
Job Generator for Evaluating and Comparing Scheduling Algorithms
for Modern GPU Clouds

Michal Konopa a, Jan Fesl b and Ladislav Beránek c
Department of Data Science and Computing Systems, Faculty of Agriculture and Technology,

University of South Bohemia, České Budějovice, Czech Republic

Keywords: Generator, Job, Scheduling Algorithm, MIG, Cluster.

Abstract: The steep technological and performance advances in GPU cards have led to their increasing use in data
centers in the recent years, especially in machine learning jobs. However, high hardware performance alone
does not guarantee (sub) optimal utilization of computing resources, especially when the cost associated with
power consumption also needs to be increasingly considered. As consequence of these realities, various job
scheduling algorithms have been and are being developed to optimize the power consumption in data centers
with respect to defined constraints. Unfortunately, there is still no known, widely used, parametrizable dataset
that serves as a de facto standard for simulating scheduling algorithms and the resulting ability to compare
their performance against each other. The goal of this paper is to describe a simple job set generator designed
to run on modern GPU architectures and to introduce the newly created data set suitable for evaluation the
scheduling algorithms.

1 INTRODUCTION

Today's data centers are overwhelmingly built on
GPU clusters. In recent years, the performance of
GPU cards has increased rapidly, but unfortunately
the utilization rate of GPU clusters is often not very
high - e.g. (Narayanan, 2020), (Li, 2023), (Hu, 2021),
(Weng, 2022) report utilization rates of only between
25 and 50%. This leads to a significant waste of
electrical energy, which is needed not only to power
the GPU clusters themselves, but also to cool them
efficiently. To address this problem, GPU sharing
techniques have been developed that allow securely
running (with guaranteed isolation) multiple
computational jobs on a single GPU, where each job
is allocated partial resources, either through
virtualization (Gu, 2018), (Shi, 2012), (Han, 2022),
(Yeh, 2020), (Xiao, 2018) or through the Multi-
Instance-GPU (MIG) feature supported by new
Nvidia GPU architectures.

MIG technology, developed by NVidia for GPU
with architectures Ampere, Hopper and Blackwell,
allows a single physical GPU to be partitioned into

a https://orcid.org/0000-0003-1694-1529
b https://orcid.org/0000-0001-7192-4460
c https://orcid.org/0000-0001-5004-0164

multiple virtual GPU instances. Each virtual GPU
instance is allocated a portion of the computational
resources of the original GPU, specifically memory,
cache, and compute cores. The computational
resources of each instance are fully isolated from each
other, allowing multiple jobs to run in parallel, fully
isolated on each instance. Compared to the traditional
allocation of the entire GPU to one specific job, MIG
allows to reduce the waste of GPU computational
resources while increasing the number of completed
jobs per unit time. However, the allocation of GPU
computational resources between instances cannot be
done completely arbitrarily, but only by selecting
from a fixed set of variants, specific to one concrete
model of GPU. GPU can also be dynamically
repartitioned (or reconfigured) according to expected
computing resource requirements of incoming jobs.

However, sharing GPUs across multiple jobs does
not in itself guarantee high GPU utilization, but often
is the source of another problem - high fragmentation,
which does not allow to allocate enough GPU
computing resources to the input job when the
aggregate capacity of the cluster is otherwise high

136
Konopa, M., Fesl, J. and Beránek, L.
Job Generator for Evaluating and Comparing Scheduling Algorithms for Modern GPU Clouds.
DOI: 10.5220/0013227500003950
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 136-143
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

enough. In practice, it is quite common that only 85-
90% of the maximum GPU capacity of a cluster can
be allocated. A natural solution to the fragmentation
problem is to proceed with the allocation of
computational resources in such a way that as few
GPU and nodes as possible are continuously reserved.
This is an inherently complex combinatorial problem,
compounded in practice by the fact that today's high-
end data center (Google, Alibaba) typically contains
thousands of GPU nodes. For this reason, various
heuristics have been applied to this problem – e.g.
(Weng, 2023), or heuristic and mixed integer
programming solvers (Turkkan, 2024).

1.1 Job Scheduling in GPU Clusters

A GPU cluster is essentially a set of servers (nodes)
where each server contains one or more GPUs. In the
GPU Cluster, all servers are interconnected via an
ultrafast computer network. The individual GPUs
should all be of the same manufacturer and model -
then we are talking about a homogeneous GPU
cluster, otherwise it is a heterogeneous GPU cluster.
Depending on the size of the GPU cluster, tens to
thousands of nodes can be connected to the GPU
cluster. An important part of a GPU cluster is the
input job queue, where jobs scheduled to run are
placed. The scheduler sequentially selects individual
jobs from the queue and allocates free GPU instances
to them. The selection of individual jobs from the
queue can also be controlled by their priority, if the
job has a priority assigned. The selection of a target
GPU instance for a particular job may be conditioned
on information about the computational resource
requirements, e.g., maximum memory consumption,
if this information is available to the scheduler.

The scheduler plans the running of individual jobs
according to defined optimization criteria. One of the
most common criteria is minimizing the
computational resources used, which is typically
minimizing the number of concurrently running
GPUs or minimizing the waste of computational GPU
resources. Subject to defined constraints. Given the
ever-increasing emphasis on "green energy",
maximising the use of "green energy" can also be an
optimisation criterion.

1.2 Problem Statement

To test the performance of their scheduling
algorithms and heuristics, their authors most often
create their own (micro)benchmarks. These can be
based on operational data from data centers to which
the authors have access, e.g., (Weng, 2023). If it is an

ML job, authors sometimes specify the ML model
used (Cui, 2021) along with the publicly available
dataset that this model processed during testing, e.g.
(Xio,2018), (Choi, 2021). Some authors, e.g., (Hu,
2021) and (Li, 2022) use publicly available datasets
containing specific job types - here deep learning,
from a production environment. Other authors, e.g.,
(Turkkan, 2024) test on randomly generated jobs.

Despite our best efforts, we have not been able to
find any dataset that is a de facto standard for
comparing the performance of MIG-enabled GPU
scheduling algorithms. One possible reason for this
could be the heterogeneity of different types of jobs
designed for GPU processing, where different types
of jobs exhibit different parameters such as memory
consumption as a function of job runtime. For this
reason, it makes sense to have different datasets for
evaluating and comparing algorithms, especially for
scheduling specific types of jobs.

There are certainly countless ways in which
individual jobs can be categorised. Rather than
attempting to design some single, standardised
system of job categories, which would be a very
difficult job to accomplish in practice, we have
proposed a system that allows us to generate a set of
jobs whose properties are specified through pre-
selected parameters. We called this system a job
generator.

The very idea of a system for generating jobs to
evaluate and compare scheduling algorithms is not
new. (De Bock, 2018) proposed a generator for RT
multicore systems that can also generate for each job
executable code with a declared worst-case runtime.

Figure 1: GPU-cluster scheme.

Job Generator for Evaluating and Comparing Scheduling Algorithms for Modern GPU Clouds

137

1.3 Generator Configuration
Requirements and Runtime
Prepositions

The job generator was designed to enable the
evaluation and inter-comparison of the performance
of job scheduling algorithms on MIG-enabled GPUs.
For the generator to work successfully in practice, the
following requirements need to be met:

1. Support for MIG technology including
dynamic reconfiguration.

It makes sense to perform dynamic
reconfiguration if there is a high chance that
performing the reconfiguration will result in
more efficient use of computing resources in
the future. To predict such a state more
easily, it is necessary to have at least a rough
idea of the future usage of specific types of
computing resources (e.g. RAM) by a
specific job. The generator allows the user to
specify the expected use of computational
resources by jobs during their execution.

2. Reproducibility of generated job sets.

This requirement simply means that the
same set of jobs will always be generated for
the same values of all generator input
parameters.

3. Support for specifying job arrival times to
the GPU-cluster input queue.

The ability to specify the arrival times of
jobs in the input queue can be used for
longer-term scheduling, including
identifying rush-hours and idle hours. The
generator allows to specify arrival times
either via a fixed value or a random value
generated from a predefined random
distribution.

2 JOB GENERATOR
IMPLEMENTATION

The Job generator is implemented in Java in the
current version. The source code is publicly available
through the repository https://github.com/mikon81/
job-generator, where you can also find examples of
input configuration files and their corresponding
generated job sets. An example of one such file pair
is also included in the appendix of this paper. Larger
datasets generated by the generator can be freely

downloaded here: https://github.com/mikon81/job-
generator/tree/main/datasets

The generator produces a set of jobs whose
properties are specified in the input configuration file.
The generator works in steps as follows:

1. The generator settings are read and loaded
from the configuration file.

2. Based on the loaded generator settings and
the internally used random number generator,
a set of jobs is generated.

3. The generated job set is written to the output
file.

The configuration and output files are both in the
widely used, programming language and platform-
independent JSON format.

2.1 Configuration of the Generator

The job generator setting is performed via so-called
configuration parameters (CP). They are divided into
2 types:

1. For setting the properties of individual jobs
– job configuration parameters.

2. For setting the properties of the whole set of
jobs – job set configuration parameters.

Each CP is assigned its own so-called
configuration type (CT). Each CP is generally
assigned a different CT, but each CT defines a set of
options for how a particular property can be set.

The two main options for setting a specific
property are naturally:

1. A fixed, specific value.

2. Random value.

The possibility of setting a random value is further
specified within the CT by the choice of the
probability distribution including the choice of values
of the distribution parameters. The current
implementation of the generator supports the
following probability distributions:

1. Uniform, with lower and upper bound
interval parameters.

2. Normal, with defined mean and standard
deviation.

2.2 Job Configuration Parameters

The properties which can be set for each generated
job are listed in the Table 1.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

138

Table 1: Configuration types of job properties.

Property name Configuration type Probability
distribution

Priority Fixed value,
Random value

Uniform,
Normal

Maximum RAM
consumption [in

MB]

Fixed value,
Independent

random value,
Random value
dependent on

previous minute’s
value

Uniform,
Normal

Number of used
CUDA cores

Fixed value,
Random value

Uniform,
Normal

Run length [in
time units]

Fixed value,
Random value

Uniform,
Normal

Indication if job
is interruptible

Fixed value,
Random value

Uniform

To meet the requirement of MIG technology
support and dynamic reconfiguration support, each
generated job includes a sequence of natural numbers,
where each number in the sequence specifies the
maximum memory consumption in a particular time
unit of a job's run. The Maximum memory
consumption property is then applied to each element
in this sequence. The length of the sequence equals
the value of the Run length property.

To set the Maximum memory consumption
property, the random value setting option is divided
into the following categories:

1. The value is generated for each specific time
unit of the job running completely
independently of the values of other time
units.

2. The value for each specific time unit, except
the very first one, is generated based on the
value from the previous time unit. If a
random distribution is specified as normal,
the mean of the distribution for generating the
value in the current time unit is set to the
value from the previous time unit, while the
standard deviation remains the same for all
time units. If a random distribution is
specified as uniform, the value from the
previous time unit is used as the midpoint of
the interval, while its length is determined by
the difference of the upper and lower bounds
given in the uniform distribution
specification for the property.

Category 2 is closer to the reality of the behaviour
of most jobs, where the memory consumption of a job
run somehow depends on the job run so far and its
program code. The possibility that memory
consumption would randomly "oscillate" is usually
quite rare (unless the job's program code is written
with that intention).

In case of setting the property Indication if job is
interruptible by selecting a random value option, the
probability of the job being interruptible must be
specified.

2.3 Job Set Configuration Parameters

The properties which can be set for whole set of jobs
are listed in the Table 2.

Table 2: Configuration types of job set properties.

Property name Configuration type Probability
distribution

Number of
generated jobs

Fixed value

Number of time
units between job

arrivals in the
input queue

Fixed value,
Random value

Uniform,
Poisson

Seed of internal
random generator

Fixed value

The Number of time units between job arrivals in
the input queue property can be set in two different
ways: by a fixed value or by a random value generated
from a defined random probability distribution.

The preferred value for the Seed of internal
random number property is prime number. For the
same seed value and otherwise the same all other
configuration settings, the output job file is always the
same. For a different seed value and all other
configuration settings being otherwise the same, the
output files are generally different.

3 NEW DATASET

As an output of the new generator, a new dataset was
created. This dataset is publicly available here:
https://github.com/mikon81/job-generator. Generator
configuration parameters that were used to create the
dataset are listed in the Table 3.

Job Generator for Evaluating and Comparing Scheduling Algorithms for Modern GPU Clouds

139

Table 3: Configuration parameters used for generating test
dataset.

Property name Value

Priority Uniform(lowerBound=1,
upperBound=5)

Maximum memory
consumption [in MB]

Random dependent on
previous,

Normal(mean=200,
sd=50)

Run length [in time units] Normal(mean=5, sd=2)

Indication if job is
interruptible

Fixed value = true

Number of used CUDA
cores

Fixed value = 100

Number of generated jobs 1000

Number of time units
between job arrivals in to

the input queue

Poisson(lambda=10)

Seed of internal random
generator

41

Some selected characteristics of the generated
dataset are shown in the Figure 2 and in the Figure 3.

Figure 2: Distribution of priority property values.

Figure 3: Distribution of run length property values.

4 EXPERIMENTAL RESULTS

The aim of the experiment was to use the generator to
generate a set of datasets that would then be used in
the process of experimentally comparing the
performance of two contrasting approaches to
scheduling jobs on a single MIG-enabled GPU, both
in terms of the quality of the resulting solution and the
amount of time required to find a particular solution.
The first approach was to directly search for the
optimum via the chosen SAT-solver (sat4j), while the
second approach was to search for the suboptimal
solution using the fast Best-Fit heuristic.

4.1 Requirements for Job
Configuration Parameters

The performance testing of both scheduling algorithms
is to be carried out by simulating these algorithms in
the Java programming language. The algorithms will
simulate the scheduling of an input sequence of jobs of
defined properties on a fixed GPU configuration,
divided into 3 GPU instances with the following RAM
sizes: 2000 MB, 1000 MB, 1000 MB.

The following requirements were defined for the
properties of the input tasks:

1. The maximum job length in minutes is
generated randomly from a uniform
distribution on the interval 〈1,10〉.

2. For each job, the maximum RAM consump-
tion during its run must not exceed 1990 MB.

3. The maximum RAM consumption of a job j
within minute t of its run, denoted
PeakRAM(j,t)), is generated randomly from a
normal distribution with mean equal to
PeakRAM(j,t-1)), and standard deviation
equal to 0.1 x PeakRAM(j,t-1)). The maximum
for the first minute is randomly generated
froma uniform distribution on the interval 〈1,1990〉 MB.

4. The completion deadline for all jobs is 250
minutes from the start of the experiment.

5. All jobs are interruptible.
6. All jobs have the same priority.
7. The total number of jobs to be scheduled in a

single run of the algorithm: 50.
8. The arrival of each job to the queue is

independent of the arrival of other jobs to the
queue.

9. The average number of queued jobs arriving
per minute: 20.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

140

The Table 4 of job configuration parameters and
job sets configuration parameters correspond to the
above requirements for input job properties:

Table 4: Configuration parameters used for the experiment.

Property name Value

Priority the same value for each job

Maximum memory
consumption [in MB]

Maximum = 1990 MB
First minute = Uniform(1,

1990)
Random dependent on

previous,
Normal(mean=consumption
from the previous minute,
sd=0.1x consumption from

the previous minute)

Run length [in minutes] Uniform(1, 10)

Deadline [in minutes] 250

Indication if job is
interruptible

Fixed value = true

Number of used CUDA
cores

any value (not used in the
experiment)

Number of generated
jobs

50

The average number of
job arrivals per minute

Poisson(lambda=20)

Seed of internal random
generator

unique prime number for
each dataset to be generated

An experiment with the same input job configuration
parameters is run for each algorithm under test a total
of 100 times, but each time with a different prime
constant.

4.2 Implementation of the Experiment

The experiment was implemented through a
Producer-Consumer design patter. The producer
stored the jobs in a shared queue. The arrival of each
job to the queue was independent of the arrival of
other jobs to the queue; the total number of job
arrivals to the queue was directly dependent on the
length of the time interval being monitored. Each
algorithm under test (consumer), tested the queue for
the presence of jobs at fixed time intervals, then
removed all the jobs from the queue and moved them
to its local memory to update the schedule. The
experiment ended with the inclusion of the last job
from the queue in the schedule.

The implementation of the experiment required
parsing and loading the generated test datasets. For

this reason, a simple parser for the Java programming
language was implemented to read the input dataset
in JSON format and return the corresponding job
queue. The producer was then given a reference to
this job queue during its initialization and then moved
individual jobs from this queue to the shared queue
according to the arrival time specified in each job
instance.

4.3 Discussion

In the course of experimenting with the task
generator, it can be said that in cases where the
generator contains functionality necessary for
specifying user-selected properties of the generated
dataset, its use is simple and fast. The generated
dataset file has a simple structure and is easy to read.

However, in more complex cases of dataset
property specification and looking to the future, the
following issues need to be considered:

The first issue is the lack of support for bulk
generation of datasets that have the same
configuration parameter values, except for the seed of
the internal random number generator. It is not
possible to specify directly in the configuration file
that e.g. 100 different datasets are to be generated in
this way. However, the implementation of this
functionality is not complex and will be added in the
future.

Another issue is that the generator currently does
not allow the user to specify and use probability
distributions other than a few basic ones. Modeling
the internal behavior of data centers and clouds in
terms of the frequency of arrival of individual jobs
and their demands on computing resources may
require the use of a much wider variety of different
probability distributions, including the ability to
specify these distributions using, e.g., histograms.
Next problem is the tendency for the frequency of job
arrivals to change during the day (rush hour vs. idle
hour), which will be reflected at least in the change of
the parameters of the probabilistic distribution of job
arrival times.

The third, and more general issue, which is more
closely related to the previous one, is the support of
(some) user-defined functionality without the need to
change and rebuild the generator source code. This
can be implemented on 2 levels: the dataset
configuration file and/or the compiled user code. The
question is how far to go in supporting these
functionalities - given the ease of use in practice,
good maintainability and reasonable complexity of
the whole generator. What level of support for user-
defined functionalities can JSON handle? Wouldn't it

Job Generator for Evaluating and Comparing Scheduling Algorithms for Modern GPU Clouds

141

be more appropriate to add support and/or switch to a
different format for specifying job properties over
time? Support for user functionality at the compiled
code level, typically in the form of user objects
implementing a defined programming interface, is not
currently implemented in the generator, nor was this
form of support anticipated when the generator was
designed. Implementation of this support would
require major changes to the basic structure of the
generator and would in principle bring disadvantages,
such as the need to program user functionality
directly in the form of Java code and the dependence
of user code on programming interfaces defined by
the generator. The question of possible programming
support will therefore be the subject of future in-depth
analyses.

5 CONCLUSIONS

This paper presents a new dataset generator designed
to evaluate and compare the performance of job
scheduling algorithms on modern GPU-clusters with
MIG technology support. The properties of the
generated datasets, including their sizes, can be easily
set via the generator's configuration parameters. The
generated datasets are reproducible and publicly
available as well as the generator source code.

At the present time, the generator supports only a
few basic probability distributions. In the future, it is
considered to extend the generator's support by
specifying more complex cases of the properties of
the generated jobs, including the possibility of
defining histograms, adding user-defined
configuration items and functionalities, the
possibility of specifying the dynamics of the
frequency of incoming jobs during the monitored
period. An open problem is how to implement such
support given the user-friendliness, good
maintainability and reasonable complexity of the
generator.

ACKNOWLEDGEMENTS

This article was written with the financial support of
the Grant Agency of the University of South
Bohemia.

REFERENCES

Narayanan, D., Santhanam, K., Kazhamiaka, F.,
Phanishayee, A., & Zaharia, M. (2020). Heterogeneity-
Aware Cluster Scheduling Policies for Deep Learning
Workloads. 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 481–
498. https://www.usenix.org/conference/osdi20/presen
tation/narayanan-deepak

Li, J., Xu, H., Zhu, Y., Liu, Z., Guo, C., & Wang, C. (2023).
Lyra: Elastic Scheduling for Deep Learning Clusters.
Proceedings of the Eighteenth European Conference on
Computer Systems, 835–850. https://doi.org/10.1145/
3552326.3587445

Gu, J., Song, S., Li, Y., & Luo, H. (2018). GaiaGPU:
Sharing GPUs in Container Clouds. 2018 IEEE Intl
Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social
Computing & Networking, Sustainable Computing &
Communications (ISPA/IUCC/BDCloud/SocialCom/Su
stainCom), 469–476. https://doi.org/10.1109/BDClou
d.2018.00077

Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-
Accelerated High-Performance Computing in Virtual
Machines. IEEE Transactions on Computers, 61(6),
804–816. https://doi.org/10.1109/TC.2011.112

Han, M., Zhang, H., Chen, R., & Chen, H. (2022).
Microsecond-scale Preemption for Concurrent GPU-
accelerated DNN Inferences. 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), 539–558. https://www.usenix.org/confe
rence/osdi22/presentation/han7

Nvidia multi-instance GPU, seven independent instances in
a single GPU. (2023). https://www.nvidia.com/en-
us/technologies/multi-instance-gpu/

Hu, Q., Sun, P., Yan, S., Wen, Y., & Zhang, T. (2021).
Characterization and Prediction of Deep Learning
Workloads in Large-Scale GPU Datacenters.
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis. https://doi.org/10.1145/3458817.3476223

Weng, Q., Yang, L., Yu, Y., Wang, W., Tang, X., Yang, G.,
& Zhang, L. (2023). Beware of Fragmentation:
Scheduling GPU-Sharing Workloads with Fragmenta-
tion Gradient Descent. 2023 USENIX Annual Technical
Conference (USENIX ATC 23), 995–1008.
https://www.usenix.org/conference/atc23/presentation/
weng

Weng, Q., Xiao, W., Yu, Y., Wang, W., Wang, C., He, J.,
Li, Y., Zhang, L., Lin, W., & Ding, Y. (2022). MLaaS
in the Wild: Workload Analysis and Scheduling in
Large-Scale Heterogeneous GPU Clusters. 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 945–960. https://www.use
nix.org/conference/nsdi22/presentation/weng

Yeh, T.-A., Chen, H.-H., & Chou, J. (2020). KubeShare: A
Framework to Manage GPUs as First-Class and Shared
Resources in Container Cloud. Proceedings of the 29th
International Symposium on High-Performance

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

142

Parallel and Distributed Computing, 173–184.
https://doi.org/10.1145/3369583.3392679

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M.,
Kwatra, N., Han, Z., Patel, P., Peng, X., Zhao, H.,
Zhang, Q., Yang, F., & Zhou, L. (2018). Gandiva:
Introspective Cluster Scheduling for Deep Learning.
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 595–610. https://www.
usenix.org/conference/osdi18/presentation/xiao

Turkkan, B., Murali, P., Harsha, P., Arora, R., Vanloo, G.,
& Narayanaswami, C. (2024). Optimal Workload
Placement on Multi-Instance GPUs. https://arxiv.org/
abs/2409.06646

Choi, S., Lee, S., Kim, Y., Park, J., Kwon, Y., & Huh, J.
(2021). Multi-model Machine Learning Inference
Serving with GPU Spatial Partitioning. https://arxiv.
org/abs/2109.01611

Li, B., Patel, T., Samsi, S., Gadepally, V., & Tiwari, D.
(2022). MISO: exploiting multi-instance GPU
capability on multi-tenant GPU clusters. Proceedings of
the 13th Symposium on Cloud Computing, 173–189.
https://doi.org/10.1145/3542929.3563510

Cui, W., Zhao, H., Chen, Q., Zheng, N., Leng, J., Zhao, J.,
Song, Z., Ma, T., Yang, Y., Li, C., & Guo, M. (2021).
Enable simultaneous DNN services based on
deterministic operator overlap and precise latency
prediction (p. 15). https://doi.org/10.1145/3458817.34
76143

De Bock, Y., Altmeyer, S., Huybrechts, T., Broeckhove, J.,
& Hellinckx, P. (2018). Task-set generator for
schedulability analysis using the TACLebench
benchmark suite. SIGBED Rev., 15(1), 22–28.
https://doi.org/10.1145/3199610.3199613

Job Generator for Evaluating and Comparing Scheduling Algorithms for Modern GPU Clouds

143

