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Abstract: The steep technological and performance advances in GPU cards have led to their increasing use in data 
centers in the recent years, especially in machine learning jobs. However, high hardware performance alone 
does not guarantee (sub) optimal utilization of computing resources, especially when the cost associated with 
power consumption also needs to be increasingly considered. As consequence of these realities, various job 
scheduling algorithms have been and are being developed to optimize the power consumption in data centers 
with respect to defined constraints. Unfortunately, there is still no known, widely used, parametrizable dataset 
that serves as a de facto standard for simulating scheduling algorithms and the resulting ability to compare 
their performance against each other. The goal of this paper is to describe a simple job set generator designed 
to run on modern GPU architectures and to introduce the newly created data set suitable for evaluation the 
scheduling algorithms. 

1 INTRODUCTION 

Today's data centers are overwhelmingly built on 
GPU clusters. In recent years, the performance of 
GPU cards has increased rapidly, but unfortunately 
the utilization rate of GPU clusters is often not very 
high - e.g. (Narayanan, 2020), (Li, 2023), (Hu, 2021), 
(Weng, 2022) report utilization rates of only between 
25 and 50%. This leads to a significant waste of 
electrical energy, which is needed not only to power 
the GPU clusters themselves, but also to cool them 
efficiently. To address this problem, GPU sharing 
techniques have been developed that allow securely 
running (with guaranteed isolation) multiple 
computational jobs on a single GPU, where each job 
is allocated partial resources, either through 
virtualization (Gu, 2018), (Shi, 2012), (Han, 2022), 
(Yeh, 2020), (Xiao, 2018) or through the Multi-
Instance-GPU (MIG) feature supported by new 
Nvidia GPU architectures.  

MIG technology, developed by NVidia for GPU 
with architectures Ampere, Hopper and Blackwell, 
allows a single physical GPU to be partitioned into 
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multiple virtual GPU instances. Each virtual GPU 
instance is allocated a portion of the computational 
resources of the original GPU, specifically memory, 
cache, and compute cores. The computational 
resources of each instance are fully isolated from each 
other, allowing multiple jobs to run in parallel, fully 
isolated on each instance. Compared to the traditional 
allocation of the entire GPU to one specific job, MIG 
allows to reduce the waste of GPU computational 
resources while increasing the number of completed 
jobs per unit time. However, the allocation of GPU 
computational resources between instances cannot be 
done completely arbitrarily, but only by selecting 
from a fixed set of variants, specific to one concrete 
model of GPU. GPU can also be dynamically 
repartitioned (or reconfigured) according to expected 
computing resource requirements of incoming jobs. 

However, sharing GPUs across multiple jobs does 
not in itself guarantee high GPU utilization, but often 
is the source of another problem - high fragmentation, 
which does not allow to allocate enough GPU 
computing resources to the input job when the 
aggregate capacity of the cluster is otherwise high 
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enough. In practice, it is quite common that only 85-
90% of the maximum GPU capacity of a cluster can 
be allocated. A natural solution to the fragmentation 
problem is to proceed with the allocation of 
computational resources in such a way that as few 
GPU and nodes as possible are continuously reserved. 
This is an inherently complex combinatorial problem, 
compounded in practice by the fact that today's high-
end data center (Google, Alibaba) typically contains 
thousands of GPU nodes. For this reason, various 
heuristics have been applied to this problem – e.g. 
(Weng, 2023), or heuristic and mixed integer 
programming solvers (Turkkan, 2024). 

1.1 Job Scheduling in GPU Clusters 

A GPU cluster is essentially a set of servers (nodes) 
where each server contains one or more GPUs. In the 
GPU Cluster, all servers are interconnected via an 
ultrafast computer network. The individual GPUs 
should all be of the same manufacturer and model - 
then we are talking about a homogeneous GPU 
cluster, otherwise it is a heterogeneous GPU cluster. 
Depending on the size of the GPU cluster, tens to 
thousands of nodes can be connected to the GPU 
cluster. An important part of a GPU cluster is the 
input job queue, where jobs scheduled to run are 
placed. The scheduler sequentially selects individual 
jobs from the queue and allocates free GPU instances 
to them. The selection of individual jobs from the 
queue can also be controlled by their priority, if the 
job has a priority assigned. The selection of a target 
GPU instance for a particular job may be conditioned 
on information about the computational resource 
requirements, e.g., maximum memory consumption, 
if this information is available to the scheduler. 

The scheduler plans the running of individual jobs 
according to defined optimization criteria. One of the 
most common criteria is minimizing the 
computational resources used, which is typically 
minimizing the number of concurrently running 
GPUs or minimizing the waste of computational GPU 
resources. Subject to defined constraints. Given the 
ever-increasing emphasis on "green energy", 
maximising the use of "green energy" can also be an 
optimisation criterion. 

1.2 Problem Statement 

To test the performance of their scheduling 
algorithms and heuristics, their authors most often 
create their own (micro)benchmarks. These can be 
based on operational data from data centers to which 
the authors have access, e.g., (Weng, 2023). If it is an 

ML job, authors sometimes specify the ML model 
used (Cui, 2021) along with the publicly available 
dataset that this model processed during testing, e.g. 
(Xio,2018), (Choi, 2021). Some authors, e.g., (Hu, 
2021) and (Li, 2022) use publicly available datasets 
containing specific job types - here deep learning, 
from a production environment. Other authors, e.g., 
(Turkkan, 2024) test on randomly generated jobs. 

Despite our best efforts, we have not been able to 
find any dataset that is a de facto standard for 
comparing the performance of MIG-enabled GPU 
scheduling algorithms. One possible reason for this 
could be the heterogeneity of different types of jobs 
designed for GPU processing, where different types 
of jobs exhibit different parameters such as memory 
consumption as a function of job runtime. For this 
reason, it makes sense to have different datasets for 
evaluating and comparing algorithms, especially for 
scheduling specific types of jobs. 

There are certainly countless ways in which 
individual jobs can be categorised. Rather than 
attempting to design some single, standardised 
system of job categories, which would be a very 
difficult job to accomplish in practice, we have 
proposed a system that allows us to generate a set of 
jobs whose properties are specified through pre-
selected parameters. We called this system a job 
generator. 

The very idea of a system for generating jobs to 
evaluate and compare scheduling algorithms is not 
new. (De Bock, 2018) proposed a generator for RT 
multicore systems that can also generate for each job 
executable code with a declared worst-case runtime. 

 
Figure 1: GPU-cluster scheme. 
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1.3 Generator Configuration 
Requirements and Runtime 
Prepositions 

The job generator was designed to enable the 
evaluation and inter-comparison of the performance 
of job scheduling algorithms on MIG-enabled GPUs. 
For the generator to work successfully in practice, the 
following requirements need to be met: 

1. Support for MIG technology including 
dynamic reconfiguration. 

It makes sense to perform dynamic 
reconfiguration if there is a high chance that 
performing the reconfiguration will result in 
more efficient use of computing resources in 
the future. To predict such a state more 
easily, it is necessary to have at least a rough 
idea of the future usage of specific types of 
computing resources (e.g. RAM) by a 
specific job. The generator allows the user to 
specify the expected use of computational 
resources by jobs during their execution. 

2. Reproducibility of generated job sets. 

This requirement simply means that the 
same set of jobs will always be generated for 
the same values of all generator input 
parameters. 

3. Support for specifying job arrival times to 
the GPU-cluster input queue. 

The ability to specify the arrival times of 
jobs in the input queue can be used for 
longer-term scheduling, including 
identifying rush-hours and idle hours. The 
generator allows to specify arrival times 
either via a fixed value or a random value 
generated from a predefined random 
distribution. 

2 JOB GENERATOR 
IMPLEMENTATION 

The Job generator is implemented in Java in the 
current version. The source code is publicly available 
through the repository https://github.com/mikon81/ 
job-generator, where you can also find examples of 
input configuration files and their corresponding 
generated job sets. An example of one such file pair 
is also included in the appendix of this paper. Larger 
datasets generated by the generator can be freely 

downloaded here: https://github.com/mikon81/job-
generator/tree/main/datasets 

The generator produces a set of jobs whose 
properties are specified in the input configuration file. 
The generator works in steps as follows: 

1. The generator settings are read and loaded 
from the configuration file. 

2. Based on the loaded generator settings and 
the internally used random number generator, 
a set of jobs is generated. 

3. The generated job set is written to the output 
file. 

The configuration and output files are both in the 
widely used, programming language and platform-
independent JSON format. 

2.1 Configuration of the Generator 

The job generator setting is performed via so-called 
configuration parameters (CP). They are divided into 
2 types: 

1. For setting the properties of individual jobs 
– job configuration parameters. 

2. For setting the properties of the whole set of 
jobs – job set configuration parameters. 

Each CP is assigned its own so-called 
configuration type (CT). Each CP is generally 
assigned a different CT, but each CT defines a set of 
options for how a particular property can be set.  

The two main options for setting a specific 
property are naturally: 

1. A fixed, specific value. 

2. Random value. 

The possibility of setting a random value is further 
specified within the CT by the choice of the 
probability distribution including the choice of values 
of the distribution parameters. The current 
implementation of the generator supports the 
following probability distributions: 

1. Uniform, with lower and upper bound 
interval parameters. 

2. Normal, with defined mean and standard 
deviation. 

2.2 Job Configuration Parameters 

The properties which can be set for each generated 
job are listed in the Table 1. 
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Table 1: Configuration types of job properties. 

Property name Configuration type Probability 
distribution 

Priority Fixed value, 
Random value  

Uniform, 
Normal 

Maximum RAM 
consumption [in 

MB] 

Fixed value, 
Independent 

random value, 
Random value 
dependent on 

previous minute’s 
value 

Uniform, 
Normal 

Number of used 
CUDA cores 

Fixed value, 
Random value 

Uniform, 
Normal 

Run length [in 
time units] 

Fixed value, 
Random value 

Uniform, 
Normal 

Indication if job 
is interruptible 

Fixed value, 
Random value 

Uniform 

To meet the requirement of MIG technology 
support and dynamic reconfiguration support, each 
generated job includes a sequence of natural numbers, 
where each number in the sequence specifies the 
maximum memory consumption in a particular time 
unit of a job's run. The Maximum memory 
consumption property is then applied to each element 
in this sequence. The length of the sequence equals 
the value of the Run length property. 

To set the Maximum memory consumption 
property, the random value setting option is divided 
into the following categories: 

1. The value is generated for each specific time 
unit of the job running completely 
independently of the values of other time 
units. 

2. The value for each specific time unit, except 
the very first one, is generated based on the 
value from the previous time unit. If a 
random distribution is specified as normal, 
the mean of the distribution for generating the 
value in the current time unit is set to the 
value from the previous time unit, while the 
standard deviation remains the same for all 
time units. If a random distribution is 
specified as uniform, the value from the 
previous time unit is used as the midpoint of 
the interval, while its length is determined by 
the difference of the upper and lower bounds 
given in the uniform distribution 
specification for the property. 

Category 2 is closer to the reality of the behaviour 
of most jobs, where the memory consumption of a job 
run somehow depends on the job run so far and its 
program code. The possibility that memory 
consumption would randomly "oscillate" is usually 
quite rare (unless the job's program code is written 
with that intention). 

In case of setting the property Indication if job is 
interruptible by selecting a random value option, the 
probability of the job being interruptible must be 
specified. 

2.3 Job Set Configuration Parameters 

The properties which can be set for whole set of jobs 
are listed in the Table 2. 

Table 2: Configuration types of job set properties. 

Property name Configuration type Probability 
distribution 

Number of 
generated jobs 

Fixed value  

Number of time 
units between job 

arrivals in the 
input queue 

Fixed value, 
Random value 

Uniform, 
Poisson 

Seed of internal 
random generator 

Fixed value  

The Number of time units between job arrivals in 
the input queue property can be set in two different 
ways: by a fixed value or by a random value generated 
from a defined random probability distribution. 

The preferred value for the Seed of internal 
random number property is prime number. For the 
same seed value and otherwise the same all other 
configuration settings, the output job file is always the 
same. For a different seed value and all other 
configuration settings being otherwise the same, the 
output files are generally different. 

3 NEW DATASET 

As an output of the new generator, a new dataset was 
created. This dataset is publicly available here: 
https://github.com/mikon81/job-generator. Generator 
configuration parameters that were used to create the 
dataset are listed in the Table 3. 
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Table 3: Configuration parameters used for generating test 
dataset. 

Property name Value 

Priority Uniform(lowerBound=1, 
upperBound=5) 

Maximum memory 
consumption [in MB] 

Random dependent on 
previous, 

Normal(mean=200, 
sd=50) 

Run length [in time units] Normal(mean=5, sd=2) 

Indication if job is 
interruptible 

Fixed value = true 

Number of used CUDA 
cores 

Fixed value = 100 

Number of generated jobs 1000 

Number of time units 
between job arrivals in to 

the input queue 

Poisson(lambda=10) 

Seed of internal random 
generator 

41 

Some selected characteristics of the generated 
dataset are shown in the Figure 2 and in the Figure 3. 

 
Figure 2: Distribution of priority property values. 

 
Figure 3: Distribution of run length property values. 

4 EXPERIMENTAL RESULTS 

The aim of the experiment was to use the generator to 
generate a set of datasets that would then be used in 
the process of experimentally comparing the 
performance of two contrasting approaches to 
scheduling jobs on a single MIG-enabled GPU, both 
in terms of the quality of the resulting solution and the 
amount of time required to find a particular solution. 
The first approach was to directly search for the 
optimum via the chosen SAT-solver (sat4j), while the 
second approach was to search for the suboptimal 
solution using the fast Best-Fit heuristic. 

4.1 Requirements for Job 
Configuration Parameters 

The performance testing of both scheduling algorithms 
is to be carried out by simulating these algorithms in 
the Java programming language. The algorithms will 
simulate the scheduling of an input sequence of jobs of 
defined properties on a fixed GPU configuration, 
divided into 3 GPU instances with the following RAM 
sizes: 2000 MB, 1000 MB, 1000 MB. 

The following requirements were defined for the 
properties of the input tasks: 

1. The maximum job length in minutes is 
generated randomly from a uniform 
distribution on the interval 〈1,10〉. 

2. For each job, the maximum RAM consump-
tion during its run must not exceed 1990 MB. 

3. The maximum RAM consumption of a job j 
within minute t of its run, denoted 
PeakRAM(j,t)), is generated randomly from a 
normal distribution with mean equal to 
PeakRAM(j,t-1)), and standard deviation 
equal to 0.1 x PeakRAM(j,t-1)). The maximum 
for the first minute is randomly generated 
froma uniform distribution on the interval 〈1,1990〉 MB. 

4. The completion deadline for all jobs is 250 
minutes from the start of the experiment. 

5. All jobs are interruptible. 
6. All jobs have the same priority. 
7. The total number of jobs to be scheduled in a 

single run of the algorithm: 50. 
8. The arrival of each job to the queue is 

independent of the arrival of other jobs to the 
queue. 

9. The average number of queued jobs arriving 
per minute: 20. 
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The Table 4 of job configuration parameters and 
job sets configuration parameters correspond to the 
above requirements for input job properties: 

Table 4: Configuration parameters used for the experiment. 

Property name Value 

Priority the same value for each job 

Maximum memory 
consumption [in MB] 

Maximum = 1990 MB 
First minute = Uniform(1, 

1990) 
Random dependent on 

previous, 
Normal(mean=consumption 
from the previous minute, 
sd=0.1x consumption from 

the previous minute) 

Run length [in minutes] Uniform(1, 10) 

Deadline [in minutes] 250 

Indication if job is 
interruptible 

Fixed value = true 

Number of used CUDA 
cores 

any value (not used in the 
experiment) 

Number of generated 
jobs 

50 

The average number of 
job arrivals per minute 

Poisson(lambda=20) 

Seed of internal random 
generator 

unique prime number for 
each dataset to be generated 

An experiment with the same input job configuration 
parameters is run for each algorithm under test a total 
of 100 times, but each time with a different prime 
constant. 

4.2 Implementation of the Experiment 

The experiment was implemented through a 
Producer-Consumer design patter. The producer 
stored the jobs in a shared queue.  The arrival of each 
job to the queue was independent of the arrival of 
other jobs to the queue; the total number of job 
arrivals to the queue was directly dependent on the 
length of the time interval being monitored. Each 
algorithm under test (consumer), tested the queue for 
the presence of jobs at fixed time intervals, then 
removed all the jobs from the queue and moved them 
to its local memory to update the schedule. The 
experiment ended with the inclusion of the last job 
from the queue in the schedule. 

The implementation of the experiment required 
parsing and loading the generated test datasets.  For 

this reason, a simple parser for the Java programming 
language was implemented to read the input dataset 
in JSON format and return the corresponding job 
queue. The producer was then given a reference to 
this job queue during its initialization and then moved 
individual jobs from this queue to the shared queue 
according to the arrival time specified in each job 
instance. 

4.3 Discussion 

In the course of experimenting with the task 
generator, it can be said that in cases where the 
generator contains functionality necessary for 
specifying user-selected properties of the generated 
dataset, its use is simple and fast. The generated 
dataset file has a simple structure and is easy to read. 

However, in more complex cases of dataset 
property specification and looking to the future, the 
following issues need to be considered: 

The first issue is the lack of support for bulk 
generation of datasets that have the same 
configuration parameter values, except for the seed of 
the internal random number generator.  It is not 
possible to specify directly in the configuration file 
that e.g. 100 different datasets are to be generated in 
this way. However, the implementation of this 
functionality is not complex and will be added in the 
future. 

Another issue is that the generator currently does 
not allow the user to specify and use probability 
distributions other than a few basic ones. Modeling 
the internal behavior of data centers and clouds in 
terms of the frequency of arrival of individual jobs 
and their demands on computing resources may 
require the use of a much wider variety of different 
probability distributions, including the ability to 
specify these distributions using, e.g., histograms. 
Next problem is the tendency for the frequency of job 
arrivals to change during the day (rush hour vs. idle 
hour), which will be reflected at least in the change of 
the parameters of the probabilistic distribution of job 
arrival times. 

The third, and more general issue, which is more 
closely related to the previous one, is the support of 
(some) user-defined functionality without the need to 
change and rebuild the generator source code. This 
can be implemented on 2 levels: the dataset 
configuration file and/or the compiled user code. The 
question is how far to go in supporting these 
functionalities - given the ease of use in practice, 
good maintainability and reasonable complexity of 
the whole generator. What level of support for user-
defined functionalities can JSON handle? Wouldn't it 
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be more appropriate to add support and/or switch to a 
different format for specifying job properties over 
time? Support for user functionality at the compiled 
code level, typically in the form of user objects 
implementing a defined programming interface, is not 
currently implemented in the generator, nor was this 
form of support anticipated when the generator was 
designed. Implementation of this support would 
require major changes to the basic structure of the 
generator and would in principle bring disadvantages, 
such as the need to program user functionality 
directly in the form of Java code and the dependence 
of user code on programming interfaces defined by 
the generator. The question of possible programming 
support will therefore be the subject of future in-depth 
analyses. 

5 CONCLUSIONS 

This paper presents a new dataset generator designed 
to evaluate and compare the performance of job 
scheduling algorithms on modern GPU-clusters with 
MIG technology support. The properties of the 
generated datasets, including their sizes, can be easily 
set via the generator's configuration parameters. The 
generated datasets are reproducible and publicly 
available as well as the generator source code. 

At the present time, the generator supports only a 
few basic probability distributions. In the future, it is 
considered to extend the generator's support by 
specifying more complex cases of the properties of 
the generated jobs, including the possibility of 
defining histograms, adding user-defined 
configuration items and functionalities, the 
possibility of specifying the dynamics of the 
frequency of incoming jobs during the monitored 
period. An open problem is how to implement such 
support given the user-friendliness, good 
maintainability and reasonable complexity of the 
generator. 
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