
Data Orchestration Platform for AI Workflows Execution Across
Computing Continuum

Gabriel Ioan Arcas1 a and Tudor Cioara2 b
1Engineering and Data Solutions Department, Bosch Engineering, Center, Cluj-Napoca, Romania

2Computer Science Department, Technical University of Cluj Napoca, Romania

Keywords: Data Orchestration, AI Workflow, Computing Continuum, Lambda Architecture, Edge-Fog-Cloud.

Abstract: Cloud AI technologies have emerged to exploit the vast amount of data produced by digitized activities.
However, despite these advancements, they still face challenges in several areas, including data processing,
achieving fast response times, and reducing latency. This paper proposes a data orchestration platform for AI
workflows, considering the computing continuum setup. The edge layer of the platform focuses on immediate
data collection, the fog layer provides intermediate processing, and the cloud layer manages long-term storage
and complex data analysis. The orchestration platform incorporates the Lambda Architecture principles for
flexibility in managing batch processing and real-time data streams, enabling effective management of large
data volumes for AI workflows. The platform was used to manage an AI workflow dealing with the prediction
of household energy consumption, showcasing how each layer supports different stages of the machine
learning pipeline. The results are promising the models are being trained, validated, and deployed effectively,
with reduced latency and use of computational resources.

1 INTRODUCTION

The current era is marked by rapid technological
progress with vast amounts of data being produced
from activities such as social media interactions,
online transactions, and IoT devices (Nižetić et al.,
2020). New AI technologies such as machine learning
emerged to exploit big data, transforming every
aspect of our lives, from how we work and
communicate to how we interact with our
environment. Distributed systems are constantly
exposed to a continuous flow of information and need
to incorporate advanced processing technologies to
achieve effective and reliable AI workflow execution
and integration. However, these systems encounter
significant hurdles, particularly in handling data
processing demanding tasks, achieving fast response
times, and reducing latency (Steidl et al., 2023).
Moreover, considerable challenges, such as
improving response time and minimizing the latency
are faced when AI pipelines are executed.

Migrating AI workflows from a cloud-based
architecture to a distributed computing continuum

a https://orcid.org/0009-0002-2246-5928
b https://orcid.org/0000-0003-1177-5795

requires a fundamental redesign of applications
(Rosendo et al., 2022). A major challenge is
decomposing tightly coupled monoliths into smaller
components that can be distributed toward the edge.
Additionally, managing network latency becomes
critical when deploying these components on remote
resources, unlike in cloud systems where components
run in the same data center with low-latency
communication (Bulej et al., 2021). In a system
distributed over the commuting continuum,
components are spread across multiple servers, which
can introduce latency and additional communication
costs. This necessitates careful analysis of how the
components should communicate with each other and
the use of technologies such as message queues and
service discovery. The decentralization of
computational processes towards the edge is
interesting for large-scale utility infrastructures such
as the smart grid (Ferahtia et al., 2024). In such
infrastructure, the adoption of IoT metering devices
generates vast amounts of data that are used to
optimize the delivery of electricity. AI workflows are
used to balance energy supply and demand

Arcas, G. I. and Cioara, T.
Data Orchestration Platform for AI Workflows Execution Across Computing Continuum.
DOI: 10.5220/0013140600003950
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 103-110
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

103

proactively, by predicting those values in advance.
However, they require both batch processing as well
as real-time analytics and a lot of information to
ingest, making the processing in the cloud inefficient
with costs for data migration leading to latency and
delay in the decision-making process (Arcas et al.,
2024a). Thus, the demand for robust, scalable, and
responsive frameworks to handle these complex tasks
is more pressing than ever. Additionally, due to
privacy constraints, the citizens or electricity
companies are reluctant to move their data to cloud
data centres preferring to keep them locally to the
point of generation (Arcas et al., 2024b). This further
emphasizes the need to adopt decentralized data
orchestration pipelines that can run AI workflows
across the computing continuum layers, while data
and computation are distributed towards the edge.

In this paper, we address these challenges by
proposing a data orchestration platform for AI
workflows that addresses some requirements and
exploits the benefits of the computing continuum.
Each platform layer has a unique and supportive role:
the edge layer, consisting of smart meters and IoT
devices, focuses on immediate data collection and
preprocessing near the source, reducing latency.
Located between the edge and the cloud, the fog layer
offers intermediate processing, easing the load on the
cloud and facilitating near real-time responses. The
cloud layer, with its advanced computational power,
handles long-term storage, complex data analysis,
and model retraining. This layered approach enhances
data management efficiency and ensures that the
system can scale effectively to meet the growing
needs of contemporary AI workflows. Additionally,
the proposed platform incorporates the Lambda
Architecture offering flexibility in managing batch
processing as well as the real-time data streams. This
integration enables the effective management of large
data volumes, offering timely insights and alerts
while preserving the accuracy and depth needed for
AI workflows. For evaluation the platform was used
for managing an AI workflow addressing the
prediction of household’s energy consumption,
illustrating how each layer supports different stages
of the machine learning pipeline. The edge layer is
responsible for data ingestion, capturing raw data
rapidly near the source to minimize latency.
Additionally, the edge performs basic preprocessing,
such as data filtering and normalization, reducing the
data volume sent to subsequent layers. This dual
functionality ensures both efficient data capture and
preliminary processing, which is important for real-
time applications.

The rest of the paper is structured as follows:
Section II presents the state of the art in data
orchestration for AI. Section III describes the design
and technologies of the data orchestration platform,
along with its mapping to the Lambda Architecture.
Section IV presents an evaluation of use cases in the
context of a smart grid, specifically focusing on the
prediction of household energy demand. Finally,
Section V concludes the paper.

2 RELATED WORKS

Federated Learning enables decentralized model
training on mobile devices, allowing local data to
remain on the devices, which reduces data privacy
risks. But in some cases, communication between
devices and the server can increase because the model
updates are sent back and forth multiple times. To
address this, ongoing research focuses on reducing
communication overhead, for example, by
compressing updates or reducing the number of
communication rounds (McMahan et al., 2017).
Several additional factors drive efficiency
(Sakthidevi et al., 2023). Specialized architectures
like Symphony, which focuses on managing data
movement through the memory hierarchy, can
significantly cut down on unnecessary data transfers
and distances. This not only boosts performance but
also enhances energy efficiency (Pellauer et al.,
2023). Innovative frameworks like Kafka-ML handle
machine learning pipelines through data streams,
effectively managing the large volumes of continuous
data from IoT devices, which improves both training
and prediction quality (Chaves et al., 2023).
Advanced memory orchestration techniques optimize
local and remote memory resources, cutting latency
and boosting throughput for memory-heavy machine
learning tasks (Bae et al., 2020). Moreover,
coordinating tensor movements between GPUs (Lin
et al., 2023) can boost speed, especially when dealing
with memory constraints.

Orchestrating across the edge, fog, and cloud is
key to making data processing more efficient for
machine learning applications in smart grids. By
tapping into distributed computing resources from
edge to cloud, these setups handle the growing data
loads from IoT devices, improving response times,
energy usage, and network performance in smart
grids (Arcas et al., 2024b). Offloading tasks to the
edge and fog layers cut down on latency and allows
for real-time processing, which is essential for things
like predictive maintenance and smart grid
management (Belcastro et al., 2024). Plus, integrating

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

104

fog computing into smart grids boosts
communication efficiency, user satisfaction, and
security—using methods like EPri-MDAS to keep
data secure, authenticated, and private (Zhang et al.,
2024). In short, this orchestration fine-tunes data
processing, enabling advanced machine-learning
algorithms to run smoothly and reliably in smart grid
operations (Shi et al., 2023). By using edge
computing devices for real-time data crunching
(Siddiqa et al., 2024), you can implement a four-layer
framework that combines edge and cloud computing
with application layers, thereby ramping up data
processing capabilities (Gamal et al., 2024).
Moreover, the blend of cloud-edge-fog systems with
omnidirectional offloading helps optimize energy
consumption and enhances system responsiveness,
leading to significant energy savings and lower
latency for processing data in smart grids
(Kuswiradyo et al., 2024). This approach harmonizes
computing resources across layers, making sure that
the vast amounts of data needed for machine learning
in smart grid environments are processed effectively
(Duan & Lu, 2024).

Decentralized machine learning algorithms like
EdgeSGD (Kamath et al., 2016) allow smart grids to
handle data closer to the source, optimizing
bandwidth and ensuring quick delivery of
information to decision-makers. Also, using machine
learning models like Support Vector Machines at the
cloud's edge for anomaly detection strengthens
security in IoT environments (Zissis, 2017).
Incorporating Hadoop and Spark cloud platforms into
smart grid management systems helps to distribute
storage, computing, and data analysis. This
integration enhances grid monitoring, predicts
abnormalities, and pinpoints faults for automated
dispatching services (Guo et al., 2017). Altogether,
these advancements make automatic dispatching in
smart grids more efficient by maximizing the use of
monitoring data and uncovering valuable data
relationships. By co-designing cloud and edge
processing in fog radio access networks, enhanced
remote radio heads with local caches and baseband
processing can store frequently requested data,
optimizing delivery through pre-fetching strategies
(Park et al., 2016). Distributed gradient descent
approaches allow learning model parameters from
data across multiple edge nodes without needing to
send raw data to a centralized location, which keeps
model training efficient while addressing bandwidth
and privacy concerns (Wang et al., 2018). Moreover,
modern machine learning techniques like
reinforcement learning and neural networks, can
automatically create highly efficient scheduling

policies for data processing jobs on distributed
clusters, significantly speeding up job completion
times without requiring manual adjustments (Mao et
al., 2019).

Existing approaches to data orchestration in the
computing continuum, such as (Sakthidevi et al.,
2023), (Pellauer et al., 2023), primarily address either
real-time or batch processing but do not provide a
unified framework that integrates both. Additionally,
many solutions focus on specific layers, such as edge
or cloud, without leveraging the full potential of the
fog layer for intermediate processing. The lack of
robust orchestration frameworks that address
scalability, latency, and resource utilization across all
three layers (edge, fog, cloud) highlights a significant
gap. This work addresses these challenges by
proposing a comprehensive data orchestration
platform designed to optimize AI workflows across
the computing continuum.

3 DATA ORCHESTRATION
PLATFORM

3.1 Architecture

Figure 1 shows the data orchestration platform
designed and tailored to consider the strengths and
requirements of each layer of the computing
continuum layer.

Figure 1: Platform architecture.

The Edge Devices Layer comprises sensors close
to the data source with internet connectivity. These
devices measure and collect data rapidly and with
minimal latency. This data is essential for other

Data Orchestration Platform for AI Workflows Execution Across Computing Continuum

105

computational layers to execute AI-driven tasks like
predicting energy consumption, detecting faults, and
performing predictive diagnostics. The Edge Devices
Layer acts as the foundational element of the
orchestration solution. Therefore, data representation
schemas are defined to ensure that the collected data
is consistently formatted and facilitates effective
analysis and processing in later stages of the
architecture.

The Edge Nodes layer functions as a broker,
consisting of multiple communication channels. It
employs a publish/subscribe model being located
close to the Edge Devices. The layer nodes feature
low latency, although their computational resources
are limited. As a result, a message broker is essential
for collecting data from the smart meters. In our
setup, the smart meters from the Edge Devices layer
act as publishers, while the sensors described in the
subsequent layer serve as subscribers. This approach
addresses the scalability limitations of traditional
client-server applications when dealing with
numerous devices. The broker processes messages
using an event-driven approach, enabling parallel
processing. Additionally, it ensures that the system is
reliable and can handle multiple devices with
concurrent connections without affecting overall
performance. Furthermore, it supports data caching
and routes messages to the appropriate subscribers.
We use Eclipse Mosquitto (Mosquitto, n.d.) an open-
source message broker that implements the MQTT
protocol. Its lightweight nature allows for easy
deployment across all computing layers, including the
edge nodes, ingesting data, and subsequently
processing and storing it in the following layers.

The Fog Layer represents the data processing
component of the architecture. It includes a set of
virtual subscribers to message brokers in the Edge
Nodes layer, triggering specific workflows based on
incoming messages. These workflows encompass
data pipelines, including those for machine learning,
ETL processes, and additional types. This layer
employs event-driven architecture to facilitate its
operations. Positioned closer to the Edge Nodes than
data centres from cloud providers, the Fog Layer
connects the cloud with the edge, therefore
minimizing response time and latency. The Fog Layer
includes two main components: the control cluster
and the execution clusters, which are organized based
on location. To achieve a multi-cluster setup and
manage configurations effectively for the Edge, the
KubeStellar (KubeStellar, n.d.) is utilized.
KubeStellar simplifies the deployment and
configuration of applications across multiple clusters.
In this architecture, the control of message reception

is separated from data processing tasks. This
separation enhances response time, reduces latency,
and supports parallel processing. Additionally, it
enables seamless network communication between
clusters, which is necessary as the Workflow engine
technology remains consistent across them. The
control cluster is responsible for delegating workflow
execution to the appropriate cluster. The control
cluster contains an event-based dependency manager
called Argo Events (Argo Events, n.d.) and a
workflow automation framework named Argo
Workflows (Argo Workflows, n.d.), both running
within Kubernetes (Kind, n.d.). Argo Events
facilitates the triggering of computational
components and objects within Kubernetes, including
Argo Workflows, serverless applications, and more.
Argo Workflows define AI-driven operations based
on MQTT messages, supporting both Directed
Acyclic Graphs (DAG) and step-based workflows. To
interface with MQTT brokers from the Edge Nodes
layer, with the clusters from the Fog Layer a virtual
subscriber is defined. It consists of a set of events,
where inputs are messages from broker topics, and
triggers correspond to workflows. It uses an event bus
to manage dependencies and execute triggers, with
dependencies being events that the virtual subscriber
waits for to activate.

The Cloud Layer is responsible for the long-term
storage of processed data. It connects to databases in
the cloud where the results of completed workflows
from the Fog Layer are stored. In our platform setup,
we have used Azure as the cloud provider and
PostgreSQL. This setup enhances data durability and
minimizes the risk of data loss, providing robust
backup and recovery options. Database connection
strings are managed as Sealed Secrets within
Kubernetes. Sealed Secrets addresses the challenge of
storing sensitive information in version control
systems like Git by encrypting and decrypting secrets
through a dedicated controller. This controller
ensures that secrets can only be decrypted by the
controller operating within the target cluster.

3.2 Lambda Architecture Mapping

The proposed data orchestration platform is designed
to consider the strengths of the Lambda Architecture,
ensuring a robust, flexible, and scalable solution
capable of handling data processing requirements
specific to AI driven workflows. The Lambda
Architecture (Kumar, Y., 2020) seamlessly integrates
both batch and stream processing, to manage the
challenges posed by massive data volumes. The
architecture features three distinct layers. The Batch

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

106

Layer is dedicated to processing extensive datasets in
batch mode, prioritizing accuracy, and precision. It
employs sophisticated algorithms to conduct in-depth
analysis of historical data, ensuring comprehensive
insights over time. The Speed Layer focuses on real-
time data, this layer processes information as it is
ingested, facilitating immediate insights and triggering
alerts. The main objective is to deliver rapid responses
to immediate data fluctuations, facilitating prompt
decision-making. The Serving Layer acts as the
interface for user queries, this layer integrates the
outputs from both the batch and speed layers,
presenting a cohesive and unified view of the data.

Lambda Architecture balances the demand for
immediate, real-time insights with the need for
precise, long-term data analysis. This balance makes
it an invaluable framework for big data applications,
where both speed and accuracy are critical. The
flexible design of the architecture supports
straightforward integration with new technologies,
maintaining its applicability and efficiency within AI
algorithms. Moreover, the use of redundant layers
ensures data integrity and fault tolerance, further
solidifying its role as a cornerstone in modern data
processing architectures (Kumar, Y., 2020).

Our data orchestration platform maps the
principles of the Lambda Architecture, particularly at
the Edge Nodes and Fog Layers (see Figure 2). The
mapping helps in clarifying how the platform will
handle different types of data processing
requirements such as batches requiring more
computational power and storage and stream
processing that need low-latency processing, often
managed at the edge. The proposed platform ensures
that data is efficiently routed to the appropriate
processing layer optimizing resource usage and
minimizing latency.

Figure 2: Flow chart for Lambda integration.

At the Edge Nodes level, our platform foresees
two methods for data ingestion. For batch ingestion,
the data is collected over a specified period being
tailored for scenarios that allow for the aggregation of
large datasets before analysis. In the case of stream
ingestion, the data is captured and processed in real-

time, handling each data point as it arrives addressing
scenarios requiring immediate processing and analysis,
such as real-time monitoring and alerts. Once ingested,
data is directed to the Fog Layer, where it is segregated
into two distinct processing paths, each triggered by
dedicated virtual subscribers. The batch processing
path uses a virtual subscriber to trigger workflows that
periodically process and store data, generating
aggregated reports and enabling deep historical
analysis for long-term insights. The stream processing
path, by contrast, handles real-time data, triggering
workflows for immediate processing of each data
point. This ensures responsiveness for live dashboards,
instant insights, and alerts. Following the Lambda
architecture, the system presents data in two views:
batch views provide historical insights for trend
analysis, while real-time views update continuously,
supporting live monitoring and decision-making.

4 EVALUATION RESULTS

A use case evaluation was conducted on top of the
proposed data orchestration platform considering an
AI-based workflow for predicting the energy
consumption of households in a smart grid. Data
Collection takes place on Edge Devices as the smart
energy meters collect and transmit raw data. Data
Aggregation and Preprocessing run on the Edge
Nodes, then it is routed to the Fog Layer. The Data
Processing and Model Execution are mapped on the
Fog Layer. The control cluster triggers machine
learning workflows, and execution clusters handle
model training, validation, and inference. Finally, the
Storage and Analysis is executed on Cloud Layer as
the processed data and model outputs are stored in
cloud databases, with additional analysis and model
retraining performed as needed.

For evaluation purposes, we have used a data set
that contains half-hourly energy consumption
readings for 5,567 London households (Greater
London Authority, n.d.). It includes approximately
167 million rows of data, totalling around 10GB. The
data allows analysis of energy consumption patterns
under different pricing schemes, offering insights into
consumer behaviour and smart grid management. We
have considered one smart meter attached to a
household and simulated its functionality. An MQTT
broker runs a small cluster with two topics, one for
each execution cluster from the Fog Layer. A Python
script implements the producer by parsing the data
from the data set, formatting it in JSON, and sending
batches of 300 measurements to the MQTT topic. On
the Fog Layer, we have set up one control cluster and

Data Orchestration Platform for AI Workflows Execution Across Computing Continuum

107

two execution clusters. The control cluster is based on
Argo Events with one event source for MQTT
connected to the 2 topics. Argo Workflows is used to
define the AI workflow that trains a Linear
Regression model to make predictions for each batch
of data. On the execution clusters workflow model
instances are being deployed and executed based on
the triggers received from the control cluster. Each
workflow execution takes around 30 seconds. To
avoid potential bottlenecks on the Argo Server for
each JSON message coming from the MQTT topic,
we set a time delay of 30 seconds before dispatching
it to the corresponding workload instance new
workflow. On the Cloud Layer, we deployed an
Azure Postgres Database for storing the master data
set and Power BI for querying the data to create
visualization.

In total, 300 workflows were executed. Each
workflow involved the ingestion of approximately
90,000 events from 160 smart meters. These smart
meters were divided into two groups of 80 each, with
each group connected to a separate MQTT topic to
facilitate workflow execution in one of the two
clusters. For analysis, we will randomly select 10
workflows to examine in the subsequent sections.
Figure 3 shows the average duration for running the
workflows. As can be seen, the execution time was
around 38 seconds indicating a stable and predictable
AI workflow process in our platform, the impact of
workflow changes being minimal.

Figure 3: Execution time per workflow.

In terms of computational resources, each
workflow requires on average 2 CPUs and 50 MB of
memory to execute (see Figure 4). The memory usage
includes both the batch data and the container size,
with the container being approximately 30 MB.
However, it is notable that the workflow 5 required 4
CPUs. This was due to the batch data containing
varying energy data values, which necessitated
additional computation by the machine learning
model to make accurate predictions.

Figure 4: The computational resources per workflow.

In the 2nd experiment, we explored the impact of
varying batch sizes of smart meter data on the
performance of the AI workflow aimed at predicting
half-hourly energy consumption. We tested 300
workflows, varying batch sizes from 10 to 300 events,
to assess their impact on execution time and resource
usage. Figure 5 illustrates execution times across
runs, showing longer durations with larger batches,
peaking near 60 seconds. Despite fluctuations,
average durations were stable, highlighting the
system's adaptability to varying loads. Outliers
indicated potential bottlenecks. Future experiments
will scale workloads further, testing thousands of
smart meters and larger batches to evaluate
performance under extreme data volumes. The results
affirm that the fog layer’s event-driven architecture
supports sustained performance and low latency
under diverse conditions.

Figure 5: Workflows execution time.

Figure 6 illustrates the computational resources
required for each run, specifically CPU and memory
usage. The CPU usage remained low throughout,
indicating that the AI workflow wasn't particularly
CPU-intensive. Memory usage fluctuated as batch
sizes grew, leading to a higher demand. This suggests
that batch sizing is a crucial factor in processing and
has a big impact on the overall performance of
workflow execution in our platform. Additionally, the

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

108

experiment highlighted a distinct connection between
batch size and system efficiency, showing that
memory usage is significantly influenced by the
volume of data being processed. These insights are
essential for optimizing the deployment of AI
workloads in smart grid scenarios ensuring timely
energy consumption predictions.

Figure 6: Workflows computational resources usage.

The proposed data orchestration platform's
performance was assessed through a comparative
study against a centralized cloud-based orchestration
system. Table 1 showcases the findings,
demonstrating decreases in latency (approximately
20–30%) and enhanced resource efficiency (around
15–25%) achieved by the proposed solution. The fog
layer enhances performance by handling intermediate
processing, reducing cloud reliance, and enabling
faster data handling. This approach minimizes
bandwidth use and network delays but introduces
resource overhead from additional execution clusters.
These clusters, while necessary for workflow
management, may affect efficiency in resource-
constrained fog environments. Balancing latency and
resource use depends on application needs: latency-
sensitive tasks benefit more from the fog layer, while
batch processing may favour cloud-based solutions to
optimize resources.

Table 1: Performance comparison.

Metric Centralized
Cloud Our Platform

Average Latency (ms) 250 175

Execution Time (s) 45 36

Resource Efficiency
(CPU utilization) 80% 60%

Bandwidth (MB) 100 70

The comparative results provide evidence of the
benefits offered by distributing computation across
the edge, fog, and cloud layers. Specifically, the

reduction in processing time and resource utilization
highlights the advantages of the computing
continuum for real-time and resource-intensive AI
workflows.

5 CONCLUSIONS

In this paper, we have proposed a data orchestration
platform for AI workflows leveraging the computing
continuum features. It enables efficient data
orchestration across edge, fog, and cloud layers to
maintain minimal delays, rapid execution times, and
scalable resource usage which are important factors
for AI-driven workflows. Moreover, the orchestration
platform effectively aligns with the principles of the
Lambda Architecture, particularly within the Edge
Nodes and Fog Layers (see Figure 3). This alignment
clarifies how the platform will handle varying data
processing needs, optimizing performance across
different layers of the architecture.

For evaluation, we have considered smart grid
scenarios and workflows dealing with energy
prediction of household’s energy consumption. The
findings show that our platform effectively manages
data flows and computational tasks, enhancing
performance in terms of execution time and resource
usage efficiency. Additionally, the results highlight a
link between the size of the data batches and memory
usage. Larger batches require more memory, while
CPU usage remains relatively low, highlighting the
importance of batch sizing for efficient handling of
varying data loads.

Future investigations will focus on incorporating
an analysis of end-to-end latency, which will capture
the full duration from data collection to model output.
Additionally, evaluating cost efficiency will be
essential to understand the trade-offs between
computational expenses and prediction accuracy.

ACKNOWLEDGEMENTS

This work has been conducted within the HEDGE-
IoT project, grant number 101136216, funded by the
European Commission as part of the Horizon Europe
Framework Programme and by a grant of the Ministry
of Research, Innovation and Digitization,
CNCS/CCCDI - UEFISCDI, project number PN-IV-
P8-8.1-PRE-HE-ORG-2024-0194, within PNCDI IV.

Data Orchestration Platform for AI Workflows Execution Across Computing Continuum

109

REFERENCES

Nižetić, S., Šolić, P., (2020). Internet of Things (IoT):
Opportunities, issues and challenges towards a smart
and sustainable future. Journal of Cleaner Production,
274,

Steidl, M., Felderer, M., & Ramler, R. (2023). The pipeline
for the continuous development of artificial intelligence
models—Current state of research and practice. Journal
of Systems and Software, 199, 111615.

Rosendo, D., Costan, A., Valduriez, P., & Antoniu, G.
(2022). Distributed intelligence on the Edge-to-Cloud
Continuum: A systematic literature review. Journal of
Parallel and Distributed Computing, 166, 71–94.

Bulej, L., et al. (2021). Managing latency in edge–cloud
environment. Journal of Systems and Software, 172,
110872.

Ferahtia, S., Houari, A., Cioara, T., Bouznit, M., Rezk, H.,
(2024). Recent advances on energy management and
control of direct current microgrid for smart cities and
industry: A survey. Applied Energy, 368.

Arcas, G. I., Cioara, T., & Anghel, I. (2024a). Whale
Optimization for Cloud–Edge-Offloading Decision-
Making for Smart Grid Services. Biomimetics, 9, 302.

Arcas, G. I., Cioara, T., Anghel, I., Lazea, D., & Hangan,
A. (2024b). Edge Offloading in Smart Grid. Smart
Cities.

Sakthidevi, I., Sangeetha, A., et al. (2023). Machine
Learning Orchestration in Cloud Environments:
Automating the Training and Deployment of
Distributed Machine Learning AI Model. I-SMAC,
10.1109/i-smac58438.2023.10290278

Pellauer, M., Clemons, J., Balaji, V., Crago, N., Jaleel, A.,
Lee, D., … Emer, J. (2023). Symphony: Orchestrating
Sparse and Dense Tensors with Hierarchical
Heterogeneous Processing. ACM Transactions on
Computer Systems.

Bae, J., Su, G., Iyengar, A., Wu, Y., & Liu, L. (2020).
Efficient Orchestration of Host and Remote Shared
Memory for Memory Intensive Workloads.

McMahan, B. H., Moore, E., Ramage, D., Hampson, S., &
Aguera y Arcas, B. (2017). Communication-Efficient
Learning of Deep Networks from Decentralized Data.

Lin, S. F., Chen, Y. J., Cheng, H. Y., & Yang, C. L. (2023).
Tensor Movement Orchestration in Multi-GPU
Training Systems.

Belcastro, L., et al. (2024). Edge-Cloud Solutions for Big
Data Analysis and Distributed Machine Learning.
Future Generation Computer Systems.

Zhang, J., Zhang, W., Wei, X., & Liu, H. (2024). EPri-
MDAS: An efficient privacy-preserving multiple data
aggregation scheme without trusted authority for fog-
based smart grid. High-Confidence Computing.

Shi, H., Zhao, J., Gu, C., Wang, M., & Huang, H. (2023).
Enabling Efficient Multidimensional Encrypted Data
Aggregation for Fog-Cloud-Based Smart Grid.

Siddiqa, A., Khan, W. Z., Alkinani, M. H., Aldhahri, E., &
Khan, M. K. (2024). Edge-assisted federated learning
framework for smart crowd management. Internet of
Things.

Gamal, M., Awad, S., Abdel-Kader, R. F., & Elsalam, K.
A. (2024). Efficient offloading and task scheduling in
internet of things-cloud-fog environment. International
Journal of Electrical and Computer Engineering.

Kuswiradyo, P., Kar, B., & Shen, S. H. (2024). Optimizing
the energy consumption in three-tier cloud–edge–fog
federated systems with omnidirectional offloading.
Computer Networks.

Duan, Q., & Lu, Z. (2024). Edge Cloud Computing and
Federated–Split Learning in Internet of Things. Future
Internet.

Kamath, G., Agnihotri, P., Valero, M., Sarker, K., & Song,
W. Z. (2016). Pushing Analytics to the Edge.

Zissis, D. (2017). Intelligent security on the edge of the
cloud.

Guo, Z., Mu, Y., Yuexing, P., & Gao, X. (2017). Cloud
Computing Platform Design and Machine Learning-
Based Fault Location Method in Automatic
Dispatching System of Smart Grid.

Park, S. H., Simeone, O., & Shitz, S. S. (2016). Joint
Optimization of Cloud and Edge Processing for Fog
Radio Access Networks. IEEE Transactions on
Wireless Communications.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya,
C., He, T., & Chan, K. S. (2018). When Edge Meets
Learning: Adaptive Control for Resource-Constrained
Distributed Machine Learning.

Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng,
Z., & Alizadeh, M. (2019). Learning scheduling
algorithms for data processing clusters.

Mosquitto. (n.d.). Eclipse Mosquitto: An open-source
MQTT broker. Retrieved from https://mosquitto.org/

Argo Events. (n.d.). Argo Events: Event-based dependency
manager for Kubernetes. Retrieved from https://argo
proj.github.io/argo-events/

Argo Workflows. (n.d.). Argo Workflows: Open-source
container-native workflow engine for Kubernetes.
Retrieved from https://argoproj.github.io/workflows/

Kind. (n.d.). Kubernetes IN Docker: Easily run local
Kubernetes clusters. Retrieved from https://kind.sigs.
k8s.io/

KubeStellar. (n.d.). KubeStellar: Manage workloads across
multiple Kubernetes clusters. Retrieved from
https://github.com/kubestellar/kubestellar

Kumar, Y. (2020). Lambda Architecture – Realtime Data
Processing. Social Science Research Network.

Greater London Authority. (n.d.). Smart meter energy use
data in London households. Retrieved from
https://data.london.gov.uk/dataset/smartmeter-energy-
use-data-in-london-households

Chaves García, A., Martín, C., Kim, K. S., Shahid, A., &
Díaz, M. (2024). Federated learning meets blockchain:
A Kafka-ML integration for reliable model training
using data streams. In Proceedings of the 2024 IEEE
International Conference on Big Data (pp. 7677–
7686). IEEE. https://doi.org/10.1109/BigData62323.20
24.10826034

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

110

