
Lessons Learned from Implementing a Language-Agnostic Dependency
Graph Parser

Francesco Refolli1, Darius Sas2 and Francesca Arcelli Fontana1

1Università degli Studi di Milano-Bicocca, Italy
2TXT Arcan, Italy

Keywords: Source Code, Software Analysis, Dependency Graphs.

Abstract: In software engineering, automated tools are essential for detecting policy violations within code. These
tools typically analyze the relationships and dependencies between components in large codebases, which
may be written in various programming languages. Most available tools, whether free or proprietary, rely
on third-party software to perform statistical analyses. This approach often requires a separate tool for each
programming language, which can lead to high maintenance efforts, and even relying on a standardized tech-
nology such as Language Servers has several drawbacks. This paper investigates the feasibility of removing
language-specific dependencies in the construction of dependency graphs by using two libraries: Tree Sitter
and Stack Graph. After analyzing the capabilities of these technologies, their application in this context is
demonstrated, and the effectiveness and accuracy of the proposed solution are evaluated.

1 INTRODUCTION

Software development is a long, complex process
that is often prone to errors and failures. There are
countless cases in which software becomes so com-
plex to develop and maintain that it is abandoned in
favor of a new implementation. Different anoma-
lies at the design and implementation levels can be
taken into account to tackle technical debt (Avge-
riou et al., 2016), such as code (Fowler and Beck,
2002) and architectural smells (Azadi et al., 2019),
and different metrics and technical debt indexes can
be computed to evaluate software quality (Avgeriou
et al., 2021). There are tools able to detect both
code and architectural smells, indicators of the pres-
ence of anomalies in code, architecture, and design
through the analysis of the dependencies of functions,
packages, classes, and other types of code compo-
nents, but these tools rely on language-specific soft-
ware to obtain such data. The main aim of this pa-
per is to investigate whether it is possible to use two
emerging technologies, Tree Sitter (Latif et al., 2023)
(a parser generator tool) and Stack Graph (Creager
and van Antwerpen, 2023) (a graph-based representa-
tion for reference resolution), to build a framework
able to analyze source code written in different ar-
bitrary programming languages while keeping un-
changed and simple the core of an analysis tool and

without adding more dependencies to its platform.
With this aim a prototype of such framework writ-
ten in Rust has been developed and compared with
an existing tool known in the field, called Arcan. Ar-
can was developed for architectural smell detection
and technical debt computation through source code
static analysis (Sas et al., 2019). We decided to con-
sider this tool as a reference for the new implemen-
tation since Arcan represents a significant example of
architectural analysis tool, which can build and se-
rialize the dependency graph from the source code.
The tool identifies the architectural smells by exploit-
ing the dependency graph it builds as well as vari-
ous metrics and the Technical Debt computation of
a project (Sas and Avgeriou, 2023), (Roveda et al.,
2018). In this paper, we will generate dependency
graphs from code and compare the produced artifact
with the graph that can be exported from Arcan analy-
sis. Figure 1 shows the dependency graph model used
by Arcan. Each component is divided into three node
types: unit, function and container, which correspond
intuitively to classes/interfaces, functions and pack-
ages/namespaces. It was designed to represent the re-
lationships of inheritance, inclusion, implementation,
and more generic dependency. The dependency edge
represents all possible types of dependencies related
to the usage of types, access to fields, and other rela-

484
Refolli, F., Sas, D. and Fontana, F. A.
Lessons Learned from Implementing a Language-Agnostic Dependency Graph Parser.
DOI: 10.5220/0013277600003928
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 484-491
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



Figure 1: Dependency Graph Model built by Arcan.

tionships1.
This study represents a first step towards the abil-

ity to perform analysis on heterogeneous code bases.
This would lead to more abstract, general, and com-
plex representations and algorithms, spanning from
software quality analysis to memory safety checks or
some advanced type checking of projects involving
multiple languages.

2 RELATED WORK

In the software engineering literature, many studies
and tools make use of dependency graphs for their
analysis, but most of them either assume to start with
a complete graph or use some language frontends to
analyze the code passed as input, which is the mode
of operation of Arcan, while few of them attempt to
create a generic framework capable of extracting met-
rics and features from the source code. A technique
used frequently is the translation of the input source
code into an intermediate representation: from by-
hand transformations into a domain-specific language
(Marin and Rivero, 2018), to automated abstract syn-
tax tree translations into a language-independent ab-
stract syntax tree (Weiss and Banse, 2022), into meta-
models like Famix (Ducasse et al., 2011) or into
intermediate markup formats (Collard et al., 2013).
Other lower-level approaches use language frontends
to translate source code written in different languages
into a common intermediate representation language
like GIMPLE IR or LLVM IR (Grech et al., 2015),
but those are often applied in compiler stages or sim-
ilar code level tasks, therefore those IRs loose details
of high-level code organization. The novel approach
presented in this paper aims to create an efficient in-
termediate representation of the code starting from
the concrete syntax tree without translating it into a

1The reference enumeration of dependencies consid-
ered by Arcan can be found at http://doi.wiley.com/10.
1002/spe.2421

language-independent syntax tree.

3 THE ARCAN SOLUTION

Arcan analyzes a software project by parsing its
source code to build a dependency graph relying on
several different third-party software (TPS): for each
supported programming language, it needs a middle-
ware that can parse the source code in advance to ex-
tract symbols and their references. The developers
of Arcan and similar tools aspire to maintain and ex-
pand the support to several programming languages,
which means integrating a multitude of TPS, namely,
at least one for each new programming language they
want to support. This architecture comes with several
downsides. A suitable TPS for a specific program-
ming language may not exist or if it does it may be
deprecated, with little support by the community, it
may lack some essential features or it may require an
excessive amount of work to be integrated within Ar-
can. Additionally, some of these TPS may not satisfy
the minimum requirements concerning performance.
Indeed, for some programming languages (e.g. Java)
there exist frameworks (e.g. Spoon, JDT) that provide
efficient static analysis of Java source code. How-
ever, this may not be true for other languages (e.g.
C#), where an appropriate library is completely miss-
ing and we are forced to rely on a language server 2

instead, which can be heavyweight and lacks an ef-
ficient method to get the outgoing dependencies of
components, as the protocol is restricted to incoming
dependencies only.

The current solution of having multiple TPS to
process each programming language hinders the hor-
izontal scalability of tools like Arcan, and therefore
we are seeking a solution that is scalable, stable, and
fast.

The Requirements for a New Solution. One of our
main concerns is maintainability. A new method has
to use the smallest possible number of third-party li-
braries, which should operate as part of the global
strategy, therefore not limited to some languages or
features, and should be the basis of an abstraction
layer that allows us to have a unified model for all
source languages. This is important whenever a tool
such as Arcan has to change due to mutated needs in
terms of how the graph has to be built, thus limiting
the number of submodules that the developers have

2The Language Server protocol is used between a tool
(the client) and a language smartness provider (the server)
to integrate features like auto complete, go to definition, find
all references and alike into the tool

Lessons Learned from Implementing a Language-Agnostic Dependency Graph Parser

485



to correct. It is also worthy of notice that sometimes
third-party software introduces breaking changes, the
more libraries you use, the more time will be spent
on correction of dependencies. And even when re-
lying on a small set of libraries, it is important that
the addition of support for one programming language
does not imply any task harder than understanding
how a language is structured in terms of semantics
(core components definable, file inclusion method,
etc) and syntax (how components are encapsulated in
the code). It is preferable if the integration of a lan-
guage is made easier by isomorphism with other lan-
guages’ structures. A more practical but key aspect
is certainly performance: the new approach should be
faster and lighter than the current implementation. If
a tool needs to analyze a large codebase with millions
of lines of code or multiple versions of a project to
study its evolution over time, it is vital that source
code analysis does not become a bottleneck.

4 A LANGUAGE INDEPENDENT
APPROACH

4.1 Core Technologies

After a careful analysis of the state of the art in
the field of Lexical Analysis (DeRemer, 1976), two
promising Rust libraries have emerged and seem suit-
able for our research purpose: Tree Sitter e Stack
Graph.

Tree Sitter (Latif et al., 2023) is a library for
generating parsers that yield Concrete Syntax Trees,
which contain the expansion of the language gram-
mar used while parsing. Stack Graph (Creager and
van Antwerpen, 2023) is a new data structure pre-
sented as an evolution of the Scope Graph (Zwaan
and van Antwerpen, 2023) which allows to resolve
references in the code and is promoted as suitable for
vertical scaling since it builds large graphs incremen-
tally, file by file. In order to automate the construction
of Stack Graphs starting from the source code, the de-
velopers of Stack Graph have also implemented Tree
Sitter Stack Graph, which requires for each language
the fabrication of a ”grammar” containing pairs of
declarations that associate a piece of Concrete Syntax
Tree (expressed as S-Expressions queries) to a block
of procedural code that executes the actual instruc-
tions that build the graph.

4.2 A General Model

Since the Concrete Syntax Tree reflects the nature of
a language’s syntax, we cannot define a single set of

rules for all languages. Therefore we developed a
general model to simplify the creation of Tree Sitter
Stack Graph grammars and to better unify algorithms
and data structures that will be used to build the de-
pendency graph.

4.2.1 Nodes

Generally, a Tree Sitter query language introduces
atomic nodes for identifiers (ex: in Java (identifier)
and (type identifier)), while the nodes that concate-
nate multiple identifiers, such as qualified name and
type declarations, recursively contain themselves or
the atomic nodes. Since reference resolution in Stack
Graph is done by maintaining a stack of symbols
(Symbol Stack) initially empty and populated by en-
countering push or pop nodes, which instruct the
solver to push or pop a symbol on the stack, we as-
signed such roles to Stack Graph nodes representing
chains of identifiers. A refkind or defkind marker is
also added to the ending of the identifier chain to iden-
tify references and definitions along with their refer-
ence/construct type.

By composing chains of push and pop nodes, we
can resolve qualified names: the concatenation of
push nodes X and Y with a direct edge will find a pop
node for symbol Y and then a pop node for symbol
X . More complex searches are implementable, such
as type resolution: with an appropriate chain, we can
jump from the reference point.x to the variable decla-
ration of point, to the structure declaration of Vec3D
and then to its field x. This technique is often called
ScopesAsTypes (van Antwerpen et al., 2018), but the
general idea of node chaining will go under the name
of resolution bridge.

4.2.2 Optimization of the Graphs

When dealing with import statements we want to re-
duce the amount of useless jumps within a search.
For example, instead of providing a direct edge to a
bridge that would push ”utils” and ”org” to the stack,
we can add a preventive couple of pop-push nodes to
filter in only those paths which have on the stack the
symbol ”Tool”. This technique could be applied to
all the identifiers, but it is limited to the first node of
a chain for simplicity and to reduce the size of the
graph, which, as we will see, is already of consider-
able size.

Furthermore, in order to reduce the number of
paths created during the exploration, we need to re-
duce the number of cycles in the graph, although the
graph cannot be completely acyclic since it must be
possible during the search to return to the root node
of the graph to allow it to descend in the next subtree

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

486



Figure 2: Example of Unit Composition.

to explore and find next definitions of the resolution
bridge.

4.2.3 Composition

We further organized Stack Graph nodes in units,
which are the building blocks of the graph and are
defined with five fields. Each unit has a local root
node called scope, which connects it in the direction
of the global root. The push start/end nodes define
the upward path used to resolve references (ex: class’s
package), while the pop start/end nodes represent the
path for defining the unit (ex: class’ body). These
fields can either contain concrete nodes or references
(in variables) to nodes defined elsewhere (in order to
combine and concatenate these units). An example of
composition of units is shown in Figure 2 where a unit
for Vec3D defines a scope for its fields.

An implementation of Tree Sitter Stack Graph
grammar for Java is given in the replication package
of our prototype implementation 3.

4.3 Building the Dependency Graph

Before the dependency graph can be built, all refer-
ences inside the Stack Graph should be resolved. Us-
ing Stack Graph built-in resolution algorithm, we can
process every refkind marked node and if a match is
found, this pair is saved inside the reference map 4

. Unfortunately, some references may not have been
resolved because it is too complex (require too many
jumps inside the Stack Graph) or the symbol could not

3https://doi.org/10.5281/zenodo.13982944
4re f erence map : StackGraph.Node →

StackGraph.Node

be found in the code base (e.g. third-party libraries or
standard library).

Then our algorithm explores such a graph like a
tree from the global root, avoiding cyclic paths by
storing a map of already visited nodes. During this
step the definition map 5 is built associating every de-
fkind marked node in the Stack Graph with its com-
ponent node in the Dependency Graph. This cache
also accommodates the semantics of some languages,
like C/C++, which allow a component to be defined
or declared multiple times. A pointer to the parent de-
pendency graph node is kept (initially null) in order to
introduce the definedBy dependency. An extra check
is done on the kind of the two definitions involved
in a definedBy dependency edge: for consistency, if
their kind is equal (e.g. struct Display defined inside
struct Computer) another edge is used instead (”Dis-
play” nestedTo ”Computer”). For every encountered
refkind marked node, a dependency edge should be
created if a pair ⟨re f erenceNode,resolvedNode⟩ ex-
ists in the reference map. Then a dependency edge is
added between the parent node of the reference and
the pointed component that we can find via the defini-
tion map. Markers defkind and refkind also guide us
when defining edge labels or component types.

We implemented serialization for GraphML
(Brandes et al., 2013) to compare the dependency
graphs produced by Arcan and our prototype. In Fig-
ure 3 we show an example of a dependency graph pro-
duced with the execution of the prototype on a trivial
piece of code.

5de f inition map : StackGraph.Node →
DependencyGraph.Node

Lessons Learned from Implementing a Language-Agnostic Dependency Graph Parser

487



Figure 3: Example of Dependency Graph.

5 BENCHMARK TESTS

A dual testing strategy has been applied: some unit
tests for dependencies and edge cases were created
to ensure that the language features have been im-
plemented correctly and a functional benchmark has
been used in order to understand which dependencies
(of which complexity) can or cannot be resolved with
Arcan and our prototype.

5.1 A Custom Testing Framework

During the development of the grammar for Java and
the algorithm for building the dependency graph, we
needed a way to test single features against source
code to ensure they were correctly recognized and
collected as well. Following this idea, a lightweight
testing framework has been embedded inside the
command line interface of the prototype. Given a
list of source files and a target language, two lists of
tuples are specified as expected results of test cases
(referred to as policies): nodes and edges that must
be present in the dependency graph built upon these
source files. Nodes are always enumerated by their
fully qualified name, in both those lists. As edges and
nodes in the dependency graph have attached a kind
attribute which identifies the type of construct or re-
lationship they represent, we also test that value to be
correct.

In Table 1 we outline the content of all tests imple-
mented with a flag indicating if the policy is satisfied.
Some tests verify if a feature has been implemented
correctly, while others if there are conflicts between
detection features.

5.2 Comparing Arcan and the
Prototype

Arcan uses the Pruijt et al’s (Pruijt et al., 2017) bench-
mark to evaluate its precision, which consists of a
wide code base that implements various kinds of de-
pendencies, conveniently listed in a table. In order

Table 1: Results of unit and integration tests for Java lan-
guage.

Test Name Dependencies Is It Recognized?
implementation bridge calls ✓
class methods with parameters definedBy ✓
class implementation isImplementationOf ✓
class with attributes definedBy ✓
class methods with attributes definedBy ✓
class method call calls ✓
type inference calls, accessField ✓
enums definedBy, accessField ✓
class inheritance isChildOf, nestedTo ✓
object creation usesType ✓
class type usage nested packages definedBy, usesType ✓
nested classes nestedTo ✓
casts type castsType ✓
class type usage definedBy, usesType ✓
throws type throwsType ✓
imports definedBy, includes, usesType ✓
interface inheritance isChildOf ✓
type inference with packages calls, accessField ✓
extension bridge calls ✓
class constructors definedBy ✓
class field access accessField ✓
class packages definedBy, includes ✓
annotation usesType ✓
array creation usesType ✓
class inheritance with packages isChildOf ✓
class methods definedBy ✓

to check those dependencies against our prototype we
decided to use the previously introduced embedded
framework and configure a test according to this ta-
ble, adapting entries to the way it recognizes depen-
dencies. A key difference is that while Arcan attaches
dependencies only to top-level classes (i.e., ”compo-
nents”), the prototype associates them with actual par-
ent components. This includes all types of subordi-
nate objects, such as subclasses and methods.

Both our prototype and Arcan were run against
the benchmark source code, and the identified depen-
dencies are recorded in Table 2. In the table, a mark
indicates whether each dependency was correctly re-
solved. The prototype correctly detects only 22 of
the 32 total dependencies present in the benchmark,
compared to the 24 detected by Arcan. However, it
should be noted that with the prototype, the depen-
dencies do not belong to a generic ”dependsOn” de-
pendency (which happens with Arcan), each label is
descriptive of the dependency that exists between the
two components.

Finally we decided to launch Arcan and the pro-
totype in a free analysis against various real world
projects, which are enumerated with version and size
(computed with cloc 6 in Table 3. We measured both
the execution time and the similarity (using Jaccard’s
index) of the generated graphs, which were carefully
adapted into a common format due to the previously
mentioned differences. Specifically, dependencies at-
tached to child components in the prototype’s graph
were simplified to match the top-level component de-
pendencies in Arcan’s graph.

As we can see in Table 4, contrary to our expec-
tations the prototype is much slower than Arcan, and

6cloc https://github.com/AlDanial/cloc

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

488



Table 2: Benchmark results of the prototype and Arcan.
Source Target Dependency Prototype Arcan
Access
AccessClassVariable CheckInDAO accessField ✓ ✓
AccessClassVariableConstant UserDAO accessField ✓ ✓
AccessClassVariableInterface ISierraDAO accessField ✓ ✓
AccessEnumeration TipDAO accessField ✓ ✓
AccessInstanceVariableRead ProfileDAO accessField ✗ ✓
AccessInstanceVariableWrite ProfileDAO accessField ✗ ✓
AccessInstanceVariableConstant UserDAO accessField ✗ ✓
AccessInstanceVariableSuperClass CallInstanceSuperClassDAO accessField ✗ ✗
AccessInstanceVariableSuperSuperClass CallInstanceSuperClassDAO accessField ✗ ✗
AccessObjectReferenceAsParameter Base accessField ✓ ✗
AccessObjectReferenceWithinIfStatement Base accessField ✓ ✗
Annotations
AnnotationDependency SettingsAnnotation usesType ✓ ✓
Call
CallClassMethod BadgesDAO calls ✓ ✓
CallConstructor AccountDAO usesType ✓ ✓
CallInstance ProfileDAO calls ✗ ✗
CallInstanceInnerClass CallInstanceOuterClassDAO calls ✗ ✗
CallInstanceInterface CallInstanceInterfaceDAO calls ✗ ✗
CallInstanceSuperClass CallInstanceSuperClassDAO calls ✗ ✓
CallInstanceSuperSuperClass CallInstanceSuperClassDAO calls ✗ ✓
Declaration
DeclarationExceptionThrows StaticsException throwsType ✓ ✓
DeclarationParameter ProfileDAO usesType ✓ ✓
DeclarationReturnType VenueDAO usesType ✓ ✓
DeclarationTypeCast ProfileDAO castsType ✓ ✓
DeclarationTypeCastOfArgument ProfileDAO castsType ✓ ✓
DeclarationVariableInstance ProfileDAO usesType ✓ ✓
DeclarationVariableLocal ProfileDAO usesType ✓ ✓
DeclarationVariableLocal Initialized ProfileDAO usesType ✓ ✓
DeclarationVariableStatic ProfileDAO usesType ✓ ✓
Import
domain.direct.violating AccountDAO includes ✓ ✗
Inheritance
InheritanceExtends HistoryDAO isChildOf ✓ ✓
InheritanceExtendsAbstractClass FriendsDAO isChildOf ✓ ✓
InheritanceImplementsInterface IMapDAO isImplementationOf ✓ ✓

Table 3: Summary of tested codebases.

Project Language Version Size (in LOC)
JUnit4 Java 4 30K
JUnit5 Java 5 100K
ANTLR Java 4 180K
Fastjson Java 1 50K

Table 4: Execution time (in seconds) of both the prototype
and Arcan.

Project Tool Min Max Mean execution time
JUnit4 prototype 65,82 69,07 65,88
JUnit4 Arcan 13,850 17,079 14,611
JUnit5 prototype 132,87 134,75 134,44
JUnit5 Arcan 42,542 47,613 44,186
ANTLR prototype 171,65 175,49 172,64
ANTLR Arcan 19,222 20,140 19,691
Fastjson prototype N/A N/A N/A
Fastjson Arcan 66,932 71,094 69,071

in some cases, it does not terminate in an acceptable
time. We also probed the similarity of the dependency
graphs being built by computing the Jaccard Similar-
ity Index 7 for the projects where the analysis with our
prototype terminated. Results can be seen in Table 5.
Not surprisingly the graphs produced are very diver-
gent in both nodes and edges that have been added.

7https://www.nature.com/articles/234034a0

Table 5: Graphs analysis with Jaccard index.
Project Jaccard(nodes) Jaccard(edges) Jaccard(graph)
junit4 37,26% 23,19% 25,42%
junit5 47,41% 15,13% 19,73%
antlr4 82,18% 44,25% 48,43%

An explanation emerges recalling what has been said
before: our prototype attaches dependency edges to
the actual components which are involved, while Ar-
can attaches almost all of them to the class in which
they are contained.

6 DISCUSSION AND LESSONS
LEARNED

Combining Tree Sitter and Stack Graph allows to sup-
port multiple programming languages while keeping
the core elaboration algorithms unchanged. However,
some critical issues have emerged making this solu-
tion still difficult to implement, but different lessons
and hints emerged from this work.

The implemented dependency extraction tool
achieves decent precision, comparable to Arcan, but
faces noteworthy scalability challenges. First, the
Stack Graph generated from the codebase is exces-
sively large due to the integration of numerous scopes

Lessons Learned from Implementing a Language-Agnostic Dependency Graph Parser

489



at various levels. This layered composition is neces-
sary for accurate reference identification, accommo-
dating the flexible naming conventions typical of pro-
gramming languages. Additionally, while Tree Sitter
supports incremental updates to the Concrete Syntax
Tree by processing only the changes between source
code versions, Stack Graph lacks this capability, re-
quiring a complete re-analysis of the source code with
every new change. Furthermore, the prototype cur-
rently does not distinguish between references to stan-
dard or third-party libraries and components defined
within the codebase, leading to inefficient graph ex-
ploration and increased memory consumption. Stack
Graph’s Domain Specific Language is well-designed
and provides developers with all the tools they may
need to process the code. However, a fundamental
shortcoming is the lack of a function in the domain-
specific language that allows to establish whether a
node has an attribute or the value of a certain attribute
makes it impossible to avoid conflicts between mul-
tiple types of references. The grammar can be de-
signed to minimize these issues as much as possible,
but depending on the language being analyzed, some
conflicts may be inevitable, and certain features might
need to be partially implemented as a workaround.

A further issue regards the impossibility of de-
tecting some dependencies. Apart from external li-
brary references, there are also references (e.g. in-
volving several jumps between the subgraphs repre-
senting different source files) in which simply the ref-
erence resolution algorithm is not powerful enough to
solve them. Exploring a redundant graph is expensive
and it is not even possible to increase the tolerance on
cyclic paths since it would make the resolution failure
of some third-party references more expensive. This
last possibility has been explored but has not led to
concrete results, given that most of the time the pro-
gram runs out of RAM available to its process even
with small codebases (such as the benchmark’s one).

All these issues significantly impact memory us-
age and the speed of reference resolution, making this
implementation suitable only for small to medium-
sized projects.

7 THREATS TO VALIDITY

According to the internal threats to validity, the pre-
sented approach is based on a rather new technol-
ogy that was applied only to GitHub code navigation
feature. Since it is a novel method we had to cre-
ate from scratch a strategy in order to work with it,
keeping in mind the limitations of the domain spe-
cific language and of the stack graph resolution algo-

rithm. The scheme of implementation for Tree Sit-
ter Stack Graph could be non-optimal: different and
more efficient schemes for implementing such arti-
facts could be found in the future. Still, the use of
the Stack Graph library was optimized as much as
possible through advanced constructs and parameter
customization, with valuable assistance from one of
its maintainers. Since the beginning of this study, the
Stack Graph repository has been updated and partially
rewritten to improve its API and name resolution al-
gorithm.

According to the external threats to validity, al-
though the implementation example for Java covers
most of the constructs commonly used in program-
ming languages, some language-specific features can
require more complex solutions. In order to further
prove the generalizability of this model, a draft im-
plementation has been produced for other languages
8 with different code inclusion mechanisms (C/C++)
or module naming rules (Python). In general, im-
plementing a Tree Sitter Stack Graph grammar for a
programming language has the same complexity as
learning the structure of its concrete syntax tree and
its semantics, which is surely easier than implement-
ing from zero a source code analyzer (if a TPS li-
brary doesn’t exist) since it would require at least
same amount of effort and knowledge. Although cer-
tain languages may present challenges, it is likely that
all constructs can be represented within a Tree Sitter
Stack Graph grammar: for example, adding a compo-
nent ”File” is useful for having C-like code inclusion.

8 CONCLUSIONS

In this work, we have described the prototype that
we implemented by exploiting two emerging tech-
nologies, Tree Sitter and Stack Graph. Results show
that the current implementation performs decently for
small to medium-sized projects, but further develop-
ment is necessary to enhance scalability and improve
accuracy. As outlined in Section 6, the main limits are
represented by the reference resolution algorithm im-
plemented by Stack Graph and the complexity of pro-
ducing artifacts (Tree Sitter Stack Graph grammars)
to build automatically a Stack Graph of the source
code. However, the Stack Graph visit to build the de-
pendency graph is linear-time and relatively fast, so
it may be possible to use this Stack Graph to create
an efficient intermediate representation. Since a ref-
erence can be seen as a chain of identifiers (a given
string ”a.b.c” can be tokenized with its delimiter as

8Grammars produced for this study can be found inside
the directory ”assets/tsg” of the replication package

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

490



[”a”, ”b”, ”c”]), the references can be resolved by ex-
ploring the component graph, treated as a prefix tree.
The resolution process could start from the locality
node of the reference (for example the function in
which it is contained) and walk up the prefix tree until
the current prefix identifier of the reference (the first
identifier of the chain) is found as a child node of the
current scope node. Then, a downward search can be
carried out until all the identifiers of the reference are
exhausted (each time a prefix identifier matches, it is
removed from the array).

REFERENCES

Avgeriou, P., Kruchten, P., Ozkaya, I., and Seaman, C. B.
(2016). Managing technical debt in software engi-
neering (dagstuhl seminar 16162). Dagstuhl Reports,
6(4):110–138.

Avgeriou, P., Taibi, D., Ampatzoglou, A., Arcelli Fontana,
F., Besker, T., Chatzigeorgiou, A., Lenarduzzi, V.,
Martini, A., Moschou, A., Pigazzini, I., Saarimaki,
N., Sas, D. D., De Toledo, S. S., and Tsintzira, A. A.
(2021). An Overview and Comparison of Technical
Debt Measurement Tools. IEEE Software, 38(3).

Azadi, U., Fontana, F. A., and Taibi, D. (2019). Archi-
tectural smells detected by tools: a catalogue pro-
posal. In Proc, of the II Int. Conf, on Techni-
cal Debt, TechDebt@ICSE 2019, Montreal, Canada,
2019, pages 88–97. IEEE / ACM.

Brandes, U., Eiglsperger, M., Lerner, J., and Pich, C.
(2013). Graph markup language (graphml). In Tamas-
sia, R., editor, Handbook on Graph Drawing and Vi-
sualization, pages 517–541. Chapman and Hall/CRC.

Collard, M. L., Decker, M. J., and Maletic, J. I. (2013). sr-
cml: An infrastructure for the exploration, analysis,
and manipulation of source code: A tool demonstra-
tion. In 2013 IEEE International conference on soft-
ware maintenance, pages 516–519. IEEE.

Creager, D. A. and van Antwerpen, H. (2023). Stack graphs:
Name resolution at scale. In Lämmel, R., Mosses,
P. D., and Steimann, F., editors, Eelco Visser Com-
memorative Symposium, EVCS 2023, April 5, 2023,
Delft, The Netherlands, OASIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

DeRemer, F. (1976). Lexical analysis. In Bauer, F. L.
and Eickel, J., editors, Compiler Construction, An Ad-
vanced Course, 2nd ed, volume 21 of Lecture Notes in
Computer Science, pages 109–120. Springer.

Ducasse, S., Anquetil, N., Bhatti, M. U., Cavalcante Hora,
A., Laval, J., and Girba, T. (2011). MSE and FAMIX
3.0: an Interexchange Format and Source Code Model
Family. Research report.

Fowler, M. and Beck, K. (2002). Refactoring: Improving
the Design of Existing Code. Addison-Wesley.

Grech, N., Georgiou, K., Pallister, J., Kerrison, S., Morse,
J., and Eder, K. (2015). Static analysis of energy con-
sumption for llvm ir programs. SCOPES ’15, page
12–21, NY, USA. ACM.

Latif, A., Azam, F., Anwar, M. W., and Zafar, A. (2023).
Comparison of leading language parsers – antlr,
javacc, sablecc, tree-sitter, yacc, bison. In 2023 13th
International Conference on Software Technology and
Engineering (ICSTE), pages 7–13.

Marin, V. J. and Rivero, C. R. (2018). Towards a frame-
work for generating program dependence graphs from
source code. In Proceedings of the 4th ACM SIG-
SOFT International Workshop on Software Analytics,
SWAN 2018, page 30–36, New York, NY, USA. As-
sociation for Computing Machinery.

Pruijt, L., Köppe, C., van der Werf, J. M. E. M., and
Brinkkemper, S. (2017). The accuracy of dependency
analysis in static architecture compliance checking.
Softw. Pract. Exp., 47(2):273–309.

Roveda, R., Fontana, F. A., Pigazzini, I., and Zanoni, M.
(2018). Towards an architectural debt index. In Pro-
ceedings - 44th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2018,
pages 408–416. IEEE.

Sas, D. and Avgeriou, P. (2023). An architectural techni-
cal debt index based on machine learning and archi-
tectural smells. IEEE Transactions on Software Engi-
neering, pages 1–27.

Sas, D., Avgeriou, P., and Fontana, F. A. (2019). Investigat-
ing instability architectural smells evolution: An ex-
ploratory case study. In 2019 IEEE Int.Conf. on Soft-
ware Maintenance and Evolution, ICSME, OH, USA,
2019, pages 557–567. IEEE.

van Antwerpen, H., Bach Poulsen, C., Rouvoet, A., and
Visser, E. (2018). Scopes as types. Proc. ACM Pro-
gram. Lang., 2(OOPSLA).

Weiss, K. and Banse, C. (2022). A language-independent
analysis platform for source code. CoRR.

Zwaan, A. and van Antwerpen, H. (2023). Scope graphs:
The story so far. In Eelco Visser Commemorative Sym-
posium, 2023, Delft, The Netherlands, volume 109 of
OASIcs. Schloss Dagstuhl.

Lessons Learned from Implementing a Language-Agnostic Dependency Graph Parser

491


