layer
line 2 processes the input data forward and backward

Algorithm 3: BiLSTM Architecture.

Data: total words, max sequence len
Result: Bidirectional LSTM model
initialization: model = Sequential();
Add Embedding(total words, n,
input length=max sequence len - 1);

Add Bidirectional(LSTM(n,
return sequences=True));

Add Dropout(0.2);
Add Bidirectional(LSTM(n));
Add Dense(total words, activation =
‘Softmax’);

return model

to capture dependencies in both directions of the se-
quence, and in line 4, the layer passes the final output
to the next layer.

D. Model Training. The training process used an
Adaptive Moment Estimation (Adam) optimizer with
a default learning rate of 0.001. The model is trained
on 60%, tested on 20%, and validated on 20% of
the overall data, over 50 epochs with a batch size
of 64. Furthermore, the accuracy and loss metric
is considered to evaluate training and validation
performance.

E. Model Evaluation. The model is evaluated on
the test set to determine its generalization capabili-
ties. The evaluation metrics used include test loss and
accuracy. Moreover, the perplexity is used to evalu-
ate how strong the model is about its predictions and
is calculated from the test loss using the formula in
equation (1), where e is the exponential transforma-
tion of the average loss.

Perplexity = eLoss (1)

3.1.2 Text Generation Process

To generate text, the implementation of the function
algorithm (4) was used. The function generates text
by iteratively predicting the next word based on the
input (from the 3D Model interaction). Thus, the ini-
tial input is iterated by adding predicted words con-
sidering 15 as the limit. However, each iteration to-
kenizes the initial text into numerical sequences and
pads them for model input. The temperature sampling
1.0 controls the randomness of the probability distri-
bution for the next word.

Moreover, to facilitate the communication be-
tween the text generation based on the model trained,
an API was created, where only one parameter is re-
quired to process the text generated aspect. Figure 2,
illustrates the flow process of how the API interacts
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Algorithm 4: Text Generation Process.

Data: initial text input, model, tokenizer,
max sequence len

Result: Generated text sequence
Parameters: num words to generate = 15,
temperature = 1.0;

for i = 1 to num words to generate do
token seq =
tokenizer.texts to seq(initial text input);

padded seq = pad sequence(token seq,
max sequence len);

prediction = model.predict(padded seq,
temperature);

next word =
tokenizer.index to word(prediction);

initial text input += next word;
end
return initial text input

Figure 2: API interaction with 3D model nodes.

with the 3D model and Text Generation based on the
model trained. In this process, the 3D model requests
services from the API-based Text Generation based
on the model trained. When a user interacts with a
node in the 3D model, the system allows the inter-
action to trigger the extraction of the node name, the
action initiates the API call, passing the node name
as a parameter. The API subsequently sends a re-
quest containing this node name, which is used as
InitialTextInput on the Text Generation function (il-
lustrated in Algorithm 4). The API submits the re-
quest and the server processes it before returning a
response in JavaScript Object Notation (JSON) for-
mat. This JSON data is then deserialized into a data
object, which is stored locally using the PlayerPrefs
method (a Unity class for saving small amounts of
data locally) and displayed on the user’s screen using
the TextMesh component. PlayerPrefs was incorpo-
rated to help reduce the number of API calls.

3.2 Cross-Platform Communication

This entails the implementation of a feature that en-
ables interaction between the SciAssetHub web ap-
plication and the Android mobile application using
DeepLink (Ma et al., 2018), AndroidManifest, and
a dynamic Quick Response (QR) code, as shown
in Figure 3. Since Unity does not inherently pro-
vide this functionality, these methods are employed
to allow the end-user to experience an immersive 3D
model from their preferred two-dimensional (2D) rep-
resentation of the asset on the web asset management
platform. The dynamic QR code, which is embed-
ded with preview asset information (3D reference), is
scanned to trigger the DeepLink in the web applica-
tion. This DeepLink sends a request via a Uniform
Resource Identifier (URI) to the mobile app contain-
ing the downloaded AR-based application. The app
with the AndroidManifest feature, processes this re-
quest, launching the app and navigating the end-user
to the correct section which displays the downloaded
3D model.

Figure 3: Interaction between web and android platform.

3.3 Topmost Layer

A 3D virtual representation of a physical asset can
be uploaded when a user adds a new asset. This
can occur either by the end-user directly uploading
a relevant 3D model if they have one, or through a
system-assisted matching process. If the end-user
does not have a 3D model, the system, which has a
list of existing 3D models, offers an option to ’attach
a 3D model’ during the asset addition process. When
this option is selected, the system conducts name
matching using user name matching (Ren et al.,
2021), by comparing the name of the added asset and
the names of the existing AR models with different
3D models in the system. If there is a match, the
owner of the asset is notified via email with the QR
code containing a 3D model of the asset matched
and requested to confirm whether the 3D model
corresponds to the added asset. The attachment of
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the representation of the asset added in the form of
the 3D model is only authorized upon the owner’s
confirmation of the match.

When the end-user triggers the immersive mode to
view an asset in 3D or AR, the following steps unfold
to enable the visualization of the virtual 3D aspect:
3D model retrieval, model instantiation, interactivity
setup, touchscreen control capabilities, and selection
and highlighting.

3.3.1 3D Model Retrieval

This is where the retrieved model is downloaded onto
the end-user’s device. The downloaded file is checked
to ensure it is in Filmbox (FBX) format and then
moved to a specific folder location for effective de-
pendencies management, as other functions depend
on this 3D model.

3.3.2 3D Model Instantiation

In the AR mode, virtual 3D models are visualized in
the physical environment through the Vuforia SDK,
with features such as Plane Finder, which aims to de-
tect and track plane surfaces in the user’s real-world
environment. To enable this feature in the applica-
tion, we configured the use of Ground Plane and Plane
Finder. Plane Finder detects flat surfaces, and Ground
Plane initiates the 3D object in the physical environ-
ment.
The AR camera position is set by default to x = 0,
y = 0, z = 0, and the same default coordinates (x =
0, y = 0, z = 0) are applied to the position of any
3D object in the physical environment. If the 3D ob-
ject were placed at a different position, such as x =
-0.98, y = 0, z = 0, the user would find that when at-
tempting to place the 3D model in their environment,
it would appear misaligned according to spatial regis-
tration, showing up at the offset location of x = -0.98,
as illustrated in Figure 4, which illustrated the reality
of the fact in the real environment. Furthermore, in
3D mode, we considered two options for the camera
position, which are as follows:

(i) Camera Positioning Options
Option (1): A static view was captured using
camera coordinates that visualized 10 different
3D models at varying sizes on two simulator de-
vices (Samsung Galaxy S10e and Apple iPhone
12). The results showed that the 3D models were
well displayed, leading us to consider these co-
ordinates (x = 0, y = 5, z = -25) as a universal
camera position for all 3D models, with the mod-
els instantiated at the default position (0, 0, 0).

Figure 4: Spatial registration and positioning of 3D model.

Option (2): This approach combines static and
dynamic positioning. Initially, the same static po-
sition as in Option (1) was used. Then, its position
is dynamically adjusted based on the size and po-
sition of the 3D object in world space, specifically
accounting for its extent along the z-axis through
a developed algorithm. In simpler terms, the cam-
era is automatically positioned along the depth of
the 3D object’s z-axis, with its height correspond-
ing to the object’s width, measured by the distance
along the x-axis from the camera.

(ii) Evaluation of the Ideal Position for the Cam-
era
The ideal position that was ultimately chosen is
option (2) because option (1) did not accurately
display some 3D models, leading to inconsistent
visualization where some models appeared too far
or too close. Option (2) dynamically positions
the camera based on calculations using a static
scaling factor of 2.5, determined through exper-
imental testing as summarized in Table 1. Table 1
presents the evaluation process used to determine
a feasible scaling factor between the camera and
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the 3D model. In the Table, “World Transform 3D
Object (x, y, z)” represents the world transform
vector3 of the 3D model. Additionally, “Bounds:
Extent/Midpoint Size 3D Object (x, y, z)” repre-
sents the half-dimensions from the center to the
edges of each axis of the 3D model. Both “World
Transform 3D Object (x, y, z)” and “Bounds: Ex-
tent/Midpoint Size 3D Object (x, y, z)” are dy-
namically retrieved for each 3D model, while the
scaling factor remains static. The display output
in Table 1 uses values 0.5, 1.0, and 1.5 to represent
the camera’s position relative to the 3D model:

– 0.5: Camera is too close, making rotation in-
feasible.

– 1.0: 3D model is well-represented, and rotation
is feasible.

– 1.5: Camera is slightly further from the 3D
model, but rotation remains feasible.

3.3.3 Interactivity Setup

The main idea behind the interactivity setup is to al-
low end-users to touch a specific point on the 3D
model with their finger, the application should be able
to identify and highlight, and then display the name of
the structure along with a short description that was
touched based on pattern interaction. As illustrated in
Figure 5, the application detects touch events on the
screen, it then determines which object the end-user
intends to tap by mathematically casting a ray from
the screen’s XY position into 3D space using the cam-
era pose (Linowes and Babilinski, 2017). If the ray in-
tersects a detectable object, the application responds
to the tap by, for example, modifying the geometry.
To enable this functionality, method functions are au-
tomatically attached to the model, to facilitate colli-
sion detection between meshes and geometric shapes.
The following highlights the relevant functions:

(a) MeshCollider. This allows collision detection be-
tween meshes and geometric shapes.

(b) Mesh.MarkDynamic. This enables the manipula-
tion of a mesh (a collection of vertices, edges, and
faces that define the shape of the 3D model).

(c) Transform.LookAt. This auto rotates the camera
to face the 3D model.

(d) TagName. This is where tagnames are assigned
to organize the model components, such as parent
and child nodes or parts.

3.3.4 Touchscreen Control Capabilities

The concept of the touch input method is added
to allow the screen to facilitate interaction with the

model by detecting and responding to user interac-
tions based on different touch input features. We used
the Input.GetTouch(n) function, where n indicates
the number of fingers on the screen, and applied the
logic statement to manage the number of fingers re-
quired for triggering interactions with the 3D model.

3.3.5 Selection and Highlighting

As illustrated in Figure 5, selection and highlighting
allow a node within or part of a model to be selected
and visually highlighted. When a node is selected, it
changes to a default color set in the system. If another
node is selected, the previous node reverts to its orig-
inal color, and the newly selected node is highlighted
in the default color. This process repeats with each
new selection.

Figure 5: Touch interaction and ray casting in 3D (Best
viewed in color mode).

4 RESULTS AND DISCUSSION

The proposed framework was incorporated into the
SciAssetHub asset management web-based system to
assess its performance. The development process in-
volved the use of Vuforia software development kit
(SDK) version 10.21.3, Unity version 2020.3.15f1,
PHP 8.2.13, and Python 3.12.1. Furthermore, in
this study, the 3D models were purchased from Tur-
bosquid, and optimized using 3ds Max 2024. The
entire system was developed on a desktop running
Windows 11, with 16GB of RAM, 453GB of storage,
and an Intel Core i7 processor. Development tools in-
cluded Visual Studio Code version 1.90.0 and Unity
3D engine version 2023.2.7f1.

4.1 Performance of Trained Model

The model was trained using neural network archi-
tecture including an embedding layer, LSTM recur-
rent layers, and dense layers. The training was con-
figured for 50 epochs with a batch size of 64.The opti-
mizer used was Adam, with a learning rate initialized
at 0.001, and a dropout rate of 0.2. During the ex-
periment, both training and validation accuracy and
loss were captured. The following section presents
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Table 1: Evaluation vector3 representation of the camera and 3D model.

World Transform
3D object (x,y,z)

Extent / midpoint size
3D object (x,y,z)

Midpoint: Camera z
position (height)

Generated: Center
Camera (x,y,z) Scaling factor Display output

-0.55, 6.57, 1.07 3.45, 6.60, 4.36 4.36 -0.55, 6.57, -3.29 0.5 0.5
-0.55, 6.57, 1.07 3.45, 6.60, 4.36 4.36 -0.55, 6.57, -7.65 1 0.5
-0.55, 6.57, 1.07 3.45, 6.60, 4.36 4.36 -0.55, 6.57, -12.01 1.5 0.5
-0.55, 6.57, 1.07 3.45, 6.60, 4.36 4.36 -0.55, 6.57, -16.37 2 0.5
-0.55, 6.57, 1.07 3.45, 6.60, 4.36 4.36 -0.55, 6.57, -20.73 2.5 1
-0.55, 6.57, 1.07 3.45, 6.60, 4.36 4.36 -0.55, 6.57, -25.09 3 1.5

the result of the performance of standard LSTM and
BiLSTM models based on the training outcomes.

4.1.1 Standard LSTM

Figure 6 shows the training loss, it can be observed
that the starting loss at Epoch 1 was quite high at
7,09; which indicates that the model struggled to learn
at first. However, as the model progressed, the loss
steadily decreased, reaching 0.12 by Epoch 50, which
suggests that the model learned from the dataset.

Figure 6: Standard LSTM: Training and validation loss over
epochs.

Figure 7: Standard LSTM: Training and validation accuracy
over epochs.

Furthermore, Figure 7 presents the validation loss,
which followed a similar trend, starting at 5,76 and
ending at 0,57. The training accuracy rose from 0,05
in the early epoch to 0,97 in the final epoch. The val-
idation accuracy started at 0,10 and ended at 0,93. It
can be said that the model was learning and adapting
to the training data. Additionally, the perplexity score
stood at 1.69, with a test accuracy of 93.55% and a
test loss of 0.52.

4.1.2 BiLSTM

Figure 8 presents the training loss for the BiLSTM
architecture. At the start, the loss is relatively low,
at 6.09, compared to the Standard LSTM in Figure
6, indicating that the model began with slightly better
learning ability.

Figure 8: BiLSTM: Training and validation loss over
epochs.

Figure 9: BiLSTM: Training and validation accuracy over
epochs.

The loss steadily decreased as training progressed,
reaching 0.04 by epoch 50, suggesting that the model
effectively learned from the dataset. Similarly, the
validation loss followed this trend, starting at 4.51
and ending at 0.49, which is notably better than the
results from the Standard LSTM. The training accu-
racy, shown in Figure 9, rose from 0.13 early on to
0.99 at the final epoch. The validation accuracy also
improved, starting at 0.23 and ending at 0.94. Addi-
tionally, the test accuracy is 94.35% and a test loss of
0.51.
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Due to the superior performance demonstrated by the
model trained with BiLSTM architecture, in terms of
training and validation loss, accuracy, and test accu-
racy. The model was selected for integration into the
3D models in this work.

4.2 3D Preparation and Interaction

The core functionality of the framework also involves
its capability to retrieve and visualize various 3D
models in two main modes: 3D and AR. However,
the development of the AR mode is similar to the 3D
mode but requires access to the device’s camera to de-
tect a flat surface for placing the 3D model in the real
world. This means that the development is slightly
different. In 3D mode, the first step involves imple-
menting the script for touch input and the script to
instantiate the 3D model. Following this, scripts for
MeshCollider, Mesh.MarkDynamic, TagNames, se-
lection and highlighting, and rotation are created to
enable interactivity with the 3D models. In AR mode,
Vuforia is installed first, followed by setting up the
Plane Finder and Ground Plane functionalities. A
script was then created to instantiate the downloaded
3D model as a child of the ground plane. Follow-
ing this, the same scripts are used in 3D mode, such
as touch input, MeshCollider, Mesh.MarkDynamic,
TagNames, highlighting, and rotation, were also ap-
plied in AR mode.

4.2.1 Data Collection Layer

The option to allow end-users to upload and store 3D
models, with necessary asset information, was inte-
grated into the asset management system. The system
accepts only the FBX file format extension.

• 3D Node Structure: This involved partition-
ing 3D models into sub-parts based on their
names, assigning or renaming essential compo-
nents, following the approach used by Manith et
al. (Manith et al., 2019).

4.2.2 Presentation and Animation Layer

The immersive aspect aims to provide better visual-
ization of the virtual representation of physical as-
sets with interactive capabilities. Figure 10 outlines
the steps to activate the immersive element using
the mobile SciAssetHub application. Before start-
ing, users should ensure they have downloaded the
mobile immersive SciAssetHub application by open-
ing the QR code reader on their device, such as the
Android camera app. Users can scan the QR code

displayed on their devices to download the SciAs-
setHub mobile application, or they can simply click
the “Download App” button if they have accessed Sci-
AssetHub through their mobile devices. Once down-
loaded, users should proceed to install the application
on their devices.

Figure 10: Steps to engage the immersive elements in the
platform (Best viewed in colour mode).

Next, as shown in Step 1 of Figure 10, an end user
can scan the QR code on the right as displayed on the
desktop website using a preferred QR code reader, or
by simply clicking on the “Launch App”. To retrieve
the information on the immersive 3D model to visual-
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ize the application, the end-user can click on the pop-
up model displayed, as shown in Step 2, and select the
“SciAssetHub” application as an option and choose
“Just once” to launch and access the immersive ele-
ment based on the equipment they want to view. The
3D model will auto-download to the end user’s de-
vice, and the necessary elements will be attached to
the 3D model. In Step 3, this is the welcome screen;
the screen provides the option to experience the im-
mersive feature in either “3D mode” by clicking on
“3D mode,” which will redirect them to the respec-
tive screen of the feature. Alternatively, clicking “AR
mode” will take them to the screen for the AR fea-
ture. The AR mode application accesses the device’s
camera. Once the camera is open (Step 5), it detects
a flat surface (plane detection). When a flat surface is
detected (Step 6), the user should tap on the screen
to place the 3D object in the virtual environment.
The model will then superimpose on the environment
based on the spatial information (Step 7). To inter-
act with the 3D model and trigger the AI-augmented
textual information, the user must tap or touch the 3D
model’s node structure. The touched node will be se-
lected and highlighted in purple, as shown in Steps 8
and 9 in Figure 10, and information about that part
will be displayed.

5 SUMMARY AND FUTURE
RECOMMENDATIONS

This paper presents a framework that facilitates the
dynamic integration of 3D models into an AR en-
vironment in asset management system, enhanced
by AI (trained model using BiLSTM architecture) to
augment textual information based on the interaction
with the node structure of the 3D model. In this study,
the Standard LSTM and BiLSTM architectures were
used and demonstrated promising results in terms of
training, validation performance, and test accuracy.
However, the BiLSTM model showed superior per-
formance, with a higher test accuracy (94.35%) and
lower validation loss (0.51) compared to the stan-
dard LSTM, which had a test accuracy of 93.55% and
a loss of 0.52. The proposed AR-based framework
was successfully developed and assessed for its ef-
fectiveness. The framework produced a good result,
which means that it addressed scalability challenges
in the asset management system. It ensures that the
3D models are accurately framed within the camera’s
view in both AR and 3D modes, enhancing the overall
visualization. This framework can be applied across
various domains that involve the visualization of vir-
tual assets or objects, such as education, retail, con-

struction, healthcare, and more. In the future, a larger
and more structured dataset could be considered, po-
tentially using supervised or semi-supervised learning
approaches. Moreover, the use of AI is expected to
further enhance 3D image processing.
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