Coloring 3D Avatars with Single-Image
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3D avatars are important for various virtual reality (VR) and augmented reality (AR) applications. High-
fidelity 3D avatars from real people enhance the realism and interactivity of virtual experience. Creating
these avatars accurately and efficiently is a challenging problem. A lifelike 3D human model requires precise
color representation. An accurate representation of the color is essential to capture the details of human
skin, hair, and clothing to match the real people. Traditional methods, such as 3D scanning and multi-image
modeling, are costly and complex, limiting their accessibility to an average user. To address this issue, we
introduce a novel approach that requires just a single frontal image to generate 3D avatars. Our method
tackles critical challenges in the field of single-image 3D avatar generation: color prediction. To achieve better
prediction results, we propose a hybrid coloring technique that combines model-based and projection-based
methods. This approach enhances 3D avatars’ fidelity and ensures realistic appearances from all viewpoints.
Our advancements have achieved better results in quantitative evaluation and rendering results compared to the
previous state-of-the-art method. The entire avatar-generating process is also seven times faster than the NeRF-
based method. Our research provides an easily accessible but robust method for reconstructing interactive 3D

avatars.

1 INTRODUCTION

3D avatars have become essential for virtual reality
(VR) and augmented reality (AR) applications, en-
hancing the realism in virtual communication, immer-
sive gaming, and digital entertainment. Creating life-
like avatars requires accurate 3D geometry and color
representation, particularly for details such as human
skin, hair, and clothing. Traditional approaches such
as 3D scanning (Yu et al.,, 2021) and multi-image
modeling (Jiang et al., 2022; Weng et al., 2022)
produce high-quality results but are costly, complex,
and time consuming, limiting accessibility to average
users.

To simplify the process, single image-based meth-
ods (AlBahar et al., 2023; Cao et al., 2022; Feng et al.,
2022; Huang et al., 2024; Qian et al., 2024; Saito
et al., 2019; Saito et al., 2020; Xiu et al., 2022; Xiu
et al., 2023) have emerged. These methods enable 3D
avatar generation using a single frontal image. These
methods eliminate the need for multiple images or
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specialized hardware, making them efficient and user-
friendly. However, a key challenge in single-image
3D avatar generation lies in coloring, particularly for
unobserved viewpoints like the backside.
Single-image coloring techniques generally fall
into two categories: model-based methods and
projection-based methods. In this paper, we propose a
hybrid coloring approach that combines model-based
prediction with projection-based methods to address
their own limitations. Our method retains fidelity
while inferring unseen regions by predicting the back-
side image from the frontal input using a modified
SPADE network (Park et al., 2019). Additionally, we
introduce a region-specific loss function (RS Loss)
to refine critical regions such as clothing, improv-
ing backside image quality. Our approach transforms
the challenging 3D coloring task into a more man-
ageable 2D problem, enabling efficient training using
text-to-image data augmentation. Our coloring results
achieve better quantitative results than state-of-the-
art (SOTA) and a 7x faster generation speed than the
multi-image modeling (NeRF-based) method.

903

In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 2: VISAPP, pages

903-910
ISBN: 978-989-758-728-3; ISSN: 2184-4321

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.



VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

Iy fﬁ\ /ﬁ\ ﬁ‘ 'ﬁ\

Figure 1: Two example results from our 3D avatar gener-
ating system. The images from left to right are the input,
front, and back views of the predicted avatar model. Input
images were generated by DALL-E (Ramesh et al., 2021).

2 RELATED WORKS

2.1 Traditional 3D Reconstruction

Traditional methods, including 3D scanners and
multi-image modeling, offer high-quality results.
Scanners, such as those employed in (Yu et al., 2021),
utilize 360-degree imaging to capture detailed 3D ge-
ometry but are expensive and time-consuming. Multi-
image methods offer lower equipment costs than tra-
ditional 3D scanners, but still require significant time
and computational resources for modeling (Weng
et al., 2022). Many of these methods leverage neu-
ral radiation fields (NeRFs) to reconstruct 3D objects
from multiple 2D images. NeRF-based approaches
use neural networks to represent scene radiance and
depth, allowing for detailed and realistic 3D recon-
structions. However, these methods are not suitable
for casual users due to their complexity and cost.

To address these issues, recent single-image-based
approaches have sought to democratize 3D avatar cre-
ation by reducing the need for specialized equipment
(Cao et al., 2022; Feng et al., 2022; Huang et al.,
2024; Qian et al., 2024; Saito et al., 2019; Saito et al.,
2020; Xiu et al., 2022; Xiu et al., 2023). Each single-
image approach offers unique advantages. However,
only a subset of works on single-image 3D avatar
generation has addressed the coloring aspect of 3D
avatars. Generating high-fidelity colors of a 3D avatar
from single images can be particularly challenging
compared to multi-image approaches due to the lim-
ited information available to generation models.

2.2 Single-Image Coloring

Single-image 3D avatar coloring methods fall broadly
into two categories:

1. Model-Based Methods: Model-based techniques
predict vertex colors or parametric models to re-
construct unseen regions (Cao et al., 2022; Saito
et al., 2019; Huang et al., 2024; Qian et al., 2024).
These methods utilize deep learning to infer plau-
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sible 3D geometry and coloring from limited in-
put data. Despite their ability to generalize well,
they often require extensive datasets for training
and struggle with high-fidelity backside genera-
tion due to limited information.

2. Projection-based methods: (Saito et al., 2020)
project input images directly onto a 3D model in
a pixel-aligned manner. This approach preserves
the resolution and texture quality of the input im-
age, but introduces artifacts, such as color dupli-
cation, particularly at the model’s edges and side
areas.

Given these observations and challenges, our aim
is to address their limitations while leveraging their
strengths using novel hybrid approaches.

3 METHODOLOGY

This work aims to construct high-fidelity colored 3D
avatars with a single-image model. To this end, we
begin by synthesizing a 3D mesh model using PI-
FuHD (Saito et al., 2020), a well-known model to
construct 3D avatars from single images. This is fol-
lowed by a novel coloring method, thereby achieving
our goal of reconstructing a high-fidelity 3D avatar.
The workflow of our avatar generation system is
shown in Figure 2. Our coloring method directly
projects the desired render result onto the 3D avatars.
We need to acquire the backside view from the single-
frontal image input. Once we have the backside im-
age, we can integrate it with the frontal image to cre-
ate a comprehensive color for the 3D avatars.

To complete this workflow, we have taken several
key steps and innovations that collectively form our
proposed method. First, we modified a well-designed
image-to-image model, SPADE (Park et al., 2019),
to generate the backside-color image of the target
person based on the frontal view image. We intro-
duce a region-specific loss function (RS loss) to re-
fine the generation of the avatar’s backside (Section
3.1). After obtaining a predicted backside image, we
project the front image and the predicted back image
onto their respective sides of the 3D avatar in a pixel-
aligned manner (Section 3.2). This direct projection
method ensures that the color closely aligns with the
contours and features of the 3D avatar mesh, enhanc-
ing its realism and fidelity.

Moreover, our strategy effectively transforms the
3D-generating challenge into a more manageable 2D
task. This transformation enables the augmentation
of training data through advanced text-to-image tools
(Section 3.3). Moreover, our approach focuses on
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Figure 2: Proposed workflow for coloring single-image 3D avatars. We generate a non-colored avatar using PIFuHD (Saito
et al., 2020) and predict the backside image with a generative model based on (Park et al., 2019). The complete avatar is
formed by projecting both front and backside colors onto the 3D model.

generating avatars in a specific pose during our exper-
iments, which aids further applications in whole-body
skeleton rigging automation.

3.1 Backside Image Generation

In some previous works (Cao et al., 2022)(Huang
et al., 2024)(Qian et al., 2024)(Saito et al., 2019),
neural network models were utilized to predict the
model’s color. Meanwhile, (Saito et al., 2020) pro-
jected the front image onto the model, resulting in
duplication of the frontal content. To address this is-
sue, we used an image-to-image model to predict the
backside color image. We then projected the frontal
and predicted backside image onto the 3D model. We
selected SPADE (Park et al., 2019) as our base model
due to its proven effectiveness and versatility. Al-
though SPADE traditionally operates on semantic im-
age synthesis, we have innovatively adapted it to pro-
cess RGB image synthesis. The label-to-image capa-
bility of SPADE demonstrates its advantages for our
task. Inherently, it understands and preserves the se-
mantic features between images. For example, it rec-
ognizes similarities in colors and textures between the
clothing on the front and back of the subjects. For in-
stance, if the subject wears a blue shirt on the front,
SPADE ensures that the generated backside image
maintains a consistent color and texture for the shirt.
This semantic consistency extends to other clothing
items such as pants, ensuring a coherent and realistic
appearance throughout the avatar. Our model archi-
tecture is shown in Figure 3.

However, during our experimental process, we ob-
served some intriguing phenomena. Cloth regions of-
ten struggle with predictability because of differences

between front and back. For example, when a subject
wore a jacket, the cloth underneath the jacket affected
the generation of the backside image, as shown in Fig-
ure 4. This resulted in the backside appearing more
similar to the front rather than reflecting the typical
colors and textures one would expect on the back of
the jacket. This circumstance prompted us to delve
deeper into the model to handle such scenarios more

b True

Noise — —
e

Input frontal image Generator — False

Structure detail

Discriminator

Convolutional
block Ground truth backside image

Figure 3: Our image-to-image model architecture. The
SPADE blocks mention in structure detail are from (Park
et al., 2019).

Figure 4: A visual example illustrates how the cloth un-
derneath a jacket influences the appearance of the gener-
ated backside image. The input image were generated by
DALL-E (Ramesh et al., 2021).
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effectively.

The following formula is the objective function
of the Pix2Pix generator (Isola et al., 2017), a GAN-
based model.

Legan(G,D)
= Eyy[logD(y)] + Ex ;[log(1 — D(G(x,2))]

In this formula, G and D represent the
generator(G) and discriminator(D) respectively. z is
the noise factor we input when generating images. x
is the frontal input image in our task. y is the out-
put backside image we get from the G and y’ is the
ground truth. Based on this formula, the objective
of G is to minimize the loss function. This means
G aims to produce images that can mislead D into be-
lieving that they are real images. The G wants the
D to be unable to distinguish between the generated
images and the real images. Therefore, the genera-
tor strives to minimize the second term E, ;[log(1 —
D(G(x,z))|(Discriminator loss). So, D(G(x,z)) is
as close to 1 as possible, indicating that the gen-
erated images appear as realistic as the real im-
ages. Moreover, to further enhance the conditioning
constraints, an additional mean squared error(MSE)
loss Eyy [[[y — G(x,2)|[*}(GAN loss) is to specifi-
cally compare the generated image with the ground
truth. This leads the generated images to resemble
the ground truth as closely as possible.

To address the unique challenge we encountered
in this task, we implemented a refinement in our ap-
proach. We introduced a region-specific constraint to
the image-to-image model, focusing on the cloth area.
The region-specific constraint is achieved by modify-
ing the traditional loss function. For each input image,
we utilize a human parsing extractor proposed by (Li
et al., 2020) to segment the body of the target person,
as shown in Figure 5. We then extract the cloth part
from the results of the segmentation and turn it into a
mask, denoted y. The mask 7y then serves as a guide
to extract the exact part of the cloth region from the
predicted (M p) and the ground truth image (Mg).

(D

{Mp = Predeicted image - Y )

Mg = Groud Truth -y

The proposed RS loss is to measure the MSE be-
tween Mp and Mg. The new loss function comprises
the existing generator, the discriminator loss, and the
region-specific loss. The loss function is shown in
Equation 3.

RS loss

= MSE(Mp,Mg) + GAN loss + Discriminator loss
3)
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We took corrective action since we observed a
high incidence of errors in the cloth area. We added an
extra loss function for this area to guide the model’s
attention and prioritize accurate predictions. As a re-
sult, this enhancement improves the model’s ability
to generate realistic backside images with accurate
clothing details.

Figure 5: A visual example of our region-specific refine-
ment. The right image is the segmentation result of the in-
put image on the left. The purple area in the segmentation
result represents our focused cloth area.

3.2 Projection Processing

In PIFuHD (Saito et al., 2020), directly projecting the
image onto the 3D model leads to two main problems.
First, determining which color map a vertex belongs
to, either frontal or backside, poses a challenge. Sec-
ond, side areas may experience mismatches that lead
to discontinuities in the color of an avatar. To ensure
the coherence and realism of 3D avatars, we adopt
a projection strategy that leverages information from
both frontal and back images. For each vertex (V), the
normal vector () is computed relative to the camera
vector (C). Here, we utilize the inner product of N
and C to determine to which side V belongs. The in-
ner product formula is shown as follows:

N-C=|N|-|C|-cos® 4)

0 is the angle between N and C. According to the
given formula, when 0 is acute, cosO is greater than
zero. We can conclude that the inner product will be
greater than zero. Similarly, when 0 is obtuse, cos0
is less than zero. We can infer that the inner product
will be less than zero in this case. More specifically,
if the angle 0 between N and C is acute (cos® >= 0),
the vertex V is identified as belonging to the front area
of the model. In contrast, if cos® < 0, V is classified
as part of the back area. With these computed inner



products, the vertices are categorized based on their
orientation relative to the camera direction.

{f\"é >= 0, the vertex is front 5)

N.-C < 0, the vertex is back

Based on the vertex categorization, color informa-
tion is selected from the appropriate image view. For
front-facing vertices, the color values are extracted
from the front image. For back-facing vertices, the
color values are sourced from the predicted backside
image. Both front and back are projected in a pixel-
aligned manner. In this way, the front and back im-
ages can correctly project their pixels onto 3D avatars.
In addition, we expand the edges of the front and
back images. The expansion process ensures that ev-
ery vertex can find a corresponding color value from
the expanded images. This enhances the complete-
ness of our color projection method. By integrating
these multiple strategies, our projection process ex-
cels in reproducing the visual quality of 2D photos
onto 3D avatars.

3.3 Addressing Dataset Limitations

The image-to-image model proposed by (Park et al.,
2019) efficiently handled the task of predicting the
backside image. However, we faced a significant
challenge due to the limited availability of large-scale
datasets that feature frontside and backside images
of subjects in matching poses. Although some ap-
proaches, such as (AlBahar et al., 2021)(AlBahar
et al., 2023), did not require paired datasets, they re-
lied on at least two additional models during infer-
ence. In addition, an additional optimization process
was necessary to improve the quality of the back im-
age. These approaches did not align with our objec-
tive of making the overall process more accessible and
efficient. Given these considerations, we chose an
approach that required a paired dataset but achieved
one-step generation of the backside image. Recogniz-
ing the requirement for paired datasets as a potential
bottleneck in our research, we created a dataset to ad-
dress this issue. We used standard text-to-image Al
tools such as DALL-E (Ramesh et al., 2021). These
tools allowed us to generate a synthetic dataset that
met our requirements.

The prompt for the Al tool was crafted to empha-
size the requirements of ’full body’ and ’front and
back’ images. This ensured that the generated dataset
accurately represented the needed perspectives for
training. Example prompt: "A full body real per-
son standing wearing a jacket, including both frontal
photo and back full body photo, white background,
real person.”

Coloring 3D Avatars with Single-Image

4 EXPERIMENTS

4.1 Dataset

We collect a set of datasets generated using Al tech-
niques (Ramesh et al., 2021)(Rombach et al., 2021).
This dataset consists of 6,499 pairs of humans. Each
pair shows a person standing in a specific pose, with
images from both the front and back views. Out of
these, 5,999 pairs were used as the training set, while
the remaining 500 pairs were for the test set.

4.2 Implementation Details

For our experiments, we utilized PyTorch as our deep
learning framework due to its generalizability. The
experiments were conducted on an NVIDIA RTX
2080 Ti GPU. We implemented the image-to-image
model and optimized it using the Adam optimizer
with a learning rate of 0.01. The training images
were first cropped to the bounding box of the human
and then rescaled to a resolution of 512x512. The
training process involved feeding the set of 5999 pairs
through the model over approximately 500 epochs.

For evaluation, we used the test set of 500 pairs to
assess the model’s backside synthesis performance in
terms of MSE and other relevant metrics.

4.3 Quantitative Evaluation
4.3.1 Evaluation Metrics

To evaluate the quality of our results, we used sev-
eral widely used evaluation methods. These included
the structural similarity index measure(SSIM), the
peak signal-to-noise ratio (PSNR), and the learned
perceptual image patch similarity(LPIPS). SSIM is a
metric that measures the similarity between two im-
ages. Consider luminance, contrast, and structure,
providing a comprehensive assessment of image qual-
ity (Wang et al., 2004). A higher SSIM value sug-
gested that the quality of the predicted image is closer
to the ground truth or the reference image. PSNR
measured the reconstruction quality by comparing the
maximum possible power of a signal and the power of
the corrupted noise. Higher PSNR values suggested
better image quality with less distortion. LPIPS is
a metric that measures the perceptual similarity be-
tween two images. Using deep neural networks, it
models human visual perception, focusing on how
humans perceive image differences. A lower LPIPS
value indicates that the predicted image is perceptu-
ally closer to the reference image.
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4.3.2 Comparison

We implemented Pose-with-Style (PWS)(AlBahar
et al., 2021), PIFu (Saito et al., 2019), and Magic123
(Qian et al., 2024) to compare with our backside re-
sults. Quantitative comparisons are shown in Table
1, while visual comparisons are shown in Figure 6.
Most methods perform well in frontal rendering, but
exhibit less stability when rendering from the back.
Therefore, we focus our experiments on the results
of the back-side rendering. This decision was made
to avoid potential biases associated with frontal ren-
dering data. It also allowed us to better investigate
and compare the performance of various methods,
specifically in backside rendering. Our method out-
performed all the others with an SSIM of 0.91, PSNR
of 32.96, and LPIPS of 0.18. These results demon-
strated our method’s superior performance in gener-
ating back-side images. Our method surpassed others
in terms of image similarity and quality. Furthermore,
our method showed the highest SSIM and PSNR val-
ues, indicating higher image quality.

Table 1: Backside comparison.

Evaluation methods | SSIM | PSNR | LPIPS
PWS 0.85 13.24 | 0.28
PIFu 0.88 | 14.81 | 0.23
Magicl123 0.86 13.76 | 0.26
Ours 0.91 16.48 | 0.21

4.4 Ablation Studies
4.4.1 Data Augmentation

Due to the change in the task from 3D to 2D, we
were able to significantly increase the training dataset.
Initially, our training dataset was rendered from (Yu
et al.,, 2021). However, the results were not satis-
factory because of the small size of the dataset. To
address this issue, we employ text-to-image models
to generate a more extensive training dataset, thereby
greatly enhancing the quantity and diversity of our
training data. Table 2 and Figure 7 compare the per-
formance before and after this substantial increase in
training data.

Table 2: Data augmentation.
Evaluation methods SSIM | PSNR | LPIPS

w/o data augmentation | 0.89 15.25 | 0.22
w/ data augmentation | 0.91 16.48 | 0.21
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Figure 6: Comparison of our results with several previous
works (AlBahar et al., 2021)(Qian et al., 2024)(Saito et al.,
2019)(Saito et al., 2020). Our results demonstrate superior
visual performance on both the side and back areas. Input
images are from (Ramesh et al., 2021) and (Rombach et al.,
2021).

4.4.2 Region Specific Refinement

To assess the impact of the region-specific refinement
on our proposed method, we performed an ablation
study comparing the performance with and without
this refinement. The quantitative results are shown in
Table 3, and the visual comparisons are in Figure 8.
Without region-specific refinement, the model strug-
gled to accurately predict cloth regions, leading to in-
consistencies in cloth texture and appearance, espe-
cially in complex clothing items such as jackets. With
region-specific refinement, the model performs bet-
ter in generating realistic and coherent backside im-
ages, particularly in the cloth regions. The refinement
helped the model focus on the cloth area and prioritize



accurate predictions, enhancing quality and realism.

Table 3: Region specific refinement.

Evaluation methods | SSIM | PSNR | LPIPS
w/o RS loss 0.91 16.21 | 0.21
w/ RS loss 0.91 1648 | 0.21

Figure 7: Visual comparison of image generated with and
without data augmentation. The images from left to right
are, respectively, the input image, the result without data
augmentation, and the result with data augmentation. The
training dataset increased from 525 to 5999. The prediction
quality significantly improved after data augmentation.

Figure 8: Visual comparison of image generated with and
without RS refinement. The images from left to right are,
respectively, the input image, the result without RS refine-
ment, and the result with RS refinement. The quality signif-
icantly improved after applying RS refinement.

4.4.3 Side Area Refinement

We have compared the performance of the side area
refinement before and after its implementation. The
visual comparison is shown in Figure 9. We do not
provide quantitative results in this ablation study since
we lack the ground truth for the side area render re-
sults. However, based on the visual results, the side
area artifacts are significantly reduced with the imple-
mentation of the refinement. The refinement visibly
minimized these issues, resulting in smoother tran-
sitions and more coherent colors across the model’s
surface.

Coloring 3D Avatars with Single-Image
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Figure 9: Two visual comparisons of side area refinement
before (left) and after (right) implementation. The images,
after refinement, show a noticeable reduction in artifacts
compared to their counterparts on the left. The deformities
observed in the avatars are due to the imperfect generation
by PIFuHD.

4.5 Limitation and Future Work

While our approach leveraged the reconstruction re-
sults from PIFuHD (Saito et al., 2020), it inherited
any limitations or imperfections present in their re-
constructions. This dependency on reconstruction
quality could sometimes affect the quality of our col-
oring approach.

We aim to refine and expand our coloring method
for future work to create more detailed 3D avatars.
By doing so, we hope to generate 3D avatars with
realistic colors that resemble real humans in shape
and finer details. This will involve integrating high-
fidelity reconstruction methods with advanced color-
ing techniques to achieve more accurate and lifelike
3D avatars.

S CONCLUSION

We proposed a system that generates high-fidelity
3D avatars from a single image. This system ad-
dresses the main challenge in the field of single-
image-generating models: color prediction. Our col-
oring method hybridizes the advantages of both pre-
vious model-based and projection-based methods to
predict realistic color representations. We introduced
a semantic-based region-specific loss function to en-
hance color prediction accuracy. In conclusion, our
method outperformed the previous state-of-the-art ap-
proach by achieving better quantitative results and a
7x faster inference time compared to the NeRF-based
method(Qian et al., 2024). Our system significantly
lowers the barrier for the average user to reconstruct
a 3D avatar in virtual space compared to the previ-
ous. Our research will contribute to vigorous de-
velopment in various 3D avatar applications, facili-
tating greater accessibility and immersion in VR/AR
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environments. This advancement improves the user
experience and opens new possibilities for using 3D
avatars in games, social networks, professional train-
ing, and virtual meetings.
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