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Detecting violent behaviors in video content is crucial for public safety and security. Ensuring accurate iden-
tification of such behaviors can prevent harm and enhance surveillance. Traditional methods rely on manual
feature extraction and classical machine learning algorithms, which lack robustness and adaptability in diverse
real-world scenarios. These methods struggle with environmental variability and often fail to generalize across
contexts. Due to the nature of violence content, ethical and legal challenges in dataset collection result in a
scarcity of data. This limitation impacts modern deep learning approaches, which, despite their effectiveness,
often produce models that struggle to generalize well across diverse contexts. To address these challenges,
we propose VIVID: Vision-Language Integration for Violence Identification and Detection. VIVID leverages
Vision Language Models (VLMs) and a database of violence definitions to mitigate biases in Large Language
Models (LLMs) and operates effectively with limited video data. VIVID functions through two steps: key-
frame selection based on optical flow to capture high-motion frames, and violence detection using VLMs to
translate visual representations into tokens, enabling LLMs to comprehend video content. By incorporating
an external database with definitions of violence, VIVID ensures accurate and contextually relevant under-
standing, addressing inherent biases in LLMs. Experimental results on five datasets—Movies, Surveillance
Fight, RWF-2000, Hockey, and XD-Violence— demonstrate that VIVID outperforms LLM-based methods
and achieves competitive performance compared with deep learning-based methods, with the added benefit of

providing explanations for its detections.

1 INTRODUCTION

Detecting violent behaviors in video content is essen-
tial for public safety and security research. Video
violence detection aims to identify actions involv-
ing physical force that harm individuals or damage
property, such as fighting and assault (Ullah et al.,
2023). It has various applications in video surveil-
lance, such as automated systems that can promptly
deliver timely alerts for hazardous scenarios, enabling
swift responses (Mumtaz et al., 2023).

Traditional methods primarily focus on manual
feature extraction from video data (De Souza et al.,
2010; Bermejo et al., 2011; Deniz et al., 2014; Senst
et al., 2017; Das et al., 2019; Febin et al., 2020).
These methods manually extract spatial, temporal, or
spatiotemporal features and use supervised or unsu-

https://orcid.org/0009-0008-3082-8921
5@ nhttps://orcid.org/0000-0002-8841-6304
¢ https://orcid.org/0000-0001-7743-6177

Gonzalez, J. A. A., Matsukawa, T. and Suzuki, E.

Leveraging Vision Language Models for Understanding and Detecting Violence in Videos.
DOI: 10.5220/0013160000003912

Paper published under CC license (CC BY-NC-ND 4.0)

pervised classification methods to determine whether
the content is violent. However, these methods ex-
hibit deficiencies in robustness and adaptability in
real-world scenarios due to limitations such as instal-
lation angles, diverse locations, varying backgrounds,
and video resolutions (Park et al., 2024).

Several works (Park et al., 2024; Abdali and Al-
Tuma, 2019; Sudhakaran and Lanz, 2017; Cheng
et al., 2021; Akt1 et al., 2019) explore deep learning
models that autonomously identify features and pat-
terns to classify violent behavior. However, datasets
specifically related to video violence detection are
scarce (Mumtaz et al., 2023). Despite their favor-
able performance, the practical applicability of these
methods heavily relies on the training data. Training
deep models or learning motion patterns from an in-
sufficient set of violent videos results in non-generic
models which may not be practical for real-world sce-
narios. Therefore, current violent detection methods
are insufficient for generalizing and identifying vio-
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(a) BLIP-2.
Figure 1: LLM’s inherited bias examples: they contain gender, occupation, age, race, and other biases.

lence in real-world contexts.

Recently, several efforts have been made to con-
struct frameworks for visual understanding based on
Vision Language Models (VLMs) (Li et al., 2023a;
Dai et al., 2023; Panagopoulou et al., 2023; Lin et al.,
2023; Li et al., 2023b). These models take images
or videos as input and utilize Large Language Models
(LLMs) to provide descriptions or answer questions
based on the visual content.

However, LLMs inherit biases from their training
data, impacting their ability to generalize across vari-
ous problems, including violence detection. For in-
stance, as shown in Figure 1b, consider a scenario
where the input of the VLM is a video of a police of-
ficer subduing and arresting someone. This scenario
contains elements of violence, such as physical force
and restraint, which can cause harm or distress. The
VLM classified this scenario as non-violent due to an
inherent bias from the training data, reflecting societal
perceptions of law enforcement actions. This misclas-
sification arises from the LLM’s reliance on biased
data, skewing its interpretation of violent behavior.

Furthermore, guardrails in LLMs, aligned with
ethical standards, may lead to ambiguous answers
on sensitive topics. Fine-tuning video understanding
methods to align with video content (Lin et al., 2023;
Li et al., 2023b) can further alter their understanding.
Addressing bias and ensuring robustness across dif-
ferent scenarios remains an ongoing challenge.

To overcome these challenges, we propose a novel
method called VIVID: Vision-Language Integration
for Violence Identification and Detection. VIVID
is designed for scenarios where video or image data
is scarce or insufficient. Specifically, our approach
leverages a VLM in conjunction with an external
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(b) Video-LLaMA.

(¢) Video-LLaVA.

knowledge violence database. This combination
helps address inherent biases and improves the detec-
tion and identification of violent behaviors by provid-
ing accurate and contextually relevant information.

VIVID involves two main steps: key-frame selec-
tion and violence detection. In the first step, we an-
alyze the optical flow within the video to capture es-
sential moments that may potentially contain forceful
actions capable of causing harm or damage.

In the second step, we leverage a VLM and an
LLM to serve as our violence detector. VLM models
are pre-trained on large datasets containing paired im-
ages and texts, allowing them to understand and gen-
erate texts based on images. LLMs, on the other hand,
are designed to comprehend and generate human-like
language, meaning that if a concept such as violence
can be semantically defined, an LLM would have the
ability to identify the concept in a given context.

We propose to address the intrinsic biases of
LLMs by using an external knowledge base that
contains definitions of violence and violence-related
terms. We handle the bias in two main steps: (1) iden-
tifying the most relevant violence-related definition
associated with the video content, and (2) combin-
ing this definition with a video representation to en-
hance the LLM’s accuracy related to violence. These
steps ensure that the LLM’s responses are both ac-
curate and contextually relevant. VIVID requires
no additional training and small computational over-
head during inference, making it efficient and practi-
cal for real-world applications. Additionally, VIVID
not only classifies violent content but also provides an
explanation in text, allowing users to understand why
the content is deemed violent.

In summary, our contributions are as follows:
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* We propose VIVID, a novel method that in-
tegrates Vision-Language Models (VLMs) with
Language Models (LLMs) for robust and inter-
pretable video violence detection.

¢ We offer a zero-shot classification alternative, al-
lowing the model to classify violent content with-
out additional training, making it particularly suit-
able for scenarios with limited labeled data.

* We propose a multimodal retrieval method to
compare visual and text features, addressing bi-
ases inherent in LLMs and leading to more accu-
rate and contextually relevant results.

* By combining VLMs with an external knowledge
base, our method effectively captures complex vi-
sual and contextual cues, improving its accuracy
in detecting violence.

* Our framework provides clear explanations for its
classifications, enhancing user trust and under-
standing its decisions.

* We demonstrate that the proposed method consis-
tently outperforms other methods based on LLMs
across multiple datasets, highlighting its effective-
ness in identifying violent content.

2 RELATED WORK

2.1 Violence Detection

Violence detection in videos is a critical area of re-
search with significant implications for public safety
and surveillance. Traditional approaches to vio-
lence detection have predominantly relied on manu-
ally crafted features and classical machine learning
algorithms. Early methods like those proposed by
De Souza et al. (De Souza et al., 2010) and Deniz et
al. (Deniz et al., 2014) focused on extracting spatio-
temporal features from video frames to identify vio-
lent actions. For instance, De Souza et al. (2010)
(De Souza et al., 2010) utilized local spatio-temporal
features with the Bag of Visual Words (BoVW) rep-
resentation, extracting features using descriptors such
as Scale-Invariant Feature Transform (SIFT). These
features were then classified using Support Vector
Machines (SVMs) to identify violent actions. Simi-
larly, Deniz et al. (2014) (Deniz et al., 2014) devel-
oped a method for fast violence detection by extract-
ing extreme acceleration patterns through the applica-
tion of the Radom transform to the power spectrum of
consecutive frames, using SVMs to rapidly identify
violent events.

Senst et al. (2017) (Senst et al.,, 2017) em-
ployed global motion-compensated Lagrangian fea-
tures and scale-sensitive video-level representation to
capture motion patterns and dynamics within video
footage. This method utilized histogram-intersection-
based clustering to detect instances of violence ef-
fectively. Das et al. (2019) (Das et al., 2019) uti-
lized Histogram of Oriented Gradient (HOG) features
to capture edge and gradient information from video
frames. These features were used with classifiers such
as SVM, Logistic Regression, Random Forest, Linear
Discriminant Analysis (LDA), Naive Bayes, and K-
Nearest Neighbors (KNN) are used for classification
purposes.

Hassner et al. (2012) (Hassner et al., 2012) intro-
duced the concept of violent flows, utilizing optical
flow and motion regions to detect violent activities in
real time. This approach involved analyzing motion
patterns within video frames to identify sudden and
aggressive movements, which were then classified us-
ing SVMs.

However, these traditional methods exhibit sev-
eral limitations when applied to real-world scenarios.
They often struggle with robustness and adaptabil-
ity to diverse environmental factors, such as differ-
ent installation angles, backgrounds, and video reso-
lutions. For instance, a video captured from a high
angle might obscure crucial details, while a cluttered
environment may introduce noise, complicating fea-
ture extraction and analysis. Consequently, there has
been a shift towards deep learning-based methods in
recent years to address these challenges and improve
the accuracy and reliability of violence detection sys-
tems.

Recent advancements in deep learning have led to
significant improvements in violence detection sys-
tems. These methods leverage the power of neu-
ral networks to automatically learn and extract fea-
tures from video data, often leading to superior per-
formance compared to traditional approaches.

One of the latest methods is by Park et al. (2024)
(Park et al., 2024), who proposed a Conv3D-based
network that combines optical flow and RGB data
to detect violent behaviors in videos. This method
utilizes three-dimensional convolutions to capture
spatio-temporal features from video frames, provid-
ing a comprehensive understanding of motion and ap-
pearance. Similarly, Abdali and Al-Tuma (2019) (Ab-
dali and Al-Tuma, 2019) introduced a robust real-time
violence detection system using Convolutional Neu-
ral Networks (CNNs) and Long Short-Term Memory
(LSTM) networks. By capturing both spatial and tem-
poral features, this method effectively enables the de-
tection of violence in video sequences.
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Figure 2: LLM’s guardrail bias example. This example
shows an ambiguous answer from Video-LLaMA.

Sudhakaran and Lanz (2017) (Sudhakaran and
Lanz, 2017) developed a method leveraging con-
volutional LSTM networks to detect violent activi-
ties. The convolutional layers extract spatial features,
which are then processed by LSTM units to capture
temporal patterns. Furthermore, Wu et al. (2020)
(Wu et al., 2020) proposed a multimodal approach
that combines audio and visual information to detect
violence under weak supervision, particularly in sce-
narios where one modality might be less effective

Traoré et al. (2020) (Traoré and Akhloufi, 2020)
used a combination of Deep Recurrent Neural Net-
works (RNNs) and CNNs to detect violence in videos.
The CNNs are responsible for extracting spatial fea-
tures from video frames, while the RNNSs, particularly
LSTM networks, capture the temporal dynamics.

Another approach by Ullah et al. (2019) (Ullah
et al., 2019) leverages 3D Convolutional Neural Net-
works (3D CNNi5) to extract spatiotemporal features
from video sequences for violence detection. The 3D
CNN captures both spatial and temporal dimensions
of violent actions.

However, these methods are often limited by the
scarcity of violence-specific datasets, resulting in
non-generalizable models. Training these models on
a limited amount of data can affect their ability to
generalize effectively across various real-world sce-
narios. Additionally, the sensitive nature of violent
content poses challenges for dataset collection due to
ethical and legal considerations, further complicating
the development of robust and generalizable models.
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2.2 Vision Language Models

Vision Language Models for image understanding (Li
et al., 2023a; Dai et al., 2023) and video understand-
ing (Zhang et al., 2023; Lin et al., 2023; Li et al.,
2023b; Panagopoulou et al., 2023) process images or
videos as input and leverage LLMs to generate de-
scriptions or respond to queries based on the visual
content. This integration of visual and textual data fa-
cilitates a more holistic comprehension of the content.

The Salesforce Research Division proposed the
“BLIP family models,” which include BLIP-2 (Li
et al., 2023a), InstructBLIP (Dai et al., 2023), and
X-InstructBLIP (Panagopoulou et al., 2023). These
models share a common goal of integrating vision
and language models and building upon each other’s
architectures and concepts. For instance, BLIP-2
(Li et al., 2023a) is a vision-language pre-training
method that bootstraps from frozen pre-trained uni-
modal models to bridge the modality gap by using
a Querying Transformer (Q-Former). The Q-Former
is a trainable module designed to connect a frozen
image encoder with a frozen LLM. Similarly, In-
structBLIP (Dai et al., 2023) extends BLIP-2 with
the aim of creating general-purpose vision-language
models through instruction tuning, thereby enhancing
the model’s ability to follow natural language instruc-
tions. Furthermore, X-InstructBLIP (Panagopoulou
et al.,, 2023) extends the capabilities of Instruct-
BLIP by enabling cross-modal reasoning across var-
ious modalities, including video, without extensive
modality-specific pre-training.

Similarly, Video-LLaMA (Zhang et al., 2023) en-
ables frozen LLMs to understand both visual and au-
ditory content in videos. It features two branches: the
Vision-Language Branch and the Audio-Language
Branch, which convert video frames and audio signals
into query representations compatible with LLMs en-
hancing its ability to comprehend complex video con-
tent.

However, these methods rely entirely on frozen
LLMs, which introduces potential biases inherited
from the training data. These biases can significantly
affect the model’s capacity to generalize across di-
verse contexts, including the detection of violent con-
tent. For example, suppose the training data encom-
passes biases related to specific demographics or sce-
narios. In that case, the model may encounter dif-
ficulties in accurately interpreting or responding to
novel, unseen data that diverges from these patterns
as shown in Figure 1. This issue is particularly criti-
cal in applications such as violence detection, where
an accurate and unbiased interpretation is essential.

Moreover, many LLMs are equipped with



Leveraging Vision Language Models for Understanding and Detecting Violence in Videos

A
User
No, the video does not

Is this video
violent?

The man is seen playing
the drums and the
\camera pans around him.

(a) Video-LLaVA.

- - Ko
show any violent actions. /4 ==

~

e Is this video
AA violent?

User

/No, this video is not -
violent. It shows a group
of people dancing and
having fun in a

%

\[estaurant.

\

(b) LLaMA-VID.
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guardrails intended to align with ethical standards and
societal expectations. These guardrails are designed
to prevent generation of harmful or inappropriate con-
tent. However, these measures can inadvertently in-
troduce additional biases (Dong et al., 2024). For ex-
ample, when dealing with sensitive topics such as vi-
olence, LLMs may generate ambiguous responses to
avoid potential controversy. This ambiguity can hin-
der the model’s effectiveness in providing clear and
precise answers, particularly in critical applications
like violence detection or other safety-related tasks,
as illustrated in Figure 2.

Other methodologies, such as those proposed in
Video-LLaVA (Lin et al., 2023) and LLaMA-VID (Li
et al., 2023b), involve not only training a model to
bridge the gap between visual and language modali-
ties but also fine-tuning the LLMs to align with video
content for better understanding. For instance, Video-
LLaVA (Lin et al., 2023) is a model that handles both
images and videos. It aligns image and video repre-
sentations into a unified visual feature space, enabling
an LLM to learn from this unified visual representa-
tion. Additionally, LLaMA-VID (Li et al., 2023b)
is a method where each frame is transformed into
two distinct tokens: the context token, which captures
the overall high-level context, and the content token,
which focuses on specific visual details. During train-
ing, the LLM learns to associate these tokens with the
corresponding visual and textual data.

These adaptations entail modifying the model’s
parameters based on the specific attributes of the
video data. While this process can enhance the
model’s performance in comprehending and interpret-
ing video content, it can also alter the LLM’s under-
standing within specific contexts. Consequently, the
model’s responses may become excessively tailored
to the content observed in the videos used for fine-
tuning, potentially diminishing its ability to general-

ize to new, diverse scenarios as shown in Figure 3.

3 PROBLEM FORMULATION

Our objective is to detect violence within video clips
in the context of human monitoring. Given the
scarcity, diversity, and limited availability of labeled
data specifically containing violent content, we ap-
proach this problem as a zero-shot violence detec-
tion scenario, i.e., without prior training on video
clips from target datasets that include violence or non-
violence classes.

Following this paradigm, the model receives as in-
put a set of video clips {(C;)}}_, . For C;, the model
produces two outputs: an associated class prediction
9; € {0,1} and an explanatory text e; detailing the
classification decision. In this context, a class label
0 represents non-violent content, while 1 denotes vi-
olent content.

Our focus lies in the specific detection of physical
violence defined as an act attempting to cause, or re-
sulting in, pain and/or physical injury, or damage to
the state of something (American Psychological As-
sociation, 2024).

To assess the effectiveness of our method, we em-
ploy accuracy and Fl-score. These measures collec-
tively provide insights into the model’s performance,
ensuring robustness and reliability in detecting violent
content within video clips.

4 PROPOSED METHOD

4.1 Overview

We propose VIVID: Vision-Language Integration for
Violence Identification and Detection. This method
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Input: Video clip C, Knowledge base KB,
Number of frames k
Output: Prediction y and Explanation e

// Key-frame Selection;
key_frames < Top k frames
with the greatest magnitude of motion;

// Rest: Violence Detector;

// Modality Translator;

queries < [|;

for each frame I; € key_frames do
V, + Q_Former(I;);

append (queries, V;);

end

// Definition Retriever;

definitions < [J;

for each query V, € queries do

D; < retrieve_definition(V,,KB);
append (definitions, D;);

end
D, « select_definition(definitions);
V, + reorder_queries(queries, Ds);

// Modality Translator;
T, < FC_layer(V});

// Output Generator;

Q, < ”Is this video violent?”;

T, < LLM_tokenizer(Q,);

T4 < LLM_tokenizer(Dy);

final_prompt «+ create_prompt(T,, Ty, Tq);

(9,e/) < LLM _process(final_prompt);
return (y,e)

leverages the strengths of Vision-Language Models
(VLMs) and Language Models (LLMs) to provide a
robust, interpretable solution for video violence de-
tection.

The detailed steps of the VIVID algorithm, out-
lined in Algorithm 1. It involve two main processes:
key-frame selection and violence detection.

In the first step, key-frame selection, the model
utilizes optical flow (Bobick and Davis, 2001) anal-
ysis to quantify motion within the video. For each
frame I, in the video C, the magnitude of motion is
computed and stored. The frames with the highest
motion activity are selected as keyframes, capturing
essential moments that potentially contain violent ac-
tions.

In the second step, violence detection, the model
performs several sub-tasks to analyze the keyframes.
It begins by translating each frame into visual queries
V; through the Q-Former, enabling direct comparison
with text embeddings. The definitions related to each
query D, are then retrieved from the knowledge base
KB. The most relevant definition for the video Dy is
then selected from the list that contains all the defi-
nitions of each frame. The append(x,y) function is
used to add the element y to the list x. In this context,
it is utilized to add new items to lists queries and def-
initions during the processing steps.

Dy is used to reorder V, to mitigate the ‘lost in
the middle’ effect, which will be explained in detail
in Section 4.3.2. The reordered queries V) are subse-
quently processed through a fully connected layer to
create visual tokens. A prompt is created using the vi-
sual tokens, definition tokens, and user query tokens.
The final prompt is then processed by the language

model to produce a label indicating whether the con-
tent is violent or not, along with an explanatory text
detailing the classification decision.

Algorithm 1: Violence Detection using VIVID for a sin-
gle video clip C.
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A summary of the architecture is shown in Figure 4.

4.2 Key-Frame Selection

As we argued in Section 1, violent content is scarce
and has limited availability. This scarcity makes it
challenging to train models that can generalize pat-
terns associated with violent actions. To address this
issue, we propose using optical flow to extract poten-
tial violent frames.

Optical flow (Bobick and Davis, 2001) effectively
captures dynamic movements in video sequences,
which are often indicative of violent behaviors. By
semantic definition, a violent action involves forceful
behaviors like hitting, kicking, or grappling, which in-
herently exhibit a greater degree of motion compared
with other non-violent activities (Herrenkohl, 2011).
Consequently, we extract potential violent frames by
calculating the norm of dense optical flow vectors,
summarizing the overall motion magnitude.

Several alternatives to optical flow could be con-
sidered for frame extraction, including traditional ap-
proaches like Frame Differencing and Background
Subtraction (Szeliski, 2022), as well as more ad-
vanced techniques such as Motion History Images
(MHI) (Bobick and Davis, 2001). For instance,
Frame Differencing calculates the difference between
consecutive frames to detect changes in the scene.
While simpler and computationally less expensive, it
may miss subtle movements and fail to capture com-
plex motion patterns associated with violent actions
(Szeliski, 2022). Similarly, Background Subtraction
isolates moving objects by subtracting a background
model from each frame. However, it is susceptible
to lighting changes and background clutter, leading to
false detections (Szeliski, 2022). MHIs create a mo-
tion that represents a single image over time by ac-
cumulating motion information. However, they may
blur detailed motion information and do not provide
specific frames in the video (Sun et al., 2022), mak-
ing it challenging to identify and extract frames cor-
responding to specific violent actions.

Unlike these alternatives, optical flow offers a
balanced approach that effectively captures dynamic
motion. It quantifies the velocity and direction of
motion at each pixel, providing detailed information
about movements within the scene (Szeliski, 2022).
This granularity is essential for identifying violent
actions, which typically involve rapid and forceful
movements. Additionally, optical flow is computa-
tionally efficient and can be applied to both low-
resolution and high-resolution video data.

The importance of using optical flow in violence
detection scenarios has been emphasized in several

works (Dalal et al., 2006; Hassner et al., 2012; Wang
et al., 2013; Park et al., 2024). These methods utilize
optical flow to extract trajectories, build descriptors,
or extract features from video data. However, they
primarily use optical flow for training models to learn
patterns from violent video content, whereas our ap-
proach focuses on selecting key-frames directly based
on motion magnitude.

Consider a video clip C that is decomposed into a
set of frames, where a frame at time ¢, represented as
I(x,y,t), with (x,y) being the pixel coordinates. The
dense optical flow relates the partial derivatives of im-
age intensity with respect to spatial coordinates and
time as follows:

Lo-uy+ 1 -uy+1 =0, (D)

where, I, and I, are the spatial gradients of image in-
tensity in the x and y directions, respectively, and /;
is the temporal gradient. u, and u, represent the flow
velocities in the x and y directions, respectively. The
norm of optical flow for a single pixel is calculated as:

lu| = /()% + (uy)?. 2)

By summing the norms across all pixels in the
frame, we obtain the total motion magnitude for the

frame as:
Ut:ZZ|u(xay7t>|' (3)
Xy

After calculating U; for different frames along the
video, we extract the top k frames with the highest
values, which we assume correspond to the frames
containing the highest activity. These frames serve
as input for the subsequent analysis.

We acknowledge that extracting keyframes with
the highest activity does not guarantee selecting all
violent frames. For instance, high motion, such as
a passing car, might deceive the optical flow selec-
tor, causing it to neglect frames with slow-motion vi-
olence, such as a person threatening another with a
knife. In such cases, VIVID may fail to detect the vi-
olent scenario. We leave this challenge to our future
work, which can be addressed by incorporating the
detection of potentially dangerous objects during the
frame selection process.

4.3 Violence Detection

In this step, we combine a Vision Language Model
(VLM) with a Language Model (LLM) to detect vio-
lence in videos. The detection process involves sev-
eral key modules working together, as illustrated in
Figure 4.
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The Modality Translator component translates vi-
sual data from the video frames into sequence of to-
kens, which can be processed by the LLM. This in-
volves using the VLM’s Q-Former to generate visual
queries V;. After reordering the queries V?;, they are
processed by a fully connected (FC) layer that con-
verts them into tokens T, compatible with the LLM.
This translation ensures that the visual information is
appropriately represented for subsequent analysis.

Following this, the Retrieval module plays a criti-
cal role. It retrieves relevant information by compar-
ing V, with the definitions in the knowledge base KB,
identifying the most pertinent violence-related defini-
tions D;. From these, we extract the most relevant
definition Dy for the entire video. To address the ‘lost
in the middle’ effect often observed in LLMs, the vi-
sual queries are reordered to prioritize the most rele-
vant information, ensuring the LLM receives a coher-
ent and contextually appropriate set of inputs.

Finally, the Generator module combines Ty, user
query tokens T\, and the most relevant definition to-
kens T4 to create a comprehensive final prompt. This
prompt is then processed by the LLM, which gen-
erates a response to the user’s query, determining
whether the video contains violent content.

4.3.1 Modality Translator

As shown in Figure 4, we selected an architecture
based on BLIP-2 (Li et al., 2023a) for the VLM.
This architecture includes a Q-Former, which pro-
vides visual queries containing visual representations
V, corresponding to the text, making them directly
comparable with text embeddings in a common sub-
space. Additionally, the VLM has a fully-connected
(FC) layer that linearly projects the reordered visual
queries V) to match the input dimension of LLM. This
means that the FC layer acts as a visual tokenizer,
converting the reordered visual queries into a set of
tokens T that the LLM can process. The reordering
of visual queries ensures that the most relevant visual
information is emphasized, which is crucial for accu-
rate analysis. This process will be explained in detail
in section 4.3.2.

4.3.2 Definition Retriever

In this section, we explain the processes of retrieving
the definitions to ensure their relevance and accuracy
for violence detection. We break down this section
into three sub-modules: Creating KB, where we de-
fine and build the knowledge base of violence-related
terms and definitions; Relevant Term Retrieval, which
covers how visual queries are compared with the
knowledge base to extract the most relevant defini-
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tions; and Reordering Visual Queries, where we dis-
cuss the reordering of visual queries to prioritize the
most pertinent information, mitigating the ‘lost in the
middle’ effect in LLMs.

Creating KB. Retrieval Augmented Generation
(RAG) (Lewis et al., 2020) enhances LLMs by
integrating external knowledge, such as databases,
to improve performance in knowledge-intensive or
domain-specific applications that require continually
updating information (Gao et al., 2023). RAG re-
trieves relevant documents based on the user’s query
and combines them with the original prompt to gen-
erate a response.

Our proposed method addresses biases within
LLMs by drawing inspiration from the RAG frame-
work. However, instead of adding new information,
it focuses on mitigating existing biases related to sen-
sitive topics like violence. To achieve this goal, we
leverage the VLM output, which provides informative
visual representations V, corresponding to the text.
Instead of relying on user queries to retrieve docu-
ments, we compare these visual representations with
a predefined set of violence-related terms and defini-
tions, referred to as the knowledge base KB.

Since, to the best of our knowledge, there is no
existing comprehensive knowledge base of violence-
related terms, we propose one that is defined as:

KB:{(Wl,dl),(W2,d2),...,(Wn,dn)}7 (4)

where w; represents the i-th violence-related term
(word) and d; represents the corresponding definition.

We created the knowledge base (KB) of violence-
related terms, comprising 48 entries, each explaining
various aspects of physical violence. These aspects
include direct physical contact, violent sports, col-
lective violence, and broader terms denoting physical
force.

First, direct physical contact encompasses terms
such as “physical abuse”, “physical disputes”, “rape”,
“battery”, and “fights”, describing incidents where
physical harm is directly inflicted upon individuals.

Regarding terms that frequently escalate into
physical confrontations, this includes “clash”, “as-
sault”, “aggression”, and “confrontation”, highlight-
ing situations that may start as verbal or non-physical
conflicts but can quickly escalate to physical violence.

In terms of violent sports, these are activities
where the objective is to subdue opponents through
physical force, such as “boxing”, “wrestling”, “muay
Thai”, and “karate”, where physical engagement is a
structured and accepted part of the sport.

For collective violence, the terms include “riot”,

“brawl”, “vandalism”, and “scuffle”, reflecting sce-
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narios where multiple individuals are involved in vio-
lent acts, often leading to public disorder or damage.

Lastly, broader terms denoting physical force en-
compass words like “war”, “savagery”, “oppression”,
“bullying”, and “genocide”, representing extensive
and severe forms of violence, highlighting large-scale
or systematic acts of harm and intimidation.

This diverse compilation ensures a comprehen-
sive understanding of violence across different con-
texts. The definitions were obtained from well-known
sources, including the Cambridge and Oxford dictio-
naries, Wikipedia, and Wex, a legal dictionary spon-
sored by the Legal Information Institute at Cornell
Law School.

Relevant Term Retrieval. By comparing V; with
the violence-related terms in the knowledge base, we
identify the most relevant violence-related definition
D, associated with each content frame. Specifically,
we calculate the similarity between the visual repre-
sentations of each frame and the textual definitions.

Given a video frame I, € R¥*W>3 the pre-trained
Q-Former produces visual queries V, € RV*4a_ Here,
N is the number of visual queries obtained by the Q-
Former, and d, is the dimension of the visual embed-
ding of each query, respectively. Subsequently, we
use the pre-trained text transformer from BLIP2 to
obtain the definition embedding D, € RM*4_ Here
M is the number of text tokens and the dimension of
the embedding of each token are set to dq. For each
frame, we retrieve the definition from KB that has the
smallest squared Euclidean (L.2) distance to the visual
embedding.

In BLIP2 (Li et al., 2023a), to calculate the con-
trastive loss, they propose to compare the [CLS] token
from the text embedding and the visual query with
the highest pairwise similarity. However, since our
goal is not to align visual and text representations, but
rather to select the most relevant violent definition for
the video, we use mean pooling to compare the en-
tire visual sentence with the entire definition sentence.
Specifically, through the mean-pooling step, we ob-
tain and compare the visual sentence V. € R% and
definition sentence D!, € R%. After processing the
top k frames, we select the definition with the high-
est pairwise similarity across all frames as the most
relevant for the video. We denote the definition sen-
tence vector of the selected definition as Dy.

Reordering Visual Queries. The ‘lost in the mid-
dle’ effect is a phenomenon observed in LLMs where
the model’s performance degrades when critical infor-
mation is situated in the middle of a long input context
(Liu et al., 2024). This phenomenon occurs because

LLMs tend to focus more on the input’s beginning and
end, often neglecting the information in the middle. In
our method, this effect poses a significant challenge.

To mitigate the ‘lost in the middle’ effect, we pro-
pose reordering the visual queries to prioritize those
that are more relevant to the violence definition. By
aligning the visual queries (V;) with the violence def-
inition (Dy), the LLM receives a coherent and contex-
tually appropriate set of inputs. This alignment en-
sures that the most critical information is positioned at
the beginning of each frame, where the LLM is more
likely to focus its attention.

By doing so, the LLM can better understand
whether the visual content is directly related to the
definition of violence, enabling it to disregard irrel-
evant definitions when necessary. Overall, this ap-
proach not only addresses the ‘lost in the middle’ ef-
fect but also enhances the system’s robustness across
diverse scenarios.

To reorder the visual queries, first, we compute
a similarity vector S by calculating the dot product
between V, and D; as follows:

S=(V,-D;,...,V,-Dy). 5)

This similarity vector indicates how closely each vi-
sual query aligns with the definition. Next, we sort the
indices of the visual queries based on their similarity
scores in descending order. This sorting arranges the
visual queries from the most to the least relevant ac-
cording to their similarity to the definition.

Finally, the visual queries are reordered using
these sorted indices, resulting in the reordered visual
queries V). This process is repeated for each of the top
k frames to ensure that the LLM receives a consistent
and contextually relevant input.

4.3.3 Output Generator

To create the final prompt for the LLM, we extract the
tokens from the user query T, and the most relevant
definition Ty, obtained directly by the LLM tokenizer.
The text embeddings are used solely for comparison
purposes between visual and text data: first, to obtain
the most relevant violence-related definition for the
video, and second, to reorder visual queries according
to this definition.

Finally, we receive from the Modality Translator
module T, for the corresponding frame. We then
combine Ty, Ty, and T4 to form the final_prompt: “Is
this video: <frame_1>, ..., <frame_k> violent, con-
sidering that <definition> is also an expression of
violence?” This prompt enhances LLM’s understand-
ing of the concept of violence, helping to mitigate bi-
ases and ensure robustness across diverse scenarios.
Figure 5 illustrates an example using a single frame.
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Definition
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Is this <image>

i Modality
| translator

<image>i
{| also a expression
of violence?

Query: Is this
' image violent? |

------- Answer with bias handling

violent considering
that <definition> is

Yes, there are two girls fighting and is
violence because one girl is trying to hurt
the other using her body.

Answer without bias handling

No, there are two girls fighting but there is
no violence because they are girls.

Figure 5: Example of handling bias.

S EXPERIMENTS

5.1 Datasets

Table 1 summarizes the five datasets we used in the
experiments.

Hockey Fight Detection Dataset (Bermejo et al.,
2011) was specifically created to introduce a new
video dataset for evaluating violence detection sys-
tems, where both normal and violent activities occur
in similar, dynamic settings. It contains 1000 clips
of action from the National Hockey League (NHL)
games. Each clip comprises 50 frames of 720x576
pixels and is manually labeled as “fight” or “non-
fight”.

Movies Fight Detection Dataset (Bermejo et al.,
2011) was constructed to explore the generalization
capacity of learning fight patterns. It consists of 200
video clips obtained from action movies, of which
100 contain fight, and 100 videos with non-fight
scenes from football games, and other events. The
dataset contains videos depicting a wide variety of
scenes that were captured at different resolutions and
are manually labeled as “fight” or “non-fight”.
Surveillance Camera Fight Dataset (Akt et al.,
2019) was collected mostly from YouTube. It encom-
passes various fight scenarios, including kicks, fists,
hitting with objects, and wrestling. The dataset fea-
tures footage from different locations such as cafes,
bars, streets, buses, and shops. In total, there are 300
videos in the dataset: 150 depict fighting sequences,
while the remaining 150 show non-fight sequences.
These videos vary in resolution, and frame numbers,
and have an approximate duration of two seconds
each.

Real-World Fighting-2000 Dataset (RWF-2000)
(Cheng et al., 2021) was collected from YouTube. It
consists of 2000 video clips captured from around
1000 raw surveillance videos with extended footage.
This dataset is split into two parts: the training set
(80%) and the test set (20%), in which half depicts vi-
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olent behaviors, while the other half represents non-
violent activities. The videos have different resolu-
tions and are uniformly cut into 5-second clips with a
frame rate of 30 frames per second.

XD-Violence Dataset (Wu et al., 2020) is a large-
scale and multi-scene dataset that was collected from
movies and YouTube. The dataset includes a total
of 91 movies, which were used to collect both vio-
lent and non-violent events. Additionally, in-the-wild
videos were collected from YouTube. This dataset
has a total duration of 217 hours, containing 4 754
untrimmed videos with audio signals and weak labels,
from which 2 405 are classified as violent, while 2 349
are non-violent. The dataset is split into two parts: a
training set containing 3 954 videos and a test set with
800 videos. The test set consists of 500 violent videos
and 300 non-violent videos.

5.2 Implementation Details

In the Key-frame selection step, we utilized the Gun-
nar Farneback technique, which is implemented in the
Open Source Computer Vision Library (OpenCV)! to
calculate dense optical flow. We set the parameter
k =5, meaning that five frames are selected to repre-
sent each video. This selection helps in reducing the
computational load while maintaining essential mo-
tion information.

We employed a divide-and-conquer strategy for
longer videos, which we define as those containing
more than 5 000 frames. This approach involves split-
ting the video into up to five parts, treating each part
independently to manage the data more efficiently. A
video is classified as violent if at least one of its parts
contains violent content.

For the VLM (modality translator), the architec-
ture includes a Q-Former with N = 32 visual queries,
each having a dimension of dy = 768 (Li et al,
2023a). Additionally, the VLM has an FC layer that
linearly projects each output visual query embedding

Thttps://opencv.org/
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Table 1: Dataset description.

Dataset Data Scale Length/Clip # Violent clips # Non-violent clips Source of scenarios

(# clips)
Movies 200 1.6-2 sec 100 100  Movies and sports
Surveillance 300 1.4-2 sec 150 150 CCTYV and mobile cameras
Fight
RWE-20002 400 5 sec 200 200 CCTV and mobile cameras
Hockey 1000  1.6-1.96 sec 500 500 Ice hockey games
XD-Violence? 800 0-10 min 500 300 Movies, sports, games,

hand-held cameras,
CCTYV, car cameras, etc.

to match the text embedding dimension of the LLM,
resulting in a 2048-dimensional output layer.

For the LLLM, we chose the instruction fine-tuned
version of Google’s T5 (Raffel et al., 2020), also
known as the Text-to-Text Transfer Transformer Lan-
guage Model (Flan-T5) (Chung et al., 2024). Since
we intend for VIVID to be used in detecting violence
in real-time scenarios, we selected the Flan-T5-XL
(Chung et al., 2024), which contains around 3 billion
parameters. This model size allows for a nuanced un-
derstanding and processing of complex language in-
puts on a single NVIDIA GeForce RTX 3090 GPU,
which has 24 GB of GDDR6X memory, and a boost
clock of 1700 MHz .

5.3 Experimental Results
5.3.1 Comparison with LLM-Based Methods

We compare VIVID with other LLM-based methods
using the test split of video clips from each dataset as
input, along with the user prompt: “Is this video vi-
olent?” This user query is consistently applied across
all baseline methods to ensure a fair comparison.

The results of our experiments, as summarized
in Table 2 , reveal significant insights into the per-
formance of various models on the five datasets.
VIVID consistently outperforms other LLM-based
models across most datasets, achieving improve-
ments of 0.01-0.324, 0.007-0.187, 0.014-0.294, and
0.066-0.334 in terms of accuracy, and 0.01-0.492,
0.009-0.446, 0.011-0.277, and 0.062—0.537 in terms
of F1-Score on the Movies, RWF-2000, Hockey, and
XD-Violence datasets, respectively.

In the Movies dataset, VIVID significantly outper-
forms other LLM-based models by effectively cap-

2The Data Scale column lists video clips from the test
split of the dataset, used for model comparison. We use only
the test split to align our evaluation with other methods that
measure performance using the test split.

turing complex visual and contextual cues. It also
leads in the RWF-2000 dataset, demonstrating its ef-
fectiveness in real-world fight detection. The Hockey
dataset results show substantial improvements, high-
lighting VIVID’s capability to detect violent actions
in fast-moving and complex interactions. In the XD-
Violence dataset, VIVID’s robustness is validated by
its ability to handle diverse and complex violent sce-
narios.

The effectiveness of our method lies in its abil-
ity to identify potential violent frames and manage
various biases associated with LLMs: inherited bias,
guardrails bias, and alignment bias. Figure 7 shows
the classification made by VIVID over the examples
shown in Figures lc, 2, and 3b, where our method
successfully identifies the videos as violent. As il-
lustrated in Figure 8, incorporating a violence-related
term in the prompt enables users to address the bias
and influence the LLM’s judgment based on the defi-
nition of violence. The dataset (Bermejo et al., 2011)
categorizes all martial arts as violent sports. There-
fore, by including martial arts as violence-related
terms in the KB, the LLM’s response aligns with the
definition of Karate as a violent sport. This compre-
hensive approach ensures that our method remains ro-
bust and effective across various scenarios, providing
a reliable tool for bias management in LLMs.

In the Surveillance Fight dataset, the “Instruct-
BLIP” model shows the highest accuracy 0.796, while
the “LLaMA-VID” model achieves the highest F1-
Score 0.805. Our model performs well with an ac-
curacy of 0.736 and an F1-Score of 0.781 but does
not lead in this dataset. This fact suggests that while
our model is effective, it may struggle with the spe-
cific challenges posed by surveillance footage, such
as varying lighting conditions like insufficient illumi-
nation, and occlusions as shown in Figure 6. These
challenges could be addressed by jointly fine-tuning
the VLM and the LLM with a small amount of vi-
olent and non-violent videos under these conditions.
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Table 2: Comparison with LLM-based methods in terms of Accuracy and F1-Score.

" LLM Movies Survc.aillance RWF-2000 Hockey XD-Violence
odel Backbone Fight

Acc Fl Acc Fl Acc Fl Acc Fi Acc Fi
BLIP23 Flan-T5-XL (3B) 0.900 0.880 0.776 0.797 0.767 0.760 0.841 0.859 0.760 0.770
InstructBLIP? Vicuna-1.1 (7B)  0.810 0.765 0.796 0.784 0.742 0.685 0932 00932 0.535 0.436
X-InstructBLIP  Vicuna-1.1 (7B)  0.880 0.863 0.793 0.800 0.785 0.766 0.856 0.831 0.648 0.616
Video-LLaMA  LLaMA-2 (7B) 0.661 0.492 0.656 0.511 0.610 0.365 0.660 0.676 0.492 0.330
Video-LLaVA Vicuna-1.5 (7B) 0975 0974 0.726 0.777 0.782 0.802 0.662 0.743 0.726 0.802
LLaMA-VID Vicuna-1.5 (7B) 0965 0.963 0.783 0.805 0.790 0.794 0940 0.942 0.755 0.805
VIVID Flan-T5-XL (3B) 0.985 0.984 0.736 0.781 0.797 0.811 0.954 0.953 0.826 0.867

< Is this video
violent?

No, a group of people
standing around a pool table

\ 7/

Figure 6: Example where occlusion caused by the pool table
lights partially blocking the violent scene, along with lack
of illumination, resulted in the LLM failing to detect the
violent scene correctly.

However, the primary objective of our research is to
evaluate the capabilities of an LLM to classify violent
content in a zero-shot manner. This approach allows
us to assess the inherent strengths and limitations of
the LLM without further modifications. Nonetheless,
we recognize the potential for improvement through
fine-tuning and consider it a promising direction for
our future work.

5.3.2 Comparison with Traditional
Hand-Crafted Features and Deep
Learning-Based Methods

When comparing VIVID with traditional hand-
crafted features and deep learning-based methods, as
shown in Table 3, we notice a clear difference in per-
formance. Traditional methods such as HOG + HIK

3BLIP2 and InstructBLIP do not support video input.
We analyze violent content at the frame-level, extracting
frames as in X-InstructBLIP. If any frame contains violent
content, the entire video is classified as violent.
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(Bermejo et al., 2011), HOF + HIK (Bermejo et al.,
2011), and MoSIFT + HIK (Bermejo et al., 2011)
show lower accuracy across the datasets. For in-
stance, MoSIFT + HIK achieves an accuracy of 0.895
in the Movies dataset and 0.909 in the Hockey dataset,
which are significantly lower than our model’s per-
formance. This fact indicates that traditional hand-
crafted features are less effective in capturing com-
plex patterns of violence in videos. Deep learning-
based methods, such as Xception + Bi-LSTM + at-
tention (Akt1 et al., 2019), Flow Gated (Cheng et al.,
2021), and Conv3D (Park et al., 2024), demonstrate
high performance. For example, Xception + Bi-
LSTM + attention achieves an accuracy of 1.0 in
the Movies dataset and 0.98 in the Hockey dataset.
However, these methods often require a considerable
amount of training data to generalize. Due to the re-
stricted amount of available training data, the result-
ing models are often ad-hoc and fail to generalize vi-
olent behavior across different scenarios.

In contrast, VIVID uses zero-shot classification,
which leverages the pre-existing knowledge of the
LLM along with bias handling to enhance perfor-
mance. This approach not only effectively classifies
violent content but also provides interpretability. The
interpretability feature is particularly advantageous as
it helps users understand why a video instance was
classified as violent or not, making it a valuable tool
for real-world applications. Even though VIVID does
not always achieve the highest accuracy compared
to some deep learning methods, its performance is
competitive or comparable to these methods. Addi-
tionally, our method outperforms the Xception + Bi-
LSTM + attention method in the Surveillance Fight
dataset, achieving an accuracy of 0.736 compared to
0.720.

5.3.3 Ablation Study

To investigate the effects of reordering visual queries,
we conducted experiments using three distinct vari-
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Figure 7: Example in which VIVID successfully handles the biases of the LLMs.

Table 3: Comparison with hand-crafted features and deep
learning-based methods in terms of accuracy. A hyphen in-
dicates that the results are not provided in the corresponding

paper.

Type Model Movies  S. RWF  Hockey
Fight 2000

Hand HOG + HIK 0490 - - 0.917

Crafted  HOF + HIK 0.590 - . 0.886

Features  \joSIFT+ HIK 0895 - p 0.909
Xception 1000 0.720 - 0.980
+Bi-LSTM

DL + attention

g Flow Gated 1.000 - 0.872  0.980
Conv3D 1.000 - - 0.981

LLM VIVID 0985 0736 0797 0.954

based

ants of our method. These variants share the com-
mon approach of comparing a visual sentence with
text embedding to identify the most relevant violence-
related definition for an image. However, in each vari-
ation, the text and visual embeddings interact differ-
ently.
Variant 1: Inspired by BLIP2 (Li et al., 2023a), we
compare the [CLS] token from the text with the visual
queries. The most relevant violent definition is iden-
tified as the one with the highest pairwise similarity.
Variant 2: Instead of using the [CLS] token, we use
mean pooling. Specifically, we compare a visual sen-
tence obtained by mean pooling all the visual queries
with a definition sentence obtained by mean pooling
all sentence tokens, as explained in Section 4.3.2.
VIVID: In addition to using the mean pooling ap-
proach from Variant 2, we also reorder the visual
queries. By calculating the dot product between the
visual sentence and each text token, we can prioritize
visual queries that are more relevant to the violence
definition, as explained in Section 4.3.2.

Table 4 shows the results of each variant on the
five datasets. From these results, it is evident that

Table 4: Comparison of our method’s variants in terms of
Accuracy.

Model  Movies S. RWF  Hockey XD
Fight 2000 Violence

Variant 1 0915 0.706 0.800 0.942 0.671
Variant 2 0.940 0.680 0.792 0.920 0.730
VIVID 0985 0.736 0.797 0.954 0.826

VIVID demonstrates superior performance across
most datasets. It achieves the highest accuracy in
the Movies, Surveillance Fight, Hockey, and XD-
Violence datasets. Although VIVID was not the best
in the RWF-2000 dataset, the difference in accuracy
was small enough to be negligible. Therefore, we
consider VIVID to have achieved same performance
to Variant 1 in this dataset. Overall, the robust per-
formance of VIVID in four out of five datasets high-
lights its effectiveness in enhancing the model’s accu-
racy through the reordering of visual queries.

6 CONCLUSIONS

In this paper, we introduced VIVID, a novel method
for detecting violent content in videos by integrat-
ing Vision-Language Models (VLM) with Large Lan-
guage Models (LLMs). Our method demonstrates
superior performance across multiple datasets, effec-
tively capturing complex visual and contextual cues.

VIVID’s zero-shot classification capability allows
it to identify violent content without additional train-
ing, making it an alternative in scenarios with limited
labeled data. By incorporating an external knowledge
base, VIVID mitigates biases and provides reliable re-
sults. Its interpretability characteristics enhance user
trust by explaining the reasons behind its classifica-
tions.

There are a number of directions that can be ex-
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Figure 8: Example in which the inclusion of a violent-related definition improves performance compared to the baseline

methods.

plored for future research, including (1) fine-tuning
the VLM and LLM with a small amount of violent
and non-violent videos to address specific challenges
like varying lighting conditions and occlusions in
surveillance footage, (2) including prompt engineer-
ing to have a broader range of violence-related terms
and scenarios, and (3) enhancing the interpretability
features to provide more detailed explanations for the
model’s classifications. Overall, VIVID offers a bal-
anced approach combining accuracy, interpretability,
and generalizability, making it a robust solution for
violent content classification in real-world applica-
tions.

REFERENCES

Abdali, A.-M. R. and Al-Tuma, R. F. (2019). Robust Real-
Time Violence Detection in Video Using CNN and
LSTM. In Proc. IEEE SCCS, pages 104-108.

Akti, S., Tataroglu, G. A., and Ekenel, H. K. (2019). Vision-
Based Fight Detection from Surveillance Cameras. In
Proc. IEEE IPTA, pages 1-6.

American Psychological Association (2024).  Physical
abuse and violence. Accesed on 20/12/204 from:
https://www.apa.org/topics/physical-abuse-violence.

Bermejo, E. N., Déniz, O. S., Bueno, G. G., and Sukthankar,
R. (2011). Violence Detection in Video Using Com-
puter Vision Techniques. In Proc. CAIP, Part II 14,
pages 332-339.

Bobick, A. F. and Davis, J. W. (2001). The Recognition of
Human Movement Using Temporal Templates. /IEEE

112

Transactions on Pattern Analysis and Machine Intel-
ligence, 23(3):257-267.

Cheng, M., Cai, K., and Li, M. (2021). RWF-2000: An
Open Large Scale Video Database for Violence De-
tection. In Proc. ICPR, pages 4183-4190.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. (2024). Scaling Instruction-Finetuned Lan-
guage Models. Journal of Machine Learning Re-
search, 25(70):1-53.

Dai, W., Li, J., Li, D., Tiong, A. M. H., Zhao, J., Wang,
W., Li, B., Fung, P, and Hoi, S. (2023). Instruct-
BLIP: Towards General-Purpose Vision-Language
Models with Instruction Tuning. arXiv preprint
arXiv:2305.06500.

Dalal, N., Triggs, B., and Schmid, C. (2006). Human De-
tection Using Oriented Histograms of Flow and Ap-
pearance. In Proc. ECCV, Part Il 9, pages 428-441.

Das, S., Sarker, A., and Mahmud, T. (2019). Violence De-
tection from Videos Using HOG Features. In Proc.
IEEE EICT, pages 1-5.

De Souza, F. D., Chavez, G. C., do Valle Jr, E. A., and
Aratjo, A. d. A. (2010). Violence Detection in Video
Using Spatio-Temporal Features. In Proc. SIBGRAPI,
pages 224-230.

Deniz, O., Serrano, 1., Bueno, G., and Kim, T.-K. (2014).
Fast Violence Detection in Video. In Proc. VISI-
GRAPP (VISAPP), volume 2, pages 478—485.

Dong, Y., Mu, R., Zhang, Y., Sun, S., Zhang, T., Wu, C., Jin,
G., Qi, Y., Hu,J., Meng, J., et al. (2024). Safeguarding
Large Language Models: A Survey. arXiv preprint
arXiv:2406.02622.

Febin, 1., Jayasree, K., and Joy, P. T. (2020). Violence De-
tection in Videos for an Intelligent Surveillance Sys-
tem Using MoBSIFT and Movement Filtering Algo-



Leveraging Vision Language Models for Understanding and Detecting Violence in Videos

rithm. Pattern Analysis and Applications, 23(2):611-
623.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. (2023). Retrieval-Augmented
Generation for Large Language Models: A Survey.
arXiv preprint arXiv:2312.10997.

Hassner, T., Itcher, Y., and Kliper-Gross, O. (2012). Violent
Flows: Real-Time Detection of Violent Crowd Behav-
ior. In Proc. IEEE CVPR Workshops, pages 1-6.

Herrenkohl, T. I. (2011). Violence in Context: Current Evi-
dence on Risk, Protection, and Prevention. OUP USA.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t.,
Rocktischel, T., et al. (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. Ad-
vances in Neural Information Processing Systems,
33:9459-9474.

Li, J., Li, D., Savarese, S., and Hoi, S. (2023a). BLIP-
2: Bootstrapping Language-Image Pre-Training with
Frozen Image Encoders and Large Language Models.
In Proc. ICML, pages 19730-19742.

Li, Y., Wang, C., and Jia, J. (2023b). LLaMA-VID: An
Image is Worth 2 Tokens in Large Language Models.
arXiv preprint arXiv:2311.17043.

Lin, B., Zhu, B., Ye, Y., Ning, M., Jin, P, and Yuan, L.
(2023). Video-LLaVA: Learning United Visual Rep-
resentation by Alignment Before Projection. arXiv
preprint arXiv:2311.10122.

Liu, N. F, Lin, K., Hewitt, J., Paranjape, A., Bevilac-
qua, M., Petroni, F., and Liang, P. (2024). Lost in
the Middle: How Language Models Use Long Con-
texts. Transactions of the Association for Computa-
tional Linguistics, 12:157-173.

Mumtaz, N., Ejaz, N., Habib, S., Mohsin, S. M., Tiwari, P,,
Band, S. S., and Kumar, N. (2023). An Overview of
Violence Detection Techniques: Current Challenges
and Future Directions. Artificial Intelligence Review,
56(5):4641-4666.

Panagopoulou, A., Xue, L., Yu, N, Li, J., Li, D., Joty, S.,
Xu, R., Savarese, S., Xiong, C., and Niebles, J. C.
(2023). X-InstructBLIP: A Framework for Aligning
X-Modal Instruction-Aware Representations to LLMs
and Emergent Cross-Modal Reasoning. arXiv preprint
arXiv:2311.18799.

Park, J.-H., Mahmoud, M., and Kang, H.-S. (2024).
Conv3D-Based Video Violence Detection Network
Using Optical Flow and RGB Data. Sensors,
24(2):317.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the Limits of Transfer Learning with a Uni-
fied Text-to-Text Transformer. Journal of Machine
Learning Research, 21(140):1-67.

Senst, T., Eiselein, V., Kuhn, A., and Sikora, T.
(2017). Crowd Violence Detection Using Global
Motion-Compensated Lagrangian Features and Scale-
Sensitive Video-Level Representation. IEEE Trans-

actions on Information Forensics and Security,
12(12):2945-2956.

Sudhakaran, S. and Lanz, O. (2017). Learning to Detect
Violent Videos Using Convolutional Long Short-Term
Memory. In Proc. IEEE AVSS, pages 1-6.

Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G.,
and Liu, J. (2022). Human Action Recognition from
Various Data Modalities: A Review. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
45(3):3200-3225.

Szeliski, R. (2022). Computer Vision: Algorithms and Ap-
plications. Springer Nature.

Traoré, A. and Akhloufi, M. A. (2020). Violence Detection
in Videos Using Deep Recurrent and Convolutional
Neural Networks. In Proc. IEEE SMC, pages 154—
159.

Ullah, E. U. M., Obaidat, M. S., Ullah, A., Muhammad,
K., Hijji, M., and Baik, S. W. (2023). A Comprehen-
sive Review on Vision-Based Violence Detection in
Surveillance Videos. ACM Comput. Surv., 55(10).

Ullah, F. U. M., Ullah, A., Muhammad, K., Haq, I. U., and
Baik, S. W. (2019). Violence Detection Using Spa-
tiotemporal Features with 3D Convolutional Neural
Network. Sensors, 19(11):2472.

Wang, H., Kliser, A., Schmid, C., and Liu, C.-L. (2013).
Dense Trajectories and Motion Boundary Descrip-
tors for Action Recognition. International Journal of
Computer Vision, 103:60-79.

Wu, P, Liu, J., Shi, Y., Sun, Y., Shao, F., Wu, Z., and Yang,
Z.(2020). Not Only Look, But Also Listen: Learning
Multimodal Violence Detection Under Weak Supervi-
sion. In Proc. ECCV, pages 322-339. Springer.

Zhang, H., Li, X., and Bing, L. (2023). Video-
LLaMA: An Instruction-Tuned Audio-Visual Lan-
guage Model for Video Understanding. arXiv preprint
arXiv:2306.02858.

113



