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Recent deep learning models often struggle with performance degradation due to domain shifts. Addressing
domain adaptation in aerial image segmentation is challenging due to the limited availability of training data.
To tackle this, we utilized the Unreal Engine to construct a synthetic dataset featuring images captured under
diverse conditions such as fog, snow, and nighttime settings. We then proposed a latent space style transfer
model that generates alternate domain versions based on the real aerial dataset. This approach eliminates
the need for additional annotations on shifted domain data. We benchmarked nine different state-of-the-art
segmentation methods on the ISPRS Vaihingen, Potsdam datasets, and their shifted foggy domains. Extensive
experiments reveal that domain shift leads to significant performance drops, with an average decrease of -
3.46% mloU on Vaihingen and -5.22% mloU on Potsdam. Finally, we adapted the model to perform well in
the shifted domain, achieving improvements of +2.97 % mlIoU on Vaihingen and +3.97 % mloU on Potsdam,
while maintaining its effectiveness in the original domain.

1 INTRODUCTION

1.1 Domain Shift Caused Model
Degradation in Aerial Image

Aerial Image Segmentation (AIS) is an essential
task for various city monitoring purposes, such as en-
vironmental surveillance, target localization, and dis-
aster response (Pi et al., 2020; Wang et al., 2022;
Liang et al., 2023). With semantic segmentation
models trained on large-scale annotated data, humans
can easily extract abundant geo-spatial information
from aerial images captured by drones or satellites (Li
et al., 2021; Wang et al., 2024a; Toker et al., 2024).

However, while the performance of semantic seg-
mentation algorithms has surged on common bench-
marks, progress in handling the domain shift of un-
seen environmental conditions is still stagnant (Dai
and Van Gool, 2018; Michaelis et al., 2019; Sun
et al., 2022). We demonstrate that the aerial segmen-
tation performance of algorithms is prone to signifi-
cant degradation due to Domain Shift, i.e., the trans-
fer from one domain to another. In Figure 1, we illus-
trate this phenomenon by comparing the original data
in the ISPRS datasets (Gerke, 2012; Rottensteiner
et al., 2014) with our generated domain-shifted ver-
sions.
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Figure 2 illustrates that even within the same
scene, changing weather conditions and varying light-
ing levels pose challenges for aerial image segmenta-
tion algorithms. Specifically, we evaluated nine state-
of-the-art segmentation models on the ISPRS dataset
and its domain-shifted version. The results show
that after transferring the data from its original, in-
tact domain to a shifted fog domain, there is an av-
erage mloU deterioration of -3.46 % on the Vaihingen
dataset (398 RGB images at 512 x 512 resolution) and
-5.22% on the Potsdam dataset (2016 RGB images
at 512 x 512 resolution). Notably, compared to the
original intact data, the illumination in the shifted fog
images is significantly reduced, and the weather con-
ditions have changed from clear skies to foggy, rep-
resenting a typical domain shift. However, the image
content, layout, and geo-spatial information between
the original and foggy data remain unchanged.

Closing the gap between model performance in
the original domain and the shifted domain is a valu-
able problem to address. An intuitive solution is to
incorporate multi-domain data into the model training
process. The performance of aerial image segmen-
tors significantly relies on the availability of training
data. Although data from adverse domains is essen-
tial to improve the robustness of aerial image segmen-
tation models, such data—including aerial images
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Figure 1: Examples of domain shift in aerial image , in
which the up row are the original aerial image from IS-
PRS Vaihingen and Potsdam (Gerke, 2012; Rottensteiner
et al., 2014), while the bottom are the corresponding do-
main shifted imagery in Foggy condition. Notably, the im-
age information including scene, target remained the same,
on the contrary, the weather and illumination changed.

captured under low illumination and harsh weather
conditions—are lacking in the current aerial image
benchmarks (Waqas Zamir et al., 2019; Gerke, 2012;
Rottensteiner et al., 2014).

1.2 Recent Development on Image
Generation and Synthesis

Recently, significant triumph has been achieved by
generative model, which aims to mimic human’s abil-
ity on yielding various modalities, such as GPT-series
(Brown, 2020) in Natural Language Processing and
stable-diffusion (Rombach et al., 2022) in Computer
Vision. Prior methodologies like Generative adver-
sarial network (GAN)-based methods (Goodfellow
et al., 2014; Zhu et al., 2017; Zhang et al., 2017;
Brock, 2018; Karras et al., 2019; Zhang et al., 2019)
and Variational autoencoder (VAE)-based methods
(Kingma, 2013; Vahdat and Kautz, 2020) demon-
strate remarkable performance in yielding realistic
samples. Despite the sccess, training instability is a
well-known issue, as GANs require a delicate balance
between the generator and discriminator, which can
lead to problems like mode collapse—where the gen-
erator produces limited diversity in outputs.

In addition, instead of traditional diffusion models
(DMs) that denoise the input x in image-scale (Sohl-
Dickstein et al., 2015; Ho et al., 2020), current La-
tent diffusion model (LDMs) (Ramesh et al., 2022;
Rombach et al., 2022; Zhang et al., 2023; Luo et al.,
2023) adopt a VAE-like Encoder ‘£ and Decoder D
structure. LDMs first compress the input into a la-
tent representation z = E(x), afterwards deploy dif-
fusion process within latent space, such that decoder

outputs X is the reconstructed input x. With the hall-
mark of achieving a favorable trade-off between re-
ducing computational and memory costs and main-
taining high resolution and quality synthesis, operat-
ing on smaller spatial latent representations of the in-
put has become a popular framework for recent gen-
erative models (Li et al., 2023; Khanna et al., 2023;
Peebles and Xie, 2023), i.e., LDMs. However, the
tedious sampling step of the diffusion model renders
it highly inefficient for use with large-scale datasets
(Song et al., 2020; Wang et al., 2024b; Karras et al.,
2024; Gong et al., 2024).

Image Style Transfer. (Gatys et al., 2016; Deng
et al., 2022; Brooks et al., 2023; Wang et al., 2023;
Sohn et al., 2024; Chung et al., 2024) is a practi-
cal generative task that aims to extract the style tex-
ture information of one reference image and merge it
with the content from another semantic image. The
prior methods can synthesise vivid and diverse re-
sults, such as converting a landscape photo into a
painterly oil artwork or creating a cartoon version of
a person’s portrait. However, for de-facto domain
shifts in aerial imagery, performance aforementioned
methods (Rombach et al., 2022; Deng et al., 2022;
Zhang et al., 2023; Sohn et al., 2024) are limited due
to the following reasons: 1) Lacking the style refer-
ence imagery for various domain; 2) Being prone to
altering the original semantic content of the images,
such as shifts in the positions of small objects, defor-
mations of large objects, and distortions of edge con-
tours, in which preserving the geo-spatial information
of semantic images is vital for environmental moni-
toring and disaster response; 3) Time-consuming and
computation capacity-consuming for aerial image at
512 x 512 resolution) or higher.

1.3 Essence and Contributions of this
Work

To address the challenges of domain adaptation in
current aerial image segmentation, we proposed the
Latent Aerial Style Transfer model (LAST). This
model transfers domain information from synthetic
data, generated using a game engine, to enhance real
aerial images. Specifically, we first utilize a VAE en-
coder to simultaneously compress both the style refer-
ence image and the semantic content image into latent
space. The interaction between the style and content
is then processed through transformer blocks in this
latent space. Finally, the transformed output is de-
coded back into image scale using the VAE decoder.
To complement existing datasets and address
their limitations, we developed the Aerial Weather
Synthetic Dataset (AWSD), which introduces con-
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Figure 2: Domain Shift in ISPRS (Gerke, 2012; Rottensteiner et al., 2014) Vaihingen (left) and Potsdam (right) dataset.
As the first step, we pre-trained 9 prevalent Segmentors: Deeplabv3+(Chen et al., 2018), UperNet(Xiao et al., 2018), PSP-
Net(Zhao et al., 2017), DANet(Fu et al., 2019), SETR(Zheng et al., 2021), SegFormer(Xie et al., 2021), SegNext(Guo et al.,
2022), PointRend(Kirillov et al., 2020) with varied backbones: ResNet(He et al., 2016), ViT(Dosovitskiy et al., 2020), Swin-
Transformer(Liu et al., 2021) in original training set under the same setting. Afterwards, we tested them on intact validation
set (blue-curve in figure) and our generated fog validation set (green, red-curve in figure) respectively. The preliminaries
demonstrates the model performance deterioration caused by domain shift from original to fog condition. Precisely -3.46 %
mloU in Vaihingen and -5.22% mloU in Potsdam respectively. Zoom in for the best view.

trolled variations in weather and lighting. This dataset
provides an ideal benchmark for evaluating the ro-
bustness of segmentation models in diverse environ-
mental conditions. Leveraging this dataset, we gener-
ated realistic foggy domain data, which supplements
existing aerial image segmentation datasets like IS-
PRS Vaihingen and Potsdam (Gerke, 2012; Rotten-
steiner et al., 2014).

We focused specifically on foggy weather, a typ-
ical domain shift scenario where dense fog reduces
illumination and obscures scene elements. This al-
lowed us to demonstrate the effects of domain shift
and present domain adaptation results step by step. In
summary, our work contributes the following:

1) We developed AWSD using a game engine
(Unreal, 2024), offering a variety of domain condi-
tions (e.g., fog, snow, night) to tackle the scarcity of
domain-specific data in aerial image segmentation.

2) We introduced LAST, a style transfer model
that operates in latent space, enabling the transfor-
mation of synthetic styles into existing ISPRS aerial
datasets (Gerke, 2012; Rottensteiner et al., 2014).

3) We benchmarked state-of-the-art segmenta-
tion models on multi-domain datasets generated via
AWSD and LAST. Extensive experiments reveal the
performance degradation caused by domain shifts,
and we successfully adapted model performance in
the shifted domain while maintaining its effectiveness
in the source domain.
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2 RELATED WORK

2.1 Semantic Segmentation

Following the pioneer approach, i.e., Fully Convolu-
tional Network (FCN) (Long et al., 2015), encoder-
decoder structure has been a prevalent paradigm for
semantic segmentation task. In the early stage, these
methods (Ronneberger et al., 2015; Badrinarayanan
et al., 2017; Zhao et al., 2017; Lin et al., 2017a)
combined the low level feature and its up-sampling
high level to obtain the precise objects boundaries
meanwhile capture the global information. Conse-
quently, deeplab-series methods(Chen et al., 2017a;
Chen et al., 2017b) developed the dilated convolu-
tions to enlarge the receptive field of convolutional
layers and further employed spatial pyramid pooling
modules to obtain multi-level aggregated feature.

In addition to CNN-based semantic segmen-
tation methods, vision transformer-based ap-
proaches(Dosovitskiy et al., 2020; Liu et al., 2021;
Fu et al., 2019; Guo et al., 2022) have also become
popular due to their exceptional ability to capture
long-range contextual information among tokens or
embeddings. SETR(Zheng et al., 2021) employs ViT
as its backbone and utilizes a CNN decoder to frame
semantic segmentation as a sequence-to-sequence
task. Moreover, Segmentor (Strudel et al., 2021)
introduces a point-wise linear layer following the
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ViT backbone to generate patch-level class logits.
Additionally, SegFormer(Xie et al., 2021) proposed a
novel hierarchically structured Transformer encoder
which outputs multiscale features and a MLP de-
coder to combine both local and global information.
Notably, many recent Feature Pyramid Network
(FPN)(Lin et al., 2017b)-based affinity learning
methods(Xiao et al., 2018; Zheng et al., 2020; Li
et al,, 2021; Wang et al.,, 2024a) are proposed to
achieve better feature representation and success-
fully handle the scale-variation problem (Xia et al.,
2018; Waqas Zamir et al., 2019) in aerial image
segmentation.

2.2 Image Style Transfer

Image Style transfer(Gatys et al., 2016; Johnson et al.,
2016; Li and Wand, 2016; Zhu et al., 2017) is practi-
cal research field that apply the style of one reference
image into the content of another image, it aims to
generate a transferred image that contained the con-
tent, such as shapes structures, objects of the origi-
nal content image but adopt the style, such as colors,
textures, patterns of the reference style image. The
pioneer methods (Gatys et al., 2016) demonstrates
that CNNs’ hierarchical layers can extract content and
style information, proposing an optimization-based
method for iterative stylization. However, the net-
work is usually limited to a fixed set of styles and can-
not adapt to arbitrary new styles. To fix the deficiency
of the previous, AdalN-style(Huang and Belongie,
2017) presents a novel adaptive instance normaliza-
tion (AdalN) layer that aligns the mean and variance
of the content features with those of the style features.
(Chen et al., 2021) deploy a internal-external learning
scheme with two types of contrastive loss, which can
make generated image more reasonable and harmo-
nious. StyTr? (Deng et al., 2022) is the first baseline
for style transfer using a visual transformer, that is ca-
pable of domain-specific long-range information. De-
spite that, the inference computation speed is inferior
to the CNN-based approaches.

2.3 Domain Shift

Domain shift (Ben-David et al., 2010) is a well-
known challenge that results in unforeseen perfor-
mance degradation under conditions different from
those in the training phase. To address this issue,
domain generalization (Khosla et al., 2012; Muan-
det et al., 2013; Tobin et al., 2017; Volpi et al.,
2018) based algorithm has been developed to gener-
alize learning model across weather conditions and
city environments unexplored during training (target

samples are not available during training). In addi-
tion to that, a sub-field of transfer learning, i.e., do-
main adaptation-based methods are also proposed to
adapt a model trained on data from the source domain
to perform effectively on data from target domain
(Tzeng et al., 2017; Wang and Deng, 2018; Farahani
et al., 2021). Generally, domain adaptation algorithm
aims to learn a model from a source labeled data that
can be extended to a target domain by minimizing the
difference between domain distributions.

The exploration of domain shift solutions largely
depends on the availability of target domain data,
which is often rare and difficult to acquire, especial
for the diverse weather conditions. Moreover, anno-
tating data for new domains is a laborious and time-
consuming task. Therefore, unlike the aforemen-
tioned methods, we utilized Unreal Engine(Unreal,
2024) to build a synthetic dataset that encompasses a
wide variety of weather conditions (details provided
in Section 3.1). On top of this, we applied style
transfer to augment the already fine-annotated ISPRS
Vaihingen and Potsdam datasets(Rottensteiner et al.,
2014). As a result, by performing simple joint train-
ing on both the source and shifted domains, we can
effectively address domain shift and the accompany-
ing degradation in model performance.

3 APPROACHES

To achieve style transfer for aerial images, account-
ing for variations in weather conditions and illumi-
nation while reducing the computational cost of pro-
cessing, we propose the LAST model. This model
operates in two spaces: image space and latent space,
as depicted in Figure 3. Specifically, inspired by
the Latent Diffusion Models (LDMs(Rombach et al.,
2022)), we first compress the input aerial images into
the latent space using a pre-trained VAE (Section 3.1).
The style transformation is then performed in this la-
tent space (Section 3.2). Additionally, the perceptual
loss(Johnson et al., 2016), computed via a pre-trained
VGG-19(Simonyan and Zisserman, 2014), is applied
to optimize the model (Section 3.3).

3.1 VAE for Image Compression

We first deploy the same setup as Latent Dif-
fusion(Rombach et al., 2022) to compress image
into the latent space via the variational autoencoder
(VAE(Kingma, 2013; Vahdat and Kautz, 2020)) pre-
trained under the Kullback-Leibler (KL) Divergence
penalty.

Given an image x € RF*W>3

in image space, the
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Figure 3: Pipeline of the LAST. Given the image pairs Content images, Style images in image space, they are first compressed
into latent space via the VAE encoder, then flatten into the latent sequences. Afterwards the style transfer interaction are
implemented in the latent style transformer. Finally, the latent outputs are recovered into image space and generate the

transferred images.

encoder ‘£ encodes x into a latent representation z €
RP>WXC \where the h=H/f, w=W/f and the down-
sampling factors f = 4. Afterwards, the decoder D
decodes the latent vector z to obtain the reconstruct
image ¥ = D(z). Specifically, it primarily contains
the following processes in the LAST:
* An endoder E to encodes the input content and
style image pair [x., x;] € R¥*W>*3 into two Gaus-
sian distributions:

N (e, 07) = E(xc) (1)
N (ug,07) = E(x;) )

* Adopting reparameterization trick(Kingma, 2013;
Figurnov et al., 2018) to sample the latent vector
Z. and z respectively from the encoded Gaussian
distributions. In particular,

Ze =M +0OFE 3)
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s =MUs+O;OE (4)
where ” ©” denotes element-wise multiplication,
g~ N(0,1) and [z.,z,] € RP>W*C

* Within the latent space, the latent vector [z, z;] are
projected into sequence and interacted with each
other in Latent Style Transformer (LSTrans),
which outputs the transferred sequence and
projects it out to latent vector as follows:

7 = LSTrans(z¢,7s) (%)

where, z; € RP*wxC, Finally the VAE decoder
D decodes out the style transferred image x; =
D(z), where x, € REXW>3,

3.2 Latent Style Transformer

In this section, we introduce the proposed Latent Style
Transformer (LSTrans). The detailed pipeline is il-
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lustrated in Figure 3. The latent vectors, denoted as
7z € RPWXC are first flattened and embedded into la-
tent sequences, represented in s € R™*C_ To trans-
fer domain-specific information from the input style
image to the content image while preserving original
semantic details—such as objects, boundaries, and
spatial relationships—we stack three sequential trans-
former blocks in the latent space to process the com-
pressed latent vectors. Each block consists of the fol-
lowing components:

e The first Multi-head Self-Attention (MSA) to
grasp the contextual information for content im-
ages.

* The second Multi-head Cross-Attention (MCA)
to facilitate interaction between flattened latent
vectors.

e The last Feed-Forward Network (FFN) to en-
hance the model’s capacity for non-linear trans-
fomration and feature combination.

As a result, LSTrans outputs the transferred latent
sequence, after rearrange and reversed embedding,
we obtain the transferred latent vector z; € RP*WxC,
which is decoded into x; € R7*%">3 in image space.

3.3 Perceptual Loss for Model
Optimization

To obtain the transferred image x; that keep the
content of the x. while containing the style of
the x;, following the previous style transfer ap-
proaches(Johnson et al., 2016; Huang and Belongie,
2017; Chen et al., 2021; Deng et al., 2022), we im-
port Perceptual loss (VGG loss) as the penalty at each
training step. The total loss is defined as:

L=wiLc+wL (6)

in which Lc and Ls respectively compute the con-
tent loss between x; and x., style loss between x; and
X5, w1 and wy are weighted factors and set to 1 and
0.8. Given the pre-trained VGG-19 and input image
x € RFXW>3 “the first four convolutional layers out-
put are the low-level features f; that denote the image
style and domain information, while the last two con-
volutional layers output are the high-level features f
that denotes the image’s smeantic content. Thus the
content style loss and content loss is compute as fol-
lows:

Lc: ||fhr_fhc||2 (7)

Ly = |\ fu — fis|® ®)
here, fu, fues fir, and fis respectively represent, the
high-level features of x;, the high-level features of x,,
the low-level features of x;, and the low-level features
of x;.

4 EXPERIMENTS

4.1 Datasets

Existing aerial image segmentation datasets, such as
ISPRS Potsdam and Vaihingen(Gerke, 2012; Rot-
tensteiner et al., 2014), serve as widely-used bench-
marks, offering high-resolution, annotated images of
urban environments. While these datasets are invalu-
able for training and evaluating segmentation models,
they have significant limitations in real-world appli-
cations. A key issue is their lack of diversity in en-
vironmental conditions. Both datasets primarily fea-
ture images captured under ideal circumstances, such
as clear skies and uniform lighting, which do not ac-
curately reflect the variability present in real-world
aerial imagery(Wang et al., 2024a). Consequently,
models trained on these datasets often struggle with
domain shifts—environmental changes like weather
or lighting variations that can drastically reduce seg-
mentation accuracy.

In real-world scenarios, such as disaster response
or urban planning, aerial images are frequently taken
under challenging conditions, including fog, rain,
snow, or at night. The absence of such environmental
diversity in standard datasets limits the robustness and
adaptability of segmentation models when deployed
in dynamic environments. To address this shortcom-
ing, there is a need for a new dataset that not only
mirrors the spatial characteristics of datasets like IS-
PRS but also includes diverse weather conditions to
simulate domain shifts.

4.1.1 ISPRS Dataset

The International Society for Photogrammetry and
Remote Sensing (ISPRS) Vaihingen and Potsdam
datasets (Gerke, 2012; Rottensteiner et al., 2014) are
two widely used benchmarks from the ISPRS 2D Se-
mantic Labeling Contest. The Vaihingen dataset con-
sists of high-resolution aerial images of Vaihingen,
Germany, captured as true orthophotos with a ground
sampling distance (GSD) of 9 cm. It includes 33 im-
age tiles, 16 of which are annotated with six semantic
categories: impervious surfaces, buildings, low veg-
etation, trees, cars, and clutter (background). The
Potsdam dataset provides aerial images of Potsdam,
Germany, captured with a finer GSD of 5 cm. It con-
tains 38 tiles, each depicting diverse urban and sub-
urban landscapes, and is similarly annotated with six
semantic classes.

The original ISPRS images are augmented into
512x512 small images through cropping operations.
Afterwards, the augmented images are configured for
benchmarking, where 3,456 images for training and
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Figure 4: Results of Adapting to Foggy Domains in the ISPRS (Gerke, 2012; Rottensteiner et al., 2014) Vaihingen (left) and
Potsdam (right) datasets. The green and red curve denotes results on foggy validation set of segmentors train with and w/o
shifted foggy domain data. Training with foggy domain data resulted in segmentors achieving an increase of +2.97% mloU
in Vaihingen and +3.97% mloU in Potsdam, compared to training solely in the original domain. Moreover, the blue curve
shows the models trained with shifted domain data still keep their capacity on original domain. Zoom in for optimal viewing.

2,016 images for validation in Potsdam and 344 im-
ages for training and 398 images for validation in Vai-
hingen. To demonstrate the effect of domain shift, we
train the 9 segmentation models (Deeplabv3+(Chen
et al., 2018), UperNet(Xiao et al., 2018)-Res5S0(He
et al., 2016), UperNet-SwinT(Liu et al., 2021), PSP-
Net(Zhao et al., 2017), DANet(Fu et al., 2019),
SETR(Zheng et al., 2021), SegFormer(Xie et al.,
2021), SegNext(Guo et al., 2022), PointRend(Kirillov
etal., 2020)) under the original ISPRS training set and
test them under the intact ISPRS validation set and
their style-transferred foggy version, the results is il-
lustrated in Figure 2.

4.1.2 Synthetic Dataset

AWSD is a synthetic dataset created using Unreal En-
gine 5 (Unreal, 2024), designed to replicate realistic
urban environments modeled after the Potsdam and
Vaihingen datasets. The dataset captures images from
a 200-meter aerial perspective, maintaining consis-
tency with original benchmarks in terms of viewpoint
and object layout.

In contrast to the static, clear-sky images in IS-
PRS datasets(Gerke, 2012; Rottensteiner et al., 2014),
AWSD includes diverse weather conditions such as
snow, fog, and nighttime scenes. These conditions
were purposefully introduced to assess the adaptabil-
ity of segmentation models to domain shifts. AWSD
retains the same pixel-level semantic annotations
across six urban categories as ISPRS, ensuring precise
training and testing for both small and large objects in
complex environments.

By introducing varied weather scenarios, AWSD
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addresses the challenge of domain shifts, enabling
models to generalize more effectively across different
conditions. Its synthetic nature allows for the con-
sistent simulation of environmental variations that are
hard to capture in real-world datasets, making it a
valuable resource for enhancing aerial segmentation
algorithms’ robustness in real-world applications.

4.2 Comparison Study
4.2.1 Preliminary Setting

To demonstrate the adverse effects of domain shift
and simultaneously generate a foggy domain dataset,
we first trained the LAST model using the ISPRS
dataset alongside foggy images from the AWSD. We
combined the training sets of Vaihingen and Potsdam
as the content image set, while 462 synthetic foggy
images from UES (Unreal, 2024) served as the style
image set. Using Adam as the optimizer, we trained
the latent style transformer for 32,000 iterations on
two Nvidia RTX 3090 GPUs. During this process, the
parameters in both the VAE and the perceptual VGG-
19 models were kept frozen.

4.2.2 Experimental Results

The well-trained LAST model is used to generate
foggy versions of the ISPRS training and validation
sets. This eliminates the need for additional domain
adaptation algorithms or extra annotation efforts for
the foggy domain data. Furthermore, we combine the
original ISPRS training set with its foggy version and
re-evaluate the performance of nine different segmen-
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Table 1: Comparison experiment on the Vaihingen dataset. We evaluate the performance of segmentors on the original
domain validation set, comparing results from training without (w/o.) and with (w.) shifted domain data.

Method mloU(%) w/o. shifted data 1 | mIoU(%) w. shifted data 1
Deeplabv3+(Chen et al., 2018) (Res-50) 74.62 74.23
UperNet(Xiao et al., 2018) (Res-50) 74.02 74.23
UperNet (Swin-T) 73.32 73.94
PSPNet(Zhao et al., 2017) (Res-50) 73.00 73.52
DANet(Fu et al., 2019) (Res-50) 73.69 74.68
PointRend(Kirillov et al., 2020) (Res-50) 71.65 73.08
SETR(Zheng et al., 2021) (ViT-L) 70.99 73.90
SegFormer(Xie et al., 2021) (MiT) 72.38 72.12
SegNext(Guo et al., 2022) (MSCAN) 72.29 73.23
Average 72.88 73.49

Table 2: Comparison experiment on the Potsdam dataset. We evaluate the performance of segmentors on the original
domain validation set, comparing results from training without (w/o0.) and with (w.) shifted domain data.

Method mloU(%) w/o. shifted data 1 | mIoU(%) w. shifted data 1
Deeplabv3+(Chen et al., 2018) (Res-50) 73.89 73.81
UperNet(Xiao et al., 2018) (Res-50) 74.28 73.81
UperNet (Swin-T) 74.89 74.84
PSPNet(Zhao et al., 2017) (Res-50) 74.27 74.07
DANet(Fu et al., 2019) (Res-50) 73.52 73.50
PointRend(Kirillov et al., 2020) (Res-50) 71.94 71.02
SETR(Zheng et al., 2021) (ViT-L) 73.12 73.39
SegFormer(Xie et al., 2021) (MiT) 73.52 73.27
SegNext(Guo et al., 2022) (MSCAN) 74.68 74.19
Average 73.79 73.54

tation models. The results are presented in Figure 4
and Tables 1 and 2.

We evaluate the performance of the nine segmen-
tation models on the ISPRS validation set and its
foggy domain counterpart. Without requiring any ad-
ditional annotations for the shifted domain, the ro-
bustness of all models to the foggy domain improved
by +2.97% mloU on Vaihingen and +3.97% mloU
on Potsdam. Moreover, as shown in Tables 1 and
2, their performance in the original domain (clear
weather with adequate lighting conditions) is pre-
served.

S CONCLUSIONS

In this work, we employ synthetic image style trans-
fer to address domain shifts in aerial imagery. First,
we developed the Aerial Weather Synthetic Dataset
(ASWD), which introduces rare domain conditions
from an aerial perspective. Additionally, we proposed
a Latent Aerial Style Transfer model (LAST) to trans-
form original aerial data into a foggy version—a typ-
ical domain shift that alters weather and lighting con-
ditions. This approach eliminates the need for ad-

ditional annotations in the foggy domain. Finally,
we benchmarked current state-of-the-art (SoTA) seg-
mentation methods on the foggy ISPRS dataset, high-
lighting the impact of domain shift and successfully
adapting model performance to the new domain while
maintaining its effectiveness in the original domain.

REFERENCES

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).
Segnet: A deep convolutional encoder-decoder ar-
chitecture for image segmentation. IEEE transac-
tions on pattern analysis and machine intelligence,
39(12):2481-2495.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. (2010). A theory of
learning from different domains. Machine learning,
79:151-175.

Brock, A. (2018). Large scale gan training for high
fidelity natural image synthesis.  arXiv preprint
arXiv:1809.11096.

Brooks, T., Holynski, A., and Efros, A. A. (2023). Instruct-
pix2pix: Learning to follow image editing instruc-
tions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 18392-18402.

39



ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

Brown, T. B. (2020). Language models are few-shot learn-
ers. arXiv preprint arXiv:2005.14165.

Chen, H., Wang, Z., Zhang, H., Zuo, Z., Li, A., Xing,
W., Lu, D., et al. (2021). Aurtistic style transfer
with internal-external learning and contrastive learn-
ing. Advances in Neural Information Processing Sys-
tems, 34:26561-26573.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2017a). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence, 40(4):834—
848.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam,
H. (2017b). Rethinking atrous convolution for
semantic image segmentation. arXiv preprint
arXiv:1706.05587.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sepa-
rable convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV), pages 801-818.

Chung, J., Hyun, S., and Heo, J.-P. (2024). Style injection in
diffusion: A training-free approach for adapting large-
scale diffusion models for style transfer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8795-8805.

Dai, D. and Van Gool, L. (2018). Dark model adaptation:
Semantic image segmentation from daytime to night-
time. In 2018 21st International Conference on In-
telligent Transportation Systems (ITSC), pages 3819—
3824. IEEE.

Deng, Y., Tang, F., Dong, W., Ma, C., Pan, X., Wang, L.,
and Xu, C. (2022). Stytr2: Image style transfer with
transformers. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 11326-11336.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.

Farahani, A., Voghoei, S., Rasheed, K., and Arabnia, H. R.
(2021). A brief review of domain adaptation. Ad-
vances in data science and information engineering:
proceedings from ICDATA 2020 and IKE 2020, pages
877-894.

Figurnov, M., Mohamed, S., and Mnih, A. (2018). Implicit
reparameterization gradients. Advances in neural in-
Sformation processing systems, 31.

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., and Lu,
H. (2019). Dual attention network for scene segmen-
tation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR),
pages 3146-3154.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image
style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2414-2423.

40

Gerke, M. (2012). Use of the isprs vaihingen and potsdam
datasets for urban classification analysis. ISPRS Jour-
nal of Photogrammetry and Remote Sensing. ISPRS
WG I11/4.

Gong, M., Xie, S., Wei, W., Grundmann, M., Batmanghe-
lich, K., Hou, T, et al. (2024). Semi-implicit denois-
ing diffusion models (siddms). Advances in Neural
Information Processing Systems, 36.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27.

Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z., Cheng, M.-M., and
Hu, S.-M. (2022). Segnext: Rethinking convolutional
attention design for semantic segmentation. Advances
in Neural Information Processing Systems, 35:1140—
1156.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition (CVPR), pages 770-778.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion
probabilistic models. Advances in neural information
processing systems, 33:6840-6851.

Huang, X. and Belongie, S. (2017). Arbitrary style transfer
in real-time with adaptive instance normalization. In
Proceedings of the IEEE international conference on
computer vision, pages 1501-1510.

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Per-
ceptual losses for real-time style transfer and super-
resolution. In Computer Vision—-ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part 1l 14, pages
694-711. Springer.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T.,
and Laine, S. (2024). Analyzing and improving the
training dynamics of diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition, pages 24174-24184.

Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial net-
works. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
4401-4410.

Khanna, S., Liu, P., Zhou, L., Meng, C., Rombach, R.,
Burke, M., Lobell, D. B., and Ermon, S. (2023). Dif-
fusionsat: A generative foundation model for satellite
imagery. In The Twelfth International Conference on
Learning Representations.

Khosla, A., Zhou, T., Malisiewicz, T., Efros, A. A., and
Torralba, A. (2012). Undoing the damage of dataset
bias. In Computer Vision—-ECCV 2012: 12th Euro-
pean Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part 1 12, pages
158-171. Springer.

Kingma, D. P. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.

Kirillov, A., Wu, Y., He, K., and Girshick, R. (2020).
Pointrend: Image segmentation as rendering. In Pro-
ceedings of the IEEE/CVF conference on computer



LAST: Utilizing Synthetic Image Style Transfer to Tackle Domain Shift in Aerial Image Segmentation

vision and pattern recognition (CVPR), pages 9799—
9808.

Li, C. and Wand, M. (2016). Precomputed real-time texture
synthesis with markovian generative adversarial net-
works. In Computer Vision—-ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part Il 14, pages 702—
716. Springer.

Li, T., Chang, H., Mishra, S., Zhang, H., Katabi, D., and
Krishnan, D. (2023). Mage: Masked generative en-
coder to unify representation learning and image syn-
thesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2142-2152.

Li, X., He, H,, Li, X,, Li, D., Cheng, G., Shi, J., Weng,
L., Tong, Y., and Lin, Z. (2021). Pointflow: Flowing
semantics through points for aerial image segmenta-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4217-4226.

Liang, Y., Li, X., Tsai, B., Chen, Q., and Jafari, N. (2023).
V-floodnet: A video segmentation system for urban
flood detection and quantification. Environmental
Modelling & Software, 160:105586.

Lin, G., Milan, A., Shen, C., and Reid, I. (2017a). Re-
finenet: Multi-path refinement networks for high-
resolution semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1925-1934.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017b). Feature pyramid networks
for object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion (CVPR), pages 2117-2125.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierarchi-
cal vision transformer using shifted windows. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 10012-10022.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR), pages
3431-3440.

Luo, Z., Gustafsson, F. K., Zhao, Z., Sj6lund, J., and Schon,
T. B. (2023). Refusion: Enabling large-size realis-
tic image restoration with latent-space diffusion mod-
els. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1680—
1691.

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bring-
mann, O., Ecker, A. S., Bethge, M., and Brendel, W.
(2019). Benchmarking robustness in object detection:
Autonomous driving when winter is coming. arXiv
preprint arXiv:1907.07484.

Muandet, K., Balduzzi, D., and Scholkopf, B. (2013). Do-
main generalization via invariant feature representa-
tion. In International conference on machine learning,
pages 10-18. PMLR.

Peebles, W. and Xie, S. (2023). Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages
4195-4205.

Pi, Y., Nath, N. D., and Behzadan, A. H. (2020). Convo-
lutional neural networks for object detection in aerial
imagery for disaster response and recovery. Advanced
Engineering Informatics, 43:101009.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and
Chen, M. (2022). Hierarchical text-conditional im-
age generation with clip latents. arXiv preprint
arXiv:2204.06125, 1(2):3.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 10684—10695.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention—-MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part 11l 18, pages 234-241.
Springer.

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Bre-
itkopf, U., and Jung, J. (2014). Results of the isprs
benchmark on urban object detection and 3d building
reconstruction. ISPRS journal of photogrammetry and
remote sensing, 93:256-271.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. (2015). Deep unsupervised learning us-
ing nonequilibrium thermodynamics. In Bach, F. and
Blei, D., editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
2256-2265, Lille, France. PMLR.

Sohn, K., Jiang, L., Barber, J., Lee, K., Ruiz, N., Krish-
nan, D., Chang, H., Li, Y., Essa, 1., Rubinstein, M.,
et al. (2024). Styledrop: Text-to-image synthesis of
any style. Advances in Neural Information Process-
ing Systems, 36.

Song, J., Meng, C., and Ermon, S. (2020). De-
noising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Strudel, R., Garcia, R., Laptev, 1., and Schmid, C. (2021).
Segmenter: Transformer for semantic segmentation.
In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 7262-7272.

Sun, T., Segu, M., Postels, J., Wang, Y., Van Gool, L.,
Schiele, B., Tombari, F., and Yu, F. (2022). Shift:
a synthetic driving dataset for continuous multi-task
domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 21371-21382.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and
Abbeel, P. (2017). Domain randomization for transfer-
ring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 23-30.
IEEE.

41



ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

Toker, A., Eisenberger, M., Cremers, D., and Leal-Taixé,
L. (2024). Satsynth: Augmenting image-mask pairs
through diffusion models for aerial semantic segmen-
tation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
27695-27705.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017).
Adversarial discriminative domain adaptation. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 7167-7176.

Unreal, E. (2024). https://www.unrealengine.com/en-us.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical
variational autoencoder. Advances in neural informa-
tion processing systems, 33:19667-19679.

Volpi, R., Namkoong, H., Sener, O., Duchi, J. C., Murino,
V., and Savarese, S. (2018). Generalizing to unseen
domains via adversarial data augmentation. Advances
in neural information processing systems, 31.

Wang, M. and Deng, W. (2018). Deep visual domain adap-
tation: A survey. Neurocomputing, 312:135-153.
Wang, Y., Wang, Z., Nakano, Y., Hasegawa, K., Ishii, H.,
and Ohya, J. (2024a). Mac: Multi-scales attention
cascade for aerial image segmentation. In 13th In-
ternational Conference on Pattern Recognition Appli-
cations and Methods, ICPRAM 2024, pages 37-47.

Science and Technology Publications, Lda.

Wang, Y., Wang, Z., Nakano, Y., Nishimatsu, K,
Hasegawa, K., and Ohya, J. (2022). Context enhanced
traffic segmentation: traffic jam and road surface seg-
mentation from aerial image. In 2022 IEEE 14th Im-
age, Video, and Multidimensional Signal Processing
Workshop (IVMSP), pages 1-5. IEEE.

Wang, Z., Jiang, Y., Zheng, H., Wang, P., He, P., Wang,
Z., Chen, W., Zhou, M., et al. (2024b). Patch diffu-
sion: Faster and more data-efficient training of diffu-
sion models. Advances in neural information process-
ing systems, 36.

Wang, Z., Zhao, L., and Xing, W. (2023). Stylediffusion:
Controllable disentangled style transfer via diffusion
models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
7677-7689.

Wagqgas Zamir, S., Arora, A., Gupta, A., Khan, S., Sun, G.,
Shahbaz Khan, F., Zhu, F., Shao, L., Xia, G.-S., and
Bai, X. (2019). isaid: A large-scale dataset for in-
stance segmentation in aerial images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pages 28—
37.

Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J.,
Datcu, M., Pelillo, M., and Zhang, L. (2018). Dota:
A large-scale dataset for object detection in aerial
images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3974—
3983.

Xiao, T., Liu, Y., Zhou, B., Jiang, Y., and Sun, J. (2018).
Unified perceptual parsing for scene understanding. In
Proceedings of the European conference on computer
vision (ECCV), pages 418—434.

42

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M.,
and Luo, P. (2021). Segformer: Simple and efficient
design for semantic segmentation with transformers.
Advances in Neural Information Processing Systems
(NeurlIPs), 34:12077-12090.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A.
(2019).  Self-attention generative adversarial net-
works. In International conference on machine learn-
ing, pages 7354-7363. PMLR.

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X.,
and Metaxas, D. N. (2017). Stackgan: Text to photo-
realistic image synthesis with stacked generative ad-
versarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 5907—
5915.

Zhang, L., Rao, A., and Agrawala, M. (2023). Adding con-
ditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3836-3847.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyra-
mid scene parsing network. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pages 2881-2890.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu,
Y., Feng, J., Xiang, T., Torr, P. H,, et al. (2021). Re-
thinking semantic segmentation from a sequence-to-
sequence perspective with transformers. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6881-6890.

Zheng, Z., Zhong, Y., Wang, J., and Ma, A. (2020).
Foreground-aware relation network for geospatial ob-
ject segmentation in high spatial resolution remote
sensing imagery. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 4096-4105.

Zhu, J.-Y., Park, T., Isola, P, and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vi-
sion, pages 2223-2232.



