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Abstract: Cloud AI technologies have emerged to exploit the vast amount of data produced by digitized activities. 
However, despite these advancements, they still face challenges in several areas, including data processing, 
achieving fast response times, and reducing latency. This paper proposes a data orchestration platform for AI 
workflows, considering the computing continuum setup. The edge layer of the platform focuses on immediate 
data collection, the fog layer provides intermediate processing, and the cloud layer manages long-term storage 
and complex data analysis. The orchestration platform incorporates the Lambda Architecture principles for 
flexibility in managing batch processing and real-time data streams, enabling effective management of large 
data volumes for AI workflows. The platform was used to manage an AI workflow dealing with the prediction 
of household energy consumption, showcasing how each layer supports different stages of the machine 
learning pipeline. The results are promising the models are being trained, validated, and deployed effectively, 
with reduced latency and use of computational resources. 

1 INTRODUCTION 

The current era is marked by rapid technological 
progress with vast amounts of data being produced 
from activities such as social media interactions, 
online transactions, and IoT devices (Nižetić et al., 
2020). New AI technologies such as machine learning 
emerged to exploit big data, transforming every 
aspect of our lives, from how we work and 
communicate to how we interact with our 
environment. Distributed systems are constantly 
exposed to a continuous flow of information and need 
to incorporate advanced processing technologies to 
achieve effective and reliable AI workflow execution 
and integration. However, these systems encounter 
significant hurdles, particularly in handling data 
processing demanding tasks, achieving fast response 
times, and reducing latency (Steidl et al., 2023). 
Moreover, considerable challenges, such as 
improving response time and minimizing the latency 
are faced when AI pipelines are executed. 

Migrating AI workflows from a cloud-based 
architecture to a distributed computing continuum 
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requires a fundamental redesign of applications 
(Rosendo et al., 2022). A major challenge is 
decomposing tightly coupled monoliths into smaller 
components that can be distributed toward the edge. 
Additionally, managing network latency becomes 
critical when deploying these components on remote 
resources, unlike in cloud systems where components 
run in the same data center with low-latency 
communication (Bulej et al., 2021). In a system 
distributed over the commuting continuum, 
components are spread across multiple servers, which 
can introduce latency and additional communication 
costs. This necessitates careful analysis of how the 
components should communicate with each other and 
the use of technologies such as message queues and 
service discovery. The decentralization of 
computational processes towards the edge is 
interesting for large-scale utility infrastructures such 
as the smart grid (Ferahtia et al., 2024). In such 
infrastructure, the adoption of IoT metering devices 
generates vast amounts of data that are used to 
optimize the delivery of electricity. AI workflows are 
used to balance energy supply and demand 
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proactively, by predicting those values in advance. 
However, they require both batch processing as well 
as real-time analytics and a lot of information to 
ingest, making the processing in the cloud inefficient 
with costs for data migration leading to latency and 
delay in the decision-making process (Arcas et al., 
2024a). Thus, the demand for robust, scalable, and 
responsive frameworks to handle these complex tasks 
is more pressing than ever. Additionally, due to 
privacy constraints, the citizens or electricity 
companies are reluctant to move their data to cloud 
data centres preferring to keep them locally to the 
point of generation (Arcas et al., 2024b). This further 
emphasizes the need to adopt decentralized data 
orchestration pipelines that can run AI workflows 
across the computing continuum layers, while data 
and computation are distributed towards the edge. 

In this paper, we address these challenges by 
proposing a data orchestration platform for AI 
workflows that addresses some requirements and 
exploits the benefits of the computing continuum. 
Each platform layer has a unique and supportive role: 
the edge layer, consisting of smart meters and IoT 
devices, focuses on immediate data collection and 
preprocessing near the source, reducing latency. 
Located between the edge and the cloud, the fog layer 
offers intermediate processing, easing the load on the 
cloud and facilitating near real-time responses. The 
cloud layer, with its advanced computational power, 
handles long-term storage, complex data analysis, 
and model retraining. This layered approach enhances 
data management efficiency and ensures that the 
system can scale effectively to meet the growing 
needs of contemporary AI workflows. Additionally, 
the proposed platform incorporates the Lambda 
Architecture offering flexibility in managing batch 
processing as well as the real-time data streams. This 
integration enables the effective management of large 
data volumes, offering timely insights and alerts 
while preserving the accuracy and depth needed for 
AI workflows. For evaluation the platform was used 
for managing an AI workflow addressing the 
prediction of household’s energy consumption, 
illustrating how each layer supports different stages 
of the machine learning pipeline. The edge layer is 
responsible for data ingestion, capturing raw data 
rapidly near the source to minimize latency. 
Additionally, the edge performs basic preprocessing, 
such as data filtering and normalization, reducing the 
data volume sent to subsequent layers. This dual 
functionality ensures both efficient data capture and 
preliminary processing, which is important for real-
time applications. 

The rest of the paper is structured as follows: 
Section II presents the state of the art in data 
orchestration for AI. Section III describes the design 
and technologies of the data orchestration platform, 
along with its mapping to the Lambda Architecture. 
Section IV presents an evaluation of use cases in the 
context of a smart grid, specifically focusing on the 
prediction of household energy demand. Finally, 
Section V concludes the paper. 

2 RELATED WORKS 

Federated Learning enables decentralized model 
training on mobile devices, allowing local data to 
remain on the devices, which reduces data privacy 
risks. But in some cases, communication between 
devices and the server can increase because the model 
updates are sent back and forth multiple times. To 
address this, ongoing research focuses on reducing 
communication overhead, for example, by 
compressing updates or reducing the number of 
communication rounds (McMahan et al., 2017). 
Several additional factors drive efficiency 
(Sakthidevi et al., 2023). Specialized architectures 
like Symphony, which focuses on managing data 
movement through the memory hierarchy, can 
significantly cut down on unnecessary data transfers 
and distances. This not only boosts performance but 
also enhances energy efficiency (Pellauer et al., 
2023). Innovative frameworks like Kafka-ML handle 
machine learning pipelines through data streams, 
effectively managing the large volumes of continuous 
data from IoT devices, which improves both training 
and prediction quality (Chaves et al., 2023). 
Advanced memory orchestration techniques optimize 
local and remote memory resources, cutting latency 
and boosting throughput for memory-heavy machine 
learning tasks (Bae et al., 2020). Moreover, 
coordinating tensor movements between GPUs (Lin 
et al., 2023) can boost speed, especially when dealing 
with memory constraints. 

Orchestrating across the edge, fog, and cloud is 
key to making data processing more efficient for 
machine learning applications in smart grids. By 
tapping into distributed computing resources from 
edge to cloud, these setups handle the growing data 
loads from IoT devices, improving response times, 
energy usage, and network performance in smart 
grids (Arcas et al., 2024b). Offloading tasks to the 
edge and fog layers cut down on latency and allows 
for real-time processing, which is essential for things 
like predictive maintenance and smart grid 
management (Belcastro et al., 2024). Plus, integrating 
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fog computing into smart grids boosts 
communication efficiency, user satisfaction, and 
security—using methods like EPri-MDAS to keep 
data secure, authenticated, and private (Zhang et al., 
2024). In short, this orchestration fine-tunes data 
processing, enabling advanced machine-learning 
algorithms to run smoothly and reliably in smart grid 
operations (Shi et al., 2023). By using edge 
computing devices for real-time data crunching 
(Siddiqa et al., 2024), you can implement a four-layer 
framework that combines edge and cloud computing 
with application layers, thereby ramping up data 
processing capabilities (Gamal et al., 2024). 
Moreover, the blend of cloud-edge-fog systems with 
omnidirectional offloading helps optimize energy 
consumption and enhances system responsiveness, 
leading to significant energy savings and lower 
latency for processing data in smart grids 
(Kuswiradyo et al., 2024). This approach harmonizes 
computing resources across layers, making sure that 
the vast amounts of data needed for machine learning 
in smart grid environments are processed effectively 
(Duan & Lu, 2024). 

Decentralized machine learning algorithms like 
EdgeSGD (Kamath et al., 2016) allow smart grids to 
handle data closer to the source, optimizing 
bandwidth and ensuring quick delivery of 
information to decision-makers. Also, using machine 
learning models like Support Vector Machines at the 
cloud's edge for anomaly detection strengthens 
security in IoT environments (Zissis, 2017). 
Incorporating Hadoop and Spark cloud platforms into 
smart grid management systems helps to distribute 
storage, computing, and data analysis. This 
integration enhances grid monitoring, predicts 
abnormalities, and pinpoints faults for automated 
dispatching services (Guo et al., 2017). Altogether, 
these advancements make automatic dispatching in 
smart grids more efficient by maximizing the use of 
monitoring data and uncovering valuable data 
relationships. By co-designing cloud and edge 
processing in fog radio access networks, enhanced 
remote radio heads with local caches and baseband 
processing can store frequently requested data, 
optimizing delivery through pre-fetching strategies 
(Park et al., 2016). Distributed gradient descent 
approaches allow learning model parameters from 
data across multiple edge nodes without needing to 
send raw data to a centralized location, which keeps 
model training efficient while addressing bandwidth 
and privacy concerns (Wang et al., 2018). Moreover, 
modern machine learning techniques like 
reinforcement learning and neural networks, can 
automatically create highly efficient scheduling 

policies for data processing jobs on distributed 
clusters, significantly speeding up job completion 
times without requiring manual adjustments (Mao et 
al., 2019).  

Existing approaches to data orchestration in the 
computing continuum, such as (Sakthidevi et al., 
2023), (Pellauer et al., 2023), primarily address either 
real-time or batch processing but do not provide a 
unified framework that integrates both. Additionally, 
many solutions focus on specific layers, such as edge 
or cloud, without leveraging the full potential of the 
fog layer for intermediate processing. The lack of 
robust orchestration frameworks that address 
scalability, latency, and resource utilization across all 
three layers (edge, fog, cloud) highlights a significant 
gap. This work addresses these challenges by 
proposing a comprehensive data orchestration 
platform designed to optimize AI workflows across 
the computing continuum. 

3 DATA ORCHESTRATION 
PLATFORM 

3.1 Architecture 

Figure 1 shows the data orchestration platform 
designed and tailored to consider the strengths and 
requirements of each layer of the computing 
continuum layer. 

 
Figure 1: Platform architecture. 

The Edge Devices Layer comprises sensors close 
to the data source with internet connectivity. These 
devices measure and collect data rapidly and with 
minimal latency. This data is essential for other 
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computational layers to execute AI-driven tasks like 
predicting energy consumption, detecting faults, and 
performing predictive diagnostics. The Edge Devices 
Layer acts as the foundational element of the 
orchestration solution. Therefore, data representation 
schemas are defined to ensure that the collected data 
is consistently formatted and facilitates effective 
analysis and processing in later stages of the 
architecture. 

The Edge Nodes layer functions as a broker, 
consisting of multiple communication channels. It 
employs a publish/subscribe model being located 
close to the Edge Devices. The layer nodes feature 
low latency, although their computational resources 
are limited. As a result, a message broker is essential 
for collecting data from the smart meters. In our 
setup, the smart meters from the Edge Devices layer 
act as publishers, while the sensors described in the 
subsequent layer serve as subscribers. This approach 
addresses the scalability limitations of traditional 
client-server applications when dealing with 
numerous devices. The broker processes messages 
using an event-driven approach, enabling parallel 
processing. Additionally, it ensures that the system is 
reliable and can handle multiple devices with 
concurrent connections without affecting overall 
performance. Furthermore, it supports data caching 
and routes messages to the appropriate subscribers. 
We use Eclipse Mosquitto (Mosquitto, n.d.) an open-
source message broker that implements the MQTT 
protocol. Its lightweight nature allows for easy 
deployment across all computing layers, including the 
edge nodes, ingesting data, and subsequently 
processing and storing it in the following layers. 

The Fog Layer represents the data processing 
component of the architecture. It includes a set of 
virtual subscribers to message brokers in the Edge 
Nodes layer, triggering specific workflows based on 
incoming messages. These workflows encompass 
data pipelines, including those for machine learning, 
ETL processes, and additional types. This layer 
employs event-driven architecture to facilitate its 
operations. Positioned closer to the Edge Nodes than 
data centres from cloud providers, the Fog Layer 
connects the cloud with the edge, therefore 
minimizing response time and latency. The Fog Layer 
includes two main components: the control cluster 
and the execution clusters, which are organized based 
on location. To achieve a multi-cluster setup and 
manage configurations effectively for the Edge, the 
KubeStellar (KubeStellar, n.d.) is utilized. 
KubeStellar simplifies the deployment and 
configuration of applications across multiple clusters. 
In this architecture, the control of message reception 

is separated from data processing tasks. This 
separation enhances response time, reduces latency, 
and supports parallel processing. Additionally, it 
enables seamless network communication between 
clusters, which is necessary as the Workflow engine 
technology remains consistent across them. The 
control cluster is responsible for delegating workflow 
execution to the appropriate cluster. The control 
cluster contains an event-based dependency manager 
called Argo Events (Argo Events, n.d.) and a 
workflow automation framework named Argo 
Workflows (Argo Workflows, n.d.), both running 
within Kubernetes (Kind, n.d.). Argo Events 
facilitates the triggering of computational 
components and objects within Kubernetes, including 
Argo Workflows, serverless applications, and more. 
Argo Workflows define AI-driven operations based 
on MQTT messages, supporting both Directed 
Acyclic Graphs (DAG) and step-based workflows. To 
interface with MQTT brokers from the Edge Nodes 
layer, with the clusters from the Fog Layer a virtual 
subscriber is defined. It consists of a set of events, 
where inputs are messages from broker topics, and 
triggers correspond to workflows. It uses an event bus 
to manage dependencies and execute triggers, with 
dependencies being events that the virtual subscriber 
waits for to activate. 

The Cloud Layer is responsible for the long-term 
storage of processed data. It connects to databases in 
the cloud where the results of completed workflows 
from the Fog Layer are stored. In our platform setup, 
we have used Azure as the cloud provider and 
PostgreSQL. This setup enhances data durability and 
minimizes the risk of data loss, providing robust 
backup and recovery options. Database connection 
strings are managed as Sealed Secrets within 
Kubernetes. Sealed Secrets addresses the challenge of 
storing sensitive information in version control 
systems like Git by encrypting and decrypting secrets 
through a dedicated controller. This controller 
ensures that secrets can only be decrypted by the 
controller operating within the target cluster.  

3.2 Lambda Architecture Mapping 

The proposed data orchestration platform is designed 
to consider the strengths of the Lambda Architecture, 
ensuring a robust, flexible, and scalable solution 
capable of handling data processing requirements 
specific to AI driven workflows. The Lambda 
Architecture (Kumar, Y., 2020) seamlessly integrates 
both batch and stream processing, to manage the 
challenges posed by massive data volumes. The 
architecture features three distinct layers. The Batch 
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Layer is dedicated to processing extensive datasets in 
batch mode, prioritizing accuracy, and precision. It 
employs sophisticated algorithms to conduct in-depth 
analysis of historical data, ensuring comprehensive 
insights over time. The Speed Layer focuses on real-
time data, this layer processes information as it is 
ingested, facilitating immediate insights and triggering 
alerts. The main objective is to deliver rapid responses 
to immediate data fluctuations, facilitating prompt 
decision-making. The Serving Layer acts as the 
interface for user queries, this layer integrates the 
outputs from both the batch and speed layers, 
presenting a cohesive and unified view of the data. 

Lambda Architecture balances the demand for 
immediate, real-time insights with the need for 
precise, long-term data analysis. This balance makes 
it an invaluable framework for big data applications, 
where both speed and accuracy are critical. The 
flexible design of the architecture supports 
straightforward integration with new technologies, 
maintaining its applicability and efficiency within AI 
algorithms. Moreover, the use of redundant layers 
ensures data integrity and fault tolerance, further 
solidifying its role as a cornerstone in modern data 
processing architectures (Kumar, Y., 2020). 

Our data orchestration platform maps the 
principles of the Lambda Architecture, particularly at 
the Edge Nodes and Fog Layers (see Figure 2). The 
mapping helps in clarifying how the platform will 
handle different types of data processing 
requirements such as batches requiring more 
computational power and storage and stream 
processing that need low-latency processing, often 
managed at the edge. The proposed platform ensures 
that data is efficiently routed to the appropriate 
processing layer optimizing resource usage and 
minimizing latency. 

 
Figure 2: Flow chart for Lambda integration. 

At the Edge Nodes level, our platform foresees 
two methods for data ingestion. For batch ingestion, 
the data is collected over a specified period being 
tailored for scenarios that allow for the aggregation of 
large datasets before analysis. In the case of stream 
ingestion, the data is captured and processed in real-

time, handling each data point as it arrives addressing 
scenarios requiring immediate processing and analysis, 
such as real-time monitoring and alerts. Once ingested, 
data is directed to the Fog Layer, where it is segregated 
into two distinct processing paths, each triggered by 
dedicated virtual subscribers. The batch processing 
path uses a virtual subscriber to trigger workflows that 
periodically process and store data, generating 
aggregated reports and enabling deep historical 
analysis for long-term insights. The stream processing 
path, by contrast, handles real-time data, triggering 
workflows for immediate processing of each data 
point. This ensures responsiveness for live dashboards, 
instant insights, and alerts. Following the Lambda 
architecture, the system presents data in two views: 
batch views provide historical insights for trend 
analysis, while real-time views update continuously, 
supporting live monitoring and decision-making. 

4 EVALUATION RESULTS 

A use case evaluation was conducted on top of the 
proposed data orchestration platform considering an 
AI-based workflow for predicting the energy 
consumption of households in a smart grid. Data 
Collection takes place on Edge Devices as the smart 
energy meters collect and transmit raw data. Data 
Aggregation and Preprocessing run on the Edge 
Nodes, then it is routed to the Fog Layer. The Data 
Processing and Model Execution are mapped on the 
Fog Layer. The control cluster triggers machine 
learning workflows, and execution clusters handle 
model training, validation, and inference. Finally, the 
Storage and Analysis is executed on Cloud Layer as 
the processed data and model outputs are stored in 
cloud databases, with additional analysis and model 
retraining performed as needed. 

For evaluation purposes, we have used a data set 
that contains half-hourly energy consumption 
readings for 5,567 London households (Greater 
London Authority, n.d.). It includes approximately 
167 million rows of data, totalling around 10GB. The 
data allows analysis of energy consumption patterns 
under different pricing schemes, offering insights into 
consumer behaviour and smart grid management. We 
have considered one smart meter attached to a 
household and simulated its functionality. An MQTT 
broker runs a small cluster with two topics, one for 
each execution cluster from the Fog Layer. A Python 
script implements the producer by parsing the data 
from the data set, formatting it in JSON, and sending 
batches of 300 measurements to the MQTT topic. On 
the Fog Layer, we have set up one control cluster and 
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two execution clusters. The control cluster is based on 
Argo Events with one event source for MQTT 
connected to the 2 topics. Argo Workflows is used to 
define the AI workflow that trains a Linear 
Regression model to make predictions for each batch 
of data. On the execution clusters workflow model 
instances are being deployed and executed based on 
the triggers received from the control cluster. Each 
workflow execution takes around 30 seconds. To 
avoid potential bottlenecks on the Argo Server for 
each JSON message coming from the MQTT topic, 
we set a time delay of 30 seconds before dispatching 
it to the corresponding workload instance new 
workflow. On the Cloud Layer, we deployed an 
Azure Postgres Database for storing the master data 
set and Power BI for querying the data to create 
visualization. 

In total, 300 workflows were executed. Each 
workflow involved the ingestion of approximately 
90,000 events from 160 smart meters. These smart 
meters were divided into two groups of 80 each, with 
each group connected to a separate MQTT topic to 
facilitate workflow execution in one of the two 
clusters. For analysis, we will randomly select 10 
workflows to examine in the subsequent sections. 
Figure 3 shows the average duration for running the 
workflows. As can be seen, the execution time was 
around 38 seconds indicating a stable and predictable 
AI workflow process in our platform, the impact of 
workflow changes being minimal. 

 
Figure 3: Execution time per workflow. 

In terms of computational resources, each 
workflow requires on average 2 CPUs and 50 MB of 
memory to execute (see Figure 4). The memory usage 
includes both the batch data and the container size, 
with the container being approximately 30 MB. 
However, it is notable that the workflow 5 required 4 
CPUs. This was due to the batch data containing 
varying energy data values, which necessitated 
additional computation by the machine learning 
model to make accurate predictions. 

 
Figure 4: The computational resources per workflow. 

In the 2nd experiment, we explored the impact of 
varying batch sizes of smart meter data on the 
performance of the AI workflow aimed at predicting 
half-hourly energy consumption. We tested 300 
workflows, varying batch sizes from 10 to 300 events, 
to assess their impact on execution time and resource 
usage. Figure 5 illustrates execution times across 
runs, showing longer durations with larger batches, 
peaking near 60 seconds. Despite fluctuations, 
average durations were stable, highlighting the 
system's adaptability to varying loads. Outliers 
indicated potential bottlenecks. Future experiments 
will scale workloads further, testing thousands of 
smart meters and larger batches to evaluate 
performance under extreme data volumes. The results 
affirm that the fog layer’s event-driven architecture 
supports sustained performance and low latency 
under diverse conditions. 

 
Figure 5: Workflows execution time. 

Figure 6 illustrates the computational resources 
required for each run, specifically CPU and memory 
usage. The CPU usage remained low throughout, 
indicating that the AI workflow wasn't particularly 
CPU-intensive. Memory usage fluctuated as batch 
sizes grew, leading to a higher demand. This suggests 
that batch sizing is a crucial factor in processing and 
has a big impact on the overall performance of 
workflow execution in our platform. Additionally, the 
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experiment highlighted a distinct connection between 
batch size and system efficiency, showing that 
memory usage is significantly influenced by the 
volume of data being processed. These insights are 
essential for optimizing the deployment of AI 
workloads in smart grid scenarios ensuring timely 
energy consumption predictions.  

 
Figure 6: Workflows computational resources usage. 

The proposed data orchestration platform's 
performance was assessed through a comparative 
study against a centralized cloud-based orchestration 
system. Table 1 showcases the findings, 
demonstrating decreases in latency (approximately 
20–30%) and enhanced resource efficiency (around 
15–25%) achieved by the proposed solution. The fog 
layer enhances performance by handling intermediate 
processing, reducing cloud reliance, and enabling 
faster data handling. This approach minimizes 
bandwidth use and network delays but introduces 
resource overhead from additional execution clusters. 
These clusters, while necessary for workflow 
management, may affect efficiency in resource-
constrained fog environments. Balancing latency and 
resource use depends on application needs: latency-
sensitive tasks benefit more from the fog layer, while 
batch processing may favour cloud-based solutions to 
optimize resources. 

Table 1: Performance comparison. 

Metric Centralized 
Cloud Our Platform 

Average Latency (ms) 250 175 

Execution Time (s) 45 36 

Resource Efficiency 
(CPU utilization) 80% 60% 

Bandwidth (MB) 100 70 

The comparative results provide evidence of the 
benefits offered by distributing computation across 
the edge, fog, and cloud layers. Specifically, the 

reduction in processing time and resource utilization 
highlights the advantages of the computing 
continuum for real-time and resource-intensive AI 
workflows. 

5 CONCLUSIONS  

In this paper, we have proposed a data orchestration 
platform for AI workflows leveraging the computing 
continuum features. It enables efficient data 
orchestration across edge, fog, and cloud layers to 
maintain minimal delays, rapid execution times, and 
scalable resource usage which are important factors 
for AI-driven workflows. Moreover, the orchestration 
platform effectively aligns with the principles of the 
Lambda Architecture, particularly within the Edge 
Nodes and Fog Layers (see Figure 3). This alignment 
clarifies how the platform will handle varying data 
processing needs, optimizing performance across 
different layers of the architecture. 

For evaluation, we have considered smart grid 
scenarios and workflows dealing with energy 
prediction of household’s energy consumption. The 
findings show that our platform effectively manages 
data flows and computational tasks, enhancing 
performance in terms of execution time and resource 
usage efficiency. Additionally, the results highlight a 
link between the size of the data batches and memory 
usage. Larger batches require more memory, while 
CPU usage remains relatively low, highlighting the 
importance of batch sizing for efficient handling of 
varying data loads. 

Future investigations will focus on incorporating 
an analysis of end-to-end latency, which will capture 
the full duration from data collection to model output. 
Additionally, evaluating cost efficiency will be 
essential to understand the trade-offs between 
computational expenses and prediction accuracy. 
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