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Abstract: Vision Transformers (ViTs) achieve state-of-the-art accuracy in numerous vision tasks, but their heavy com-

putational and memory requirements pose significant challenges. Minimising token-related computations is

critical to alleviating this computational burden. This paper introduces a novel SuperToken and Early-Pruning

(STEP) approach that combines patch merging along with an early-pruning mechanism to optimize token

handling in ViTs for semantic segmentation. The improved patch merging method is developed to effectively

address the diverse complexities of images. It features a dynamic and adaptive system, dCTS, which employs

a CNN-based policy network to determine the quantity and size of patch groups that share the same superto-

ken during inference. With a flexible merging strategy, it handles superpatches of varying sizes: 2×2, 4×4,

8×8, and 16×16. Early in the network, high-confidence tokens are discarded and preserved from subsequent

processing stages. This hybrid approach reduces both computational and memory requirements without signif-

icantly compromising segmentation accuracy. It is shown through experimental results that, on average, 40%

of tokens can be predicted from the 16th layer onwards when using ViT-Large as the backbone. Additionally,

a reduction of up to 3× in computational complexity is achieved, with a maximum drop in accuracy of 2.5%.

1 INTRODUCTION

Recently, Vision Transformers (ViTs) (Dosovitskiy

et al., 2021) have emerged as highly promising al-

ternatives to Convolutional Neural Networks (CNN)

models (He et al., 2016)(Sandler et al., 2018). They

are pushing the boundaries of existing knowledge

in several computer vision tasks, such as classifica-

tion (Touvron et al., 2021), object detection (Car-

ion et al., 2020) and semantic segmentation (Zhang

et al., 2022)(Zheng et al., 2021). ViTs leverage self-

attention to capture global contextual relationships,

enabling precise understanding of spatial object dis-

tributions. Their ability to model long-range depen-

dencies makes them particularly effective for seman-

tic segmentation, especially in complex scenes where

accurate boundary delineation is critical.

This advantage positions ViTs as strong con-
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Figure 1: SuperToken and Early-Pruning (STEP) added to
Vision Transformer. Semantically similar patches are dy-
namically merged via our token-sharing policy network to
form superpatches. Early-pruned supertokens (black filled)
are masked and discarded, and only the remaining tokens
are processed in the subsequent layers. STEP boosts effi-
ciency without significant loss in quality.
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tenders in tasks where traditional CNNs often struggle

to capture global features. Researchers have explored

semantic segmentation using vision transformers in

a variety of ways. One approach involves develop-

ing custom transformer architectures specifically de-

signed to address the task of semantic segmentation

(Wang et al., 2021)(Zheng et al., 2021). Another

common approach focuses on enhancing either the

transformer-based backbone (Liu et al., 2021)(Wang

et al., 2021) or the task-specific decoder (Strudel

et al., 2021) (Zhang et al., 2021). Specifically, Seg-

Former (Xie et al., 2021) enhances the basic archi-

tecture by incorporating pyramid features, allowing it

to capture multi-scale contexts. Segmenter (Strudel

et al., 2021) leverages learnable class tokens in com-

bination with encoder outputs to generate segmen-

tation masks, making the process data-dependent.

SegViT (Zhang et al., 2022) advances the study of the

self-attention mechanism by introducing an innova-

tive attention-to-mask (ATM) module, which dynam-

ically generates accurate segmentation masks.

Despite their promising performance, ViTs

present significant computational challenges. One

major issue is the quadratic complexity of the self-

attention mechanism, which scales poorly with im-

age resolution. As the size of input images increases,

the computational cost and memory requirements rise

significantly, making ViTs deployment challenging.

Efforts to improve their efficiency still struggle to

balance computational complexity, latency, and per-

formance. Reducing complexity or improving in-

ference speed often compromises segmentation ac-

curacy, while optimizing performance can increase

computation and slow down inference. Achieving

an optimal trade-off between these factors remains a

key challenge, particularly in real-time or resource-

constrained applications.

In this context, our work introduces SuperToken

and Early-Pruning (STEP), a novel token optimiza-

tion mechanism that dynamically merges semanti-

cally similar, neighboring patches into superpatches

via a class-agnostic policy network. Unlike traditional

grid-based patch processing, this method generates

superpatches of different sizes, enabling the number

of tokens to adjust according to the complexity of

the image content. Additionally, STEP incorporates

an early-pruning mechanism where certain tokens are

masked and discarded early in the network, further

reducing the number of tokens processed in later lay-

ers. We can summarize this work’s contributions as

follows:

• We introduce STEP, a hybrid token optimiza-

tion mechanism tailored for semantic segmenta-

tion that generates superpatches and adapts the

token pruning paradigm based on early-pruning

strategy.

• We analyze patch merging and token discarding

methods, evaluating their impact on latency, com-

putational cost, and accuracy. Our focus is on op-

timizing these techniques to achieve a balance be-

tween efficiency and performance.

• We apply STEP to a mainstream semantic seg-

mentation transformer model (ViT-Large) and

conduct extensive experiments on two challeng-

ing benchmarks using an A100 GPU. The results

show that STEP can reduce computational costs

by up to 66% without a significant drop in accu-

racy.

2 RELATED WORK

Traditionally, ViTs create vision patches by dividing

an image into a uniform, fixed grid, with each grid

cell treated as a token. However, not all regions of

an image are equally crucial for specific tasks. For

example, detailed analysis of facial features may re-

quire many tokens for accurate representation, while

broader regions such as the sky or large uniform sur-

faces may need only a few tokens. This leads to the

question: is it really necessary to process that many

tokens at every layer? Given the high computational

demands of vision transformers, reducing the number

of tokens is a straightforward way to lower computa-

tion costs. There are many techniques that can be used

to accelerate the inference speed of the ViT model, in-

cluding quantization (Lin et al., 2022), (Yuan et al.,

2022), (Li and Gu, 2023), distillation (Wu et al.,

2022), (Yang et al., 2024), and pruning (merging or

discarding). Key studies have shown that such re-

duction techniques can lead to substantial decreases

in model size and computational cost, making ViTs

more feasible for deployment on resource-constrained

devices or in large-scale applications. Pruning in-

volves, based on certain criteria, definitely discarding

or merging tokens. However, identifying which to-

kens are less important or similar can be complex and

vary across different layers, as ViTs may focus on dif-

ferent regions at each layer. Addressing these chal-

lenges requires advanced pruning techniques. Fac-

tors like task-specific requirements, token importance

metrics, and retraining strategies are crucial for ensur-

ing the effectiveness of token pruning methods. Ad-

ditionally, aggressive pruning might lead to the loss

of critical information, resulting in degraded model

performance. Balancing the intensity of pruning with

performance preservation is crucial. Another chal-

lenge is the dynamic nature of token importance,
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which can vary across different images or tasks, ne-

cessitating adaptive pruning strategies that can dy-

namically adjust based on the input.

2.1 Token Discarding

There are different pruning approaches that involve

discarding tokens such as 1) heuristic token reduc-

tion like importance scoring-based pruning, which

removes tokens based on their relevance assessed

through attention weights or entropy; 2) learned prun-

ing, which trains the model to identify less impor-

tant tokens using auxiliary networks; and 3) gradual

pruning, which prunes tokens incrementally across

layers to balance efficiency and accuracy. Learned

token reduction (Michel et al., 2019), (Kong et al.,

2022), (Meng et al., 2022), (Song et al., 2022), (Hao

and Jianxin, 2023) typically requires training auxil-

iary models to rank the importance of tokens in the

input data, which is often viewed as a drawback. In

contrast, several works have proposed heuristic token

reduction that can be applied to the off-the-shelf ViTs

without further finetuning. For instance, ATS (Fayyaz

et al., 2022) serves as a plug-and-play module that

samples tokens based on their similarity to other to-

kens in the attention map. However, a limitation of

this method is its reliance on the class token (cls),

which might not be applicable or present in dense pre-

diction tasks such as segmentation or object detection.

Many token removal strategies are mainly tai-

lored for image classification, based on the idea

that eliminating uninformative tokens, such as back-

grounds, has minimal impact on recognition perfor-

mance. This is effective because classification tasks

focus on global features for single-class predictions.

In this vein, A-ViT (Yin et al., 2022) computes halt-

ing probability score to recognize tokens to be dis-

carted and in this manner perform dense compute

only on the active tokens deemed informative. CP-

ViT (Song et al., 2022) defines the cumulative score

to dynamically locate the informative patches and

heads across the ViT model, according to their max-

imum value in attention probability. DynamicViT

(Rao et al., 2021) add an extra learnable neural net-

work to remove redundant tokens progressively and

dynamically. The proposed prediction module esti-

mates token’s importance score with a MLP (Vaswani

et al., 2017). AdaViT (Meng et al., 2022) integrates

a jointly optimized lightweight decision network into

every transformer block of the ViT backbone to de-

rive inference strategies. Its purpose is to determine

which patches to retain, which self-attention heads to

activate, and which transformer blocks to bypass for

each image.

A slightly different way of proceeding is soft

pruning. Instead of discarding less informative tokens

completely, they are integrated into a consolidated

package token. For instance, SP-ViT (Kong et al.,

2022) proposes an attention-based multi-head token

selector, which is inserted multiple times through-

out the model, to rank, consolidate and prune tokens

based on their importance scores. Similarly, EViT

(Liang et al., 2022) focuses on the progressive selec-

tion of informative tokens during training. It masks

and fuses regions that represent the inattentive tokens

to expedite computations. The attentiveness value is

chosen as a criterion to identify the top-k attentive to-

kens and fuse the rest. Evo-ViT (Xu et al., 2022) pro-

poses an unstructured instance-wise token selection

and a slow-fast token updating module. Informative

tokens and placeholder tokens are determined by the

evolved global class attention. Both informative and

non-informative tokens are then updated in different

manners. Unlike the previous discarding methods,

this makes it possible to maintain the complete spa-

tial structure and information.

Token pruning can improve computational effi-

ciency, but it has notable drawbacks. Primarily, it

risks information loss, which may decrease accuracy.

The variability in the number of tokens across dif-

ferent inputs complicates batched inference, leading

to inefficient resource utilization and increased over-

head in managing token counts. Additionally, the pro-

cess often requires extra training to determine which

tokens to retain, adding complexity and prolonging

overall training time. To address this issue, zero-shot

token pruning methods, such as Zero-TPrune (Wang

et al., 2023), can prune large architectures at negligi-

ble cost, seamlessly switch between pruning configu-

rations, and efficiently tune hyperparameters. How-

ever, it is important to note that excessive pruning

may lead to overfitting, causing the model to become

overly specialized to the training data.

2.2 Token Merging

Merging combines tokens to create fewer, more com-

prehensive ones, effectively reducing the overall to-

ken count while retaining essential information. To-

kens can be merged based on various criteria such as

spatial proximity, semantic similarity, or their contri-

bution to the final predictions. One approach to merg-

ing is spatial aggregation, which combines tokens rep-

resenting nearby regions. Another method is feature

aggregation, where tokens with similar features or

activations are merged. To tackle these challenges,

various concepts can be employed, including tradi-

tional pooling operations, convolutional integration
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within transformers, attention pooling, grid-based to-

ken merging, and cluster-based merging. Combining

tokens in a way that retains the original information

content can be challenging. Merging tokens risks los-

ing fine-grained information encoded by individual

tokens, which can affect the model’s ability to cap-

ture subtle details. Poor aggregation can result in sig-

nificant information loss, leading to degraded model

performance.

As with discarding-based pruning, the common

approach in merging is to process in multiple stages,

gradually reducing the sequence length while preserv-

ing information. For instance, ToMe (Bolya et al.,

2023) and (Bolya and Hoffman, 2023) introduce a

novel non-training method which averages similar to-

kens based on the efficient bipartite matching algo-

rithm. Information aggregation from neighboring to-

ken is done using a pooling-like operation that com-

bines the features of multiple tokens into a single rep-

resentative token. This approach is related to DTM

(Zizheng et al., 2022), where tokens based on ob-

jects scales and shapes are dynamically merged. In

contrast, TokenLearner (Ryoo et al., 2021) uses a

relatively small number of tokens, learned through

the aggregation of the entire feature map, which is

weighted by a dynamic attention map conditioned on

the feature map. This sophisticated method for tok-

enizing the input employs a spatial attention mech-

anism designed to adaptively identify important re-

gions and generate tokens from them. Token Pool-

ing (Marin et al., 2023) addresses the problem using

a cost-efficient clustering-based downsampling oper-

ator. Following each transformer block, it identifies

a subset of tokens that best approximates the under-

lying continuous signal, thereby capturing redundant

features. For token downsampling, Token Pooling

employs K-Means or K-Medoids algorithms, or their

weighted versions, WK-Means or WK-Medoids, re-

spectively. TCFormer (Zeng et al., 2022) merges

tokens from different locations through progressive

clustering, generating new tokens with flexible shapes

and sizes. STViT (Huang et al., 2022) proposes

a per-token attention mechanism consisting of three

processes: aggregating tokens into super tokens via

the soft k-means, modeling global dependencies in

the super token space, and then upsampling the su-

per tokens. PeToMe (Tran et al., 2024) emphasizes

preserving informative tokens through an additional

metric called the energy score. This score identi-

fies large clusters of similar tokens as high-energy,

making them potential candidates for merging, while

smaller, unique, and isolated clusters are considered

low-energy and are preserved.

2.3 Hybrid Token Reduction

Choosing between token discarding and merging

strategies can be intricate, leading to the question of

whether one technique may be more effective than the

other for a particular task. In this context, ToFu (Kim

et al., 2024) amalgamates the benefits of both token

pruning and token merging. In practice, the depth

of the layer determines the chosen merging strategy:

early layers use pruned merging, while later layers

transition to average (or MLERP) merging. DiffRate

(Chen et al., 2023) includes both token discarding

and merging, and formulates token compression as

an optimization problem. LTMP (Bonnaerens and

Dambre, 2023) adds merging and discarding com-

ponents with learned threshold masking modules in

each transformer block between the Multi-head Self-

Attention (MSA) and MLP components. In the same

vein, PPT (Wu et al., 2023) combines token pruning

for inattentive tokens and token pooling for attentive

tokens. It is achieved via an adaptive token compres-

sion module inserted inside the standard transformer

block.

2.4 Token Pruning in Dense Tasks

In classification tasks, token pruning methods often

permanently remove tokens since they no longer af-

fect the outcome. This is because the classification

relies primarily on the class token, which is always

retained. In dense prediction task like semantic seg-

mentation, patches cannot be discarded entirely, as

information from all patches must be retained to en-

sure accurate pixel-level predictions. ViTs handle this

by processing a large number of tokens, which need

to be merged effectively to maintain fine-grained de-

tails while reducing computational complexity. Con-

sequently, only two of the previously mentioned token

reduction methods are suitable for dense prediction

tasks, which require high spatial resolution, detailed

information, and precise preservation of contextual

relationships. For instance, the work of DynamicViT

(Rao et al., 2021) has been extend to more network

architectures including hierarchical vision transform-

ers as well as more complex dense prediction tasks

like object detection and semantic segmentation (Rao

et al., 2023). ToFu (Kim et al., 2024) produce promis-

ing results for image generation task. The authors

of TCFormer (Zeng et al., 2022) envision the pro-

posed method as general and applicable to a wide

range of vision tasks, such as object detection and

semantic segmentation. However, the major limi-

tation of TCFormer is that the computational com-

plexity of the KNN-DPC algorithm is quadratic with
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respect to the number of tokens, which limits TC-

Former’s speed when dealing with large input reso-

lutions. Among the methods specially designed for

the segmentation task we can cite Content-aware To-

ken Sharing (CTS) (Lu et al., 2023), Dynamic To-

ken Pruning (DToP) (Tang et al., 2023), and SVIT

(Liu et al., 2024). CTS proposes a class-agnostic pol-

icy network trained separately from ViT to predict if

neighbouring image patches contain the same seman-

tic class. DToP utilizes early-pruning for high- con-

fidence tokens, enabling the prediction of simpler to-

kens to be completed earlier without requiring a full

forward pass through the entire network. Recently,

SVIT introduced a lightweight, 2-layer MLP to ef-

fectively choose tokens to be processed in the trans-

former block. The pruned tokens are preserved in fea-

ture maps and can be reactivated in later layers.

3 METHODOLOGY

In this work, we propose a novel hybrid token reduc-

tion mechanism aimed at enhancing the efficiency of

ViTs for semantic segmentation tasks. Our method,

called STEP (SuperToken and Early-Pruning), com-

bines two advanced techniques: supertoken process-

ing and early-pruning (Figure 2). This integration

effectively reduces token redundancy while preserv-

ing essential image details. The STEP approach en-

sures optimal allocation of computational resources

by dynamically adapting the merging and discarding

processes. The flexibility of this method allows for

the preservation of important details in complex im-

ages while simplifying the processing of less com-

plicated ones. Following the content-aware patch

merging process, the image is split into a grid of

superpatches with non-uniform sizes, facilitating dy-

namic scalability tailored to the image content. Fig-

ure 3 shows that regions with higher semantic homo-

geneity produce larger superpatches, whereas regions

with greater complexity lead to smaller superpatches.

The token-sharing module then transforms the cre-

ated superpatches into supertokens. This conversion

is performed by applying a linear embedding function

fembed, which maps the superpatches into their corre-

sponding token representations:

Z = fembed(P
′)

where P′ represents the set of superpatches, and

fembed is the linear embedding function that generates

supertokens Z. The transformer-based ViT models

process the resulting supertokens and produce the fi-

nal output through per-token predictions.

Additionally, we integrate an early-pruning sys-

tem, as introduced in DToP. This strategy allows con-

fidently predicted tokens in the early layers to exit the

network sooner, thereby lowering overall computa-

tional costs without compromising segmentation ac-

curacy. Only the most challenging tokens continue

to propagate through the deeper layers of the trans-

former.

3.1 Content-Aware Patch Merging

The STEP method begins with the class-agnostic pol-

icy network, designed to determine which patches

can be combined into a superpatch, merging them

only when they belong to the same semantic class.

This draws inspiration from CTS, which utilizes a

lightweight CNN to produce probability scores for

each 2×2 patch group. Subsequently, the k super-

patches are generated based on the highest-ranked

probabilities (Figure 3). We advocate for a merg-

ing process that takes into account the complexity of

the image. Thus, fixing the number and size of su-

perpatches as a hyperparameter is a limitation of the

CTS method. For complex images, this approach may

force the merging of patches that should remain sep-

arate. Conversely, for simpler images, the number of

merged zones could be larger.

STEP introduces an improved method that more

effectively addresses the diverse complexities of im-

ages, thereby overcoming the limitations of the orig-

inal CTS approach. We integrate a dynamic, adap-

tive system (dCTS) based on the EfficientNetLite0

model (Tan and Le, 2019), pre-trained on ImageNet-

1K (Russakovsky et al., 2015). It employs a more

adaptable merging strategy, which involves the use of

patch windows of varying size, including 2×2, 4×4,

8×8, and 16×16 patches. For any given window of n

neighboring patches W = {p1,p2, . . . ,pn}, the class-

agnostic policy network predicts a similarity score S

for W:

S = σ

(

W⊤
p (W )

)

where Wp is the learned weight matrix of the pol-

icy network and σ is the sigmoid activation func-

tion. Additionally, we employ a threshold-based sys-

tem rather than relying on a predetermined number

of merges. Our policy network evaluates the patch

groups to estimate the likelihood that they belong to

the same class. If the similarity score S ≥ τ, where

τ is a predefined threshold, the patch window W is

concatenated to form a superpatch as follows:

psp = concat(p1,p2, . . . ,pn)
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Figure 2: STEP Overview. After dividing the image into patches, our dCTS policy network predicts which groups can form
superpatches, which are then transformed into supertokens. Similar to DToP, the ViT model, composed of M attention blocks,
is divided into K stages, with built-in auxiliary heads. On this diagram, 3 stages finalize tokens with a high level of certainty.
The final decode head combines forecasts from all stages to create the final results.
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Figure 3: Class-agnostic policy network generates super-
paches from neighboring similar patches. The number of
tokens to process in the ViT is indicated below each image,
relative to the original 1 024 patches. Top: Results obtained
after applying the CTS method, with k fixed at 103 as the
number of merged groups of 2×2 patches; Bottom: Results
after applying our dCTS policy network, allowing dynamic
token merging up to groups of 16×16 patches.

3.2 Early Token Pruning

DToP offers an early stopping mechanism that masks

and discards high-confident tokens, yet keeps them

accessible for later processing stages and final class

estimation. As a result, we structure the model into

M stages. The model directs tokens to an auxiliary

head after a predetermined number of attention block

layers and employs a stopping criterion based on its

confidence in the predictions. Specifically, at stage

M, a confidence score c
(m)
i is computed for each token

zi. Tokens with confidence scores greater than a pre-

defined threshold θ are considered high-confidence

tokens and are discarded, while the remaining low-

confidence tokens continue through the network:

Z(m+1) = {zi | c
(m)
i < θ}

where Z(m+1) represents the set of tokens passed

to the next stage.

Each auxiliary head adopts attention-to-mask

module (ATM) (Zhang et al., 2022) as the segmen-

tation head. The core concept of DToP is to iden-

tify easy tokens in the intermediate layers and ex-

clude them from further computations by assessing

the difficulty level of all tokens. This highlights the

importance of strategically placing auxiliary heads. If

they are positioned too early in the network, the model

may struggle to predict the class of any tokens. The
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authors of DToP suggest that dividing the backbone

into three stages with token pruning at the 6th and 8th

layers for ViT-Base and 8th and 16th for ViT-Large

achieves a desirable trade-off between computational

cost and segmentation accuracy. However, we ques-

tion this choice, especially since the inference time

was not considered. Furthermore, with this configu-

ration, the reduction in computational complexity for

ViT-Large is negligible compared to utilizing just the

auxiliary head at the 6th layer. We advocate for addi-

tional studies to improve our guidelines on the posi-

tioning of auxiliary heads.

4 EXPERIMENTS

We implement STEP within the semantic segmenta-

tion framework SegViT (Zhang et al., 2022). All

experiments are conducted using MMSegmentation

(mmseg)(MMSegmentation Contributors, 2020)1, an

open-source toolbox based on PyTorch, which facili-

tates easy model customization by enabling the com-

bination of various backbones. We incorporate the

ViT-Large model, which features 24 encoder layers,

a 1024-dimensional hidden layer, and 16 attention

heads. The model processes images by dividing them

into 16×16 pixel patches.

We conduct extensive experiments on two widely

used semantic segmentation datasets: COCOStuff10k

(Caesar et al., 2018), which contains a diverse

range of objects in complex, real-world scenes, and

ADE20k (Zhou et al., 2017), which is a compre-

hensive dataset for scene parsing. The image sizes

are 512×512 for COCOStuff10k, and 640×640 for

ADE20K. For DToP, we set a fixed confidence thresh-

old θ at 0.95 for the COCOStuff10k dataset, and 0.9

for the ADE20K dataset. We employ an AdamW op-

timizer with an initial learning rate of 6e-5, weight de-

cay of 0.01, and a cosine learning rate schedule. We

follow the standard mmseg training settings. We train

the models for 160K iterations on ADE20K, 80K on

COCOStuff10k, using a batch size of 4. Data aug-

mentation includes random horizontal flipping, ran-

dom resizing (ratio 0.5 to 2.0), and random cropping.

The mean intersection over union (mIoU) evaluates

segmentation accuracy, the quantity of floating-point

operations in giga FLOPS (GFLOPs) indicates the

complexity of the model, whereas frames per second

(FPS) measures the throughput on a single NVIDIA

A100 GPU. We use the fvcore package2 to compute

GFLOPs for all configurations.

1https://github.com/open-mmlab/mmsegmentation
2https://github.com/facebookresearch/fvcore

4.1 Ablation for Confidence Threshold

We conduct a series of experiments to identify the op-

timal thresholds for different superpatch sizes in our

dCTS approach. During this process, we evaluate the

model’s performance in terms of mIoU and GFLOPs.

This allowed us to determine the optimal balance be-

tween computational efficiency and segmentation ac-

curacy for each superpatch size. For example, when

merging only groups of 2×2 patches, Figure 4 clearly

shows that a threshold τ of 0.4 for tokens belonging

to the same class achieves the best balance between

accuracy and computational complexity.
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Figure 4: Adjusting the merging threshold hyperparameter
affects both accuracy and computational complexity when
using the ViT-Large backbone with the COCOStuff10k
dataset. The blue curve demonstrates the effect of merging
only groups of 2×2 patches, while the red curve depicts the
use of varying thresholds that depend on the size of the su-
perpatches. The orange star represents CTS’s performance
when fixing 103 merged patches of size 2×2.

Table 1 summarizes the results obtained for sev-

eral threshold configurations. Each patch size is as-

signed with a unique threshold value τ. We set

the threshold probability at 0.9 for larger groups of

patches while adjusting its values for smaller groups.

This is driven by the need to avoid errors in creating

large superpatches, as such mistakes would signifi-

cantly compromise the quality of the final segmen-

tation. We determine the optimal combination to be

τ-4999 or τ-6899 for the 2×2, 4×4, 8×8, and 16×16

superpatch sizes, respectively. Compared to the CTS,

the first configuration allows no loss in segmenta-

tion accuracy while reducing computational complex-

ity by 27%. The second is less strict on segmentation

quality, allowing a potential 1% loss in mIoU, but re-

ducing complexity by 36%.

Through an adaptive approach, we allow for a

more personalized merging process tailored to each

image. Our dCTS method achieves a significant re-

duction in the number of tokens compared to CTS.

For example, as shown in Figure 3, a complex image

can achieve a token reduction by a factor of 2, while
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a simpler image can see a reduction by a factor of 4.

This decline in tokens explains the decreased compu-

tational complexity, allowing for more efficient pro-

cessing.

Table 1: Experiments on COCOStuff10k dataset. The
dCTS method applies thresholds τ according to the size of
the superpatches. The values are decimal numbers for the
2×2, 4×4, 8×8, and 16×16 superpatch sizes, respectively.

Threshold τ mIoU GFLOPs

CTS (τ not relevant) 46.1 248

.6 .9 .9 .9 45.9 189

.6 .8 .9 .9 46.0 181

.4 .9 .9 .9 45.3 159

.4 .8 .9 .9 44.8 156

.4 .7 .9 .9 43.9 153

.4 .6 .9 .9 44.1 151

.4 .5 .9 .9 43.7 149

.4 .4 .9 .9 43.7 147

4.2 In-Depth Exploration of Pruning

Positions

We explore alternative positions for the auxiliary

head by dividing the ViT model into two or three

stages. For each configuration, we measure the im-

pact on segmentation accuracy, computational com-

plexity (Figure 5), inference time (Figure 6), and the

percentage of pruned tokens (Figure 7) to establish

the most effective placement strategy.
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Figure 5: Exploration of the pruning head configuration on
the COCOStuff10k dataset. The numbers represent the po-
sitions of the auxiliary heads, with the red star marking per-
formance relative to the reference SegViT, where no prun-
ing is applied. The plot compares computational complex-
ity (GFLOPs) to segmentation accuracy (mIoU). The yel-
low rectangle highlights the configurations selected for fur-
ther analysis, as they achieve at least a 10% reduction in
GFLOPs with a maximum accuracy loss of 1.5%.

The results demonstrate that the number of aux-

iliary heads impacts computational complexity and
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Figure 7: Exploration of the pruning head configuration on
the COCOStuff10k dataset. The plot shows the average per-
centage of pruned tokens achieved.

inference speed. For example, placing the pruning

heads at positions 8th and 16th results in a gain of

22% (289 vs. 373) GFLOPs while maintaining seg-

mentation accuracy compared to the SegVit, where

no tokens have been pruned. However, adding ex-

tra heads also contributes to longer inference times.

Placing the pruning heads at the 8th and 16th layers

slows down the process by a factor of four, while us-

ing a single head at either the 16th or 18th layer re-

sults in a twofold increase in inference time. Given

this observation, a single auxiliary head presents the

best trade-off between reducing complexity and en-

suring real-time inference. This level of throughput

can only be attained by placing the auxiliary head

deeper in the network. As we proceed, the percent-

age of pruned tokens rises linearly with the use of

only one auxiliary head for pruning, reaching an aver-

age of approximately 40% after the 16th position. At

this stage, the pruning rates attain levels comparable

to those achieved with two auxiliary heads, irrespec-

tive of their configuration.

Identifying the ideal configuration is not an easy

task and is fairly nuanced. If the primary goal is to

minimize computational complexity, we suggest di-
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viding the network into two stages and positioning the

auxiliary heads for pruning after the 8th and 16th lay-

ers. Conversely, if inference time is the critical crite-

rion, we recommend using only a single head, posi-

tioned as early as the 16th layer.

4.3 Comparative Study

We use SegViT, which performs no merging or to-

ken pruning, as a baseline for comparison. We also

create its variants by sequentially applying different

optimization techniques: first, merging patches using

the CTS method, then implementing token pruning

with DToP, and finally combining both techniques.

The latest is the preliminary version of our STEP

mechanism. Throughout this process, we adhered

to the baseline configurations and parameters estab-

lished by the authors. We combine a fixed number

of 2 × 2 patches for CTS, specifically merging 103

patches, and position the auxiliary heads at the 8th

and 16th layers for DToP. In our STEP method, we ap-

ply the previously described threshold configuration

for dCTS. We choose to divide the ViT-Large model

into two and three stages, naming them STEP@[18]

and STEP@[8,16], respectively. The values in brack-

ets indicate the pruning heads positions.

Figure 8: Distribution of pruned tokens with STEP@[8,16]
and segmentation results on COCOStuff10k dataset at each
stage of the pruning process highlighting varying image
complexities. From left to right: few tokens pruned, an av-
erage number pruned, and most token pruned.

Tables 2 and 3 summarize the performance

achieved. The results indicate that incorporating

STEP into SegViT enables us to maintain a com-

parable mIoU, with the segmentation accuracy loss

Table 2: Performance evaluation of our STEP mechanism,
integrated into ViT-Large, on the ADE20K dataset.

Method mIoU GFLOPs FPS

SegViT 53.0 624 37.7

+CTS 52.0 410 41.1

+DToP 52.3 465 6.3

+CTS&DToP 51.2 334 12.5

+STEP@[8,16]τ-6899 51.2 224 13.9

+STEP@[8,16]τ-4999 50.8 209 14.8

+STEP@[18]τ-6899 51.7 395 21.7

+STEP@[18]τ-4999 50.4 261 26.5

not exceeding 2.5%, depending on the chosen con-

figuration. Our STEP yields a notable reduction in

GFLOPs; for instance, STEP@[18]τ-4999, achieves

a decrease of 58% on ADE20K and 52% on CO-

COStuff10k. Implementing two auxiliary heads leads

to a greater reduction in GFLOPs compared to hav-

ing a single pruning head after layer 18th. However,

in this case, the throughput is twice as slow. In our

STEP mechanism, since we also use the configuration

[8, 16], which is the same as in the original DToP,

we clearly see that our dCTS provides a significant

reduction in computational complexity compared to

CTS, reducing it by 37% for ADE20K and 28% for

COCOStuff10k.

Table 3: Performance evaluation of our STEP mechanism,
integrated into ViT-Large, the COCOStuff10k dataset.

Method mIoU GFLOPs FPS

SegViT 46.7 373 44.6

+ CTS 46.2 251 40.3

+ DToP 46.6 290 15.0

+CTS& DToP 45.4 210 17.3

+STEP@[8,16]τ-6899 46.0 173 17.9

+STEP@[8,16]τ-4999 45.3 150 20.1

+STEP@[18]τ-6899 46.0 201 30.2

+STEP@[18]τ-4999 45.1 177 29.2

Figure 8 illustrates how tokens are pruned across

images by each auxiliary head, revealing that most to-

kens are pruned early in simple scenarios, while they

are retained until the final prediction phase in more

complex scenes. Figure 9 and Figure 10 display sam-

ple visualizations of predictions with STEP integrated

into ViT-Large.

5 CONCLUSION

We presented a novel token reduction method called

SuperToken and Early-Pruning (STEP) that enhances

token management in ViTs for semantic segmentation

by integrating patch merging with an early-pruning
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Figure 9: Visualized results on COCOStuff10K
STEP@[8,16]τ-4999 added to ViT-Large. Left: Ground
truth; Right: Predicted segmentation.

mechanism. Our approach employs a versatile merg-

ing strategy that utilizes superpatches of varying sizes

and introduces an improved patch merging technique

to effectively handle diverse image complexities. Ex-

tensive experimental tests were conducted to estab-

lish optimal parameters for creating superpatches. We

also explored the advantages of pruning tokens within

the network, finding that starting from the 16th layer

of ViT-Large, 40% of tokens can be classified with

high accuracy. While using auxiliary heads to prune

high-confidence tokens reduces computational com-

Figure 10: Visualized results on ADE20K with
STEP@[8,16]τ-6899 added to ViT-Large. Left: Ground
truth; Right: Predicted segmentation.

plexity, it significantly slows down inference. We rec-

ommend that future research focus on the examina-

tion of auxiliary heads, as pruning tokens using seg-

mentation heads with ATM modules has been shown

to be excessively slow.
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