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Abstract: Human Action Recognition and Segmentation have been attracting considerable attention from the scientific
community in the last decades. In literature, various types of data are used for human monitoring, each
with its advantages and challenges, such as RGB, IR, RGBD, and Skeleton data. Skeleton data abstracts
away detailed appearance information, focusing instead on the spatial configuration of body joints and their
temporal dynamics. Moreover, Skeleton representation can be robust to changes in appearance and viewpoint,
making it useful for action segmentation. In this paper, we focus on the use of Skeleton data for human action
segmentation in a manufacturing context by using a multi-camera system composed of two Azure Kinect
cameras. This work aims to investigate action segmentation performance by using projected skeletons or
“synthetic” ones. When one of the cameras fails to provide skeleton data due to occlusion or being out of
range, the information coming from the other view is used to fill the missing skeletons. Furthermore, synthetic
skeletons are generated from the combination of the two skeletons by considering also the reliability of each
joint. Experiments on the HARMA dataset demonstrate the effects of the skeleton combinations on human
action segmentation.

1 INTRODUCTION

Human Action Recognition (HAR) and Human Ac-
tion Segmentation (HAS) are gaining more interest
in the literature, as they are crucial topics in sev-
eral real-world applications, such as visual surveil-
lance, human-robot interaction, healthcare, and enter-
tainment (Cicirelli et al., 2015; Ma et al., 2022; Sun
et al., 2023; Benmessabih et al., 2024).

Both HAR and HAS can be performed by us-
ing several typologies of data. Most of the works
in the literature focus on using RGB videos due to
the large and easy availability of this type of data
(Jegham et al., 2020). Infrared imaging systems have
recently been considered as they have a lower sen-
sitivity to lighting conditions and appearance vari-
ability (Manssor et al., 2021). The availability of
low-cost RGB-D sensors has also made possible ap-
proaches based on multimodal data, which take ad-
vantage of the synergistic use of different typologies
of data (Shaikh and Chai, 2021). In addition, accord-
ing to the complexity of the performed actions it could
be necessary to use multiple systems to observe peo-
ple from different points of view, to solve or reduce
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occlusion problems, and to highlight the variability of
human movements.

Other important aspects have affected the devel-
opment of HAR and HAS approaches. First, the
high dimension of data to be processed could prevent
the real-time application of these techniques. Meth-
ods based on RGB, depth, and IR data must store
and process vast quantities of information. In addi-
tion, privacy constraints could impose strict rules on
videos that observe people performing work or daily
actions. For these reasons, researchers have started
to explore the use of synthetic information extracted
from videos. Instead of directly using raw image
or video data, representations such as skeletal data
can encode relevant information about human actions
while abstracting away details that could compromise
privacy. Additionally, these representations require
less storage and computational resources compared to
raw image or video data.

Many approaches are available in the literature for
skeleton extraction from RGB video (Beddiar et al.,
2020). In this case, the skeletons contain 2D infor-
mation on several joints that represent the positions,
among others, of hands, shoulders, elbows, knees, and
feet and characterize human movements. Over the
past few years, the rapid progress of low-cost RGB-D

Romeo, L., Patruno, C., Cicirelli, G. and D’Orazio, T.
Multi-View Skeleton Analysis for Human Action Segmentation Tasks.
DOI: 10.5220/0013129500003905
In Proceedings of the 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2025), pages 579-586
ISBN: 978-989-758-730-6; ISSN: 2184-4313
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

579



cameras has made it possible to have easy access to
3D data at a higher frame rate resolution and to con-
duct research on 3D human action recognition with
the advantages of illumination invariance and high
usability (Khaire and Kumar, 2022; Filtjens et al.,
2022). RGB-D cameras such as the Microsoft Kinect
also provide a set of SDK routines that, during real-
time acquisitions, extract the 3D skeletal information
allowing the storage of only these kinds of features,
preventing privacy concerns.

One of the most crucial issues about the Skeleton
data is the tendency to present inaccuracies in skele-
ton pose estimation that could alter the performances
of HAR and HAS approaches. The application of
multiple Kinect sensors in a workspace can help miti-
gate inaccuracies in skeleton pose estimation by com-
bining the measurements from the different sensors.
However, it introduces new challenges concerning the
integration of the information extracted from the dif-
ferent sensors that could have variable reliability.

In (Moon et al., 2018) the authors developed a hu-
man skeleton tracking system based on Kalman filter-
ing to face the problem of poor skeleton pose estima-
tion due to self-occlusion. They propose a method to
determine the reliability of each tracked 3D position
of joints and combine multiple observations, acquired
from multiple Kinect sensors, according to measure-
ment confidence.

This paper studies the effects of using multi-view
data on a temporal action segmentation approach. A
visual system consisting of two Azure Kinect cameras
observes people performing an assembly task. The
aim is to segment the acquired untrimmed videos into
seven predefined actions. The cameras are placed in
a Frontal and Lateral position to the operator’s work-
place. The proposed method extracts features by con-
sidering the skeleton provided by the Azure Kinect
SDK (v1.1.2). Due to self-occlusions or out-of-range
problems, the SDK could give skeleton joints with
low confidence values in one or the other view. So,
the proposed method, after an initial camera cali-
bration, projects the skeleton from one view to the
other to have both in the same reference system.
Then, the method computes a “synthetic” skeleton
by combining, for each frame, the projected skele-
ton and the extracted one by considering the reliabil-
ity of each corresponding joint from the two views.
The experiments conducted over the HARMA dataset
(Romeo et al., 2024), prove that the proposed ap-
proach reaches high performance in action segmen-
tation compared to using the features of skeletons di-
rectly extracted from the Kinect SDK.

The remainder of the paper is structured as fol-
lows. Section 2 describes the camera setup and the ac-

quired data. Section 3 presents the proposed method
for synthetic skeleton computation. Then, experimen-
tal results are provided in Section 4. Section 5 con-
cludes the paper.

2 DATA ACQUISITION

This section describes the setup of the camera and
the data used in this work, which are included in the
HARMA dataset (Romeo et al., 2024). The data are a
collection of videos relative to actions performed by
different subjects in collaboration with a cobot for as-
sembling an Epicyclic Gear Train (EGT). The videos
have been recorded in a laboratory scenario by using
two Microsoft® Azure Kinect cameras positioned in
frontal and lateral positions. The Microsoft® Azure
Kinect camera provides several types of data, includ-
ing RGB frames, Depth maps, IR frames and Skele-
ton data. In this work, we are primarily interested
in skeletal data as they include the 3D coordinates of
joints over time, thus providing an adequate represen-
tation of human body motion.

Figure 1: Acquisition setup. Two Azure Kinect cameras
are placed in a Frontal and Lateral position to the operator’s
workplace.

2.1 Camera Setup

The acquisition setup is pictured in Fig. 1. The two
Microsoft® Azure Kinect cameras have been placed
on a tripod in Frontal and Lateral positions to the Op-
erator Workplace. The Frontal Camera is at a height
of 1.72m above the floor and down tilted by an angle
of 6degrees, while the Lateral Camera is at a height of
2.07m and 19degrees down tilted. Two typical RGB
frames captured by both cameras are shown in Fig. 2.
As shown in Fig. 2, the EGT components are spread
over the Operator Workplace, so the operator can pick
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(a) (b)
Figure 2: Sample frames captured by the (a) Frontal and (b)
Lateral camera, respectively, during the assembly task.

up one component at a time to perform the assembly
task in seven pick-and-place actions (Romeo et al.,
2024).

2.2 Data Description

Skeleton joint data are returned by the Azure Kinect
Body Tracking SDK (version 1.1.2) (Microsoft,
2021) exploiting the depth map (Brambilla et al.,
2023). Data include, among others, joint 3D coor-
dinates and joint confidence levels. The joint coordi-
nates (X ,Y,Z) are estimates relative to the reference
frame of the depth sensor of each Azure Kinect and
are in millimetres. The current SDK provides three
confidence levels C for each joint: None, when the
joint is out of range or is not detected by the camera;
Low, when the joint is not observed, likely due to oc-
clusion, but is predicted; and Medium when the joint
is observed.

3 METHOD

This section describes the developed method for gen-
erating a robust skeleton representation. It principally
exploits the two views of the Frontal and Lateral cam-
eras and the calibration data.

3.1 Camera Calibration

To calibrate the two-camera system we apply the
methodology proposed in (Romeo et al., 2022). First,
a chessboard pattern was placed in the workspace so
that it was visible to both cameras as shown in Fig.
3. The two Azure Kinect cameras provide both RGB
and IR images of the pattern, so it is possible to detect
and process the chessboard corners. Moreover, taking
advantage of the ToF principles, these points can be
directly computed from the depth map.

Considering the Frontal and Lateral camera, the
method estimates the transformation matrix T that re-

(a) (b)
Figure 3: Frame with the calibration pattern acquired by the
(a) frontal and (b) lateral camera, respectively.

lates the two coordinate systems of the cameras:

T =

(
R t
0 1

)
(1)

where R ∈ R3×3 is the rotation matrix and t is the
translation vector. Different transformation matrices
can be computed by using the RGB or the IR sensors
of the Azute Kinect cameras, both in 2D and 3D. The
matrix T3Din f rared , which transforms points detected
in the IR image and projected in the 3D space, is
the one that produces the best performance as proved
in (Romeo et al., 2022). So, in this work, matrix
T3Din f rared will be used for projecting the skeleton
joints from one camera reference frame to the other.

3.2 Synthetic Skeleton Generation

The Azure Kinect Body Tracking SDK (version 1.1.2)
returns 32 skeleton joints (Microsoft, 2021) as shown
in Fig. 4. Let JF

i (Xi,Yi,Zi) and JL
i (Xi,Yi,Zi), with i =

1, ..,32, be the joints of the detected skeletons SFront

and SLat extracted by the Frontal and Lateral cam-
era, respectively. Let T Front

3Din f rared be the transformation
matrix that projects skeleton joints from the Frontal
camera reference frame to the Lateral camera refer-
ence frame (see Fig. 5). Analogously, let T Lat

3Din f rared
be the transformation matrix that projects skeleton
joints from the Lateral camera reference frame to the
Frontal camera reference frame. So, it is possible
to generate two projected skeletons named SFront

Pro j and
SLat

Pro j having the following projected joints:

JF
Pro ji(Xi,Yi,Zi) = T Lat

3Din f rared ∗ JL
i (Xi,Yi,Zi) (2)

and

JL
Pro ji(Xi,Yi,Zi) = T Front

3Din f rared ∗ JF
i (Xi,Yi,Zi) (3)

respectively.
As introduced in section 2.2, the Azure Kinect

Body Tracking SDK also provides the confidence lev-
els for each joint. Let CF

i and CL
i be the confidence

levels of joints JF
i and JL

i , respectively. Consider-
ing these confidence levels, we can combine skeleton
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Figure 4: Skeleton joints extracted by the Azure Kinect Body Tracking SDK (version 1.1.2).

SFront with SFront
Pro j and SLat with SLat

Pro j estimating two
new skeletons that we will name “synthetic” and in-
dicate with SFront

Synt and SLat
Synt , respectively. The joint

coordinates of the synthetic skeletons are computed
as the weighted mean of the joint coordinates of the
projected and detected skeletons as follows:

JF
Synti(Xi,Yi,Zi) =

CF
i JF

i (Xi,Yi,Zi)+CL
i JF

Pro ji(Xi,Yi,Zi)

CF
i +CL

i
(4)

JL
Synti(Xi,Yi,Zi) =

CL
i JL

i (Xi,Yi,Zi)+CF
i JL

Pro ji(Xi,Yi,Zi)

CF
i +CL

i
(5)

Notice that the projected skeleton joints JF
Pro ji and

JL
Pro ji , defined in (2) and (3), inherit respectively the

confidence level CL
i and CF

i of the detected skeleton
joints used in the projection.

The confidence level returned by the Azure Kinect
SDK (Microsoft, 2021) can have values equal to 0 if
the joint is out of the depth range or field of view.
Therefore, in the case where both confidence levels
are 0 in (4) and (5), the joint coordinates of the “syn-
thetic” skeletons are computed as the arithmetic mean
of the joint coordinates of the projected and detected
skeletons and inherit a 0 value confidence level.

4 EXPERIMENTS

This section presents the experiments carried out to
segment the untrimmed videos of HARMA dataset.
First, we describe the features that have been used to
train and test two different deep architectures: the AS-
Former (Yi et al., 2021) and MS-TCN++ (Li et al.,

2023). Then a quantitative and qualitative analysis of
results is provided.

4.1 Feature Definition

As the assembly task involves principally movements
of the top section of the body, the (Xi,Yi,Zi) joint co-
ordinates of 23 joints composing the top body section
(see Fig. 6) have been selected from the whole skele-
tons extracted by the Kinect SDK. Then, we analyzed
the confidence levels of this subset of joints in both
cases of the Frontal and Lateral cameras. Considering
all the videos, the average confidence level of the con-
sidered skeletal joints is 0.65 in the case of the Frontal
camera and 0.49 in the case of the Lateral camera.
Furthermore, by analyzing all the frames of the videos
it has emerged that in some cases the Kinect SDK fails
to provide skeleton data due to occlusion or being out
of range. So, in some video frames, the skeleton is
missing. These observations (i.e. different joint confi-
dence levels depending on the viewpoint and skeleton
missing) have driven our experiments considering the
following combinations of features:
SFront∗ (risp. SLat∗):

use of top-body skeleton joints extracted by the
Kinect SDK of the Frontal (risp. Lateral) cam-
era. In case of missing skeletons, those of the
neighboring frame are copied.

SFront∗
Pro j (risp. SLat∗

Pro j):
use of top-body skeleton joints extracted by the
Kinect SDK of the Frontal (risp. Lateral) cam-
era. In case of missing skeletons those projected
from the Lateral (risp. Frontal) camera refer-
ence frame to the Frontal (risp. Lateral) camera
reference frame are considered.

SFront
Synt (risp. SLat

Synt ):
use of the top-body joints of the “synthetic”
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Figure 5: Skeleton projection from the Frontal camera to the Lateral camera reference frame to obtain the projected skeleton
SLat

Pro j and then the “synthetic” one SLat
Synt . Analogously, the same procedure can be applied to the Lateral camera obtaining the

“synthetic” skeleton SFront
Synt .

Figure 6: The joints of the top body skeleton (red box) used
in the experiments.

skeleton of the Frontal (risp. Lateral) camera
as defined in (4) (risp. in (5)). Notice that, in
this case for each frame the skeletal joints are
computed as the weighted mean of detected and
projected skeletons.

Fig. 7 and 8 show a graphical representation of the
top body skeleton joints considering one frame of the
Frontal view and one frame of the Lateral view. In
Fig.7 and 8, the top body skeletons are displayed as
these are used to extract the features for the action
segmentation phase.

In particular, Fig.7 displays the skeleton as de-
tected by the Kinect SDK in the Frontal View (green
line); the one obtained by projecting the skeleton ac-
quired by the Lateral camera (red line) and the “syn-
thetic” skeleton (blue line) obtained as the weighted

mean of the previous ones. As can be seen, some
joints of the projected skeleton (red line), such as for
instance those of the hands, have low confidence val-
ues, so the obtained “synthetic” skeleton aligns with
the SFront one which has higher confidence values.
Analogously, in Fig. 8 the “synthetic” skeleton aligns
with the one projected from the Frontal view which
has the higher confidence values. This is mainly ev-
ident by considering the head joints. Notice that, in
this case, as the joints of the Lateral view have, gener-
ally, lower confidence values, both SLat

Pro j and SLat
Synt are

the better representations than those of SLat as they
take advantage of the skeleton joints of the Frontal
view.

Figure 7: Graphical representation of top body skeleton pro-
jection to compute the “synthetic” skeleton joints in one
frame acquired by the Frontal view.
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Figure 8: Graphical representation of top body skeleton pro-
jection to compute the “synthetic” skeleton joints in one
frame acquired by the Lateral view.

4.2 Performance Analysis

To test the influence of the previously defined combi-
nations of features on action segmentation tasks, two
deep learning architectures, the ASFormer (Yi et al.,
2021) and MS-TCN++ (Li et al., 2023), have been
trained and tested.

First, the HARMA dataset has been split into non-
overlapping training and testing sets by considering
the 70% of videos for training and the remaining 30%
for testing ensuring that videos of the same operator
do not appear in both training and testing sets. The
ASFormer (risp. the MSTCN++) models were trained
over 120 (risp. 100) epochs, collecting losses for each
iteration. The best model is chosen as the one with the
lower loss within the total number of iterations and is
used in the test phase.

Tab. 1 lists the performance rates of temporal
action segmentation in terms of Accuracy, Edit Dis-
tance, and F1-score (Grandini et al., 2020). The Ac-
curacy is a frame-wise metric that measures the pro-
portion of correctly classified frames in the entire
video sequence without capturing the temporal de-
pendencies between action segments. The Edit Score,
instead, measures how well the model predicts the or-
dering of action segmentation without requiring exact
frame-level alignment.

Finally, F1-score with a threshold τ, often de-
noted as F1@τ, accounts for the degree of overlap
between the Intersection over Union (IoU) of each
predicted segment and ground truth segments (Ding
et al., 2023). Segments with IoU greater than or
equal to τ threshold are considered correctly pre-
dicted, while segments with IoU below τ are consid-
ered false positives. In this work, the τ threshold was
set to 60%, 70%, and 80%.

Focusing on the results listed in Tab. 1, it can
be noticed that all the considered models succeeded
in correctly segmenting the actions for the assem-
bly task. In general, the features extracted by the
skeletons provided by the Frontal camera outperform
those of the Lateral camera. This is principally due to
the orientation of the Lateral camera to the operator,
which affects the extraction of the skeleton. As pre-
viously stated, this is further proven by the average
confidence levels of the skeletal joints, which are bet-
ter in the case of the Frontal camera (0.65) compared
to the Lateral camera (0.49).

Furthermore, regardless of applying one or the
other network architecture, a very interesting result
emerges from Tab. 1. As can be noticed, the percent-
age rates vary depending on the combination of fea-
tures considered. When the original skeleton joints
(SFront∗) directly extracted by the Frontal Kinect SDK
are used, the Accuracy rates are 91.74% for the AS-
Former and 93.17% for the MS-TCN++. With the ap-
plication of the proposed approach that resolves the
problem of missing skeleton joints (SFront∗

Pro j ), the Ac-
curacy rate improves in both cases: 94.51% for the
ASFormer and 94.45% for the MS-TCN++. The Ac-
curacy rates of the Lateral camera, either in the case
of SLat∗ and in the case of SLat∗

Pro j, follow in principle
the same trend as those of the Frontal camera. There-
fore, the Accuracy rates are as follows: 87.38% and
91.18% for the ASFomer; 90.64% and 91.59% for the
MS-TCN++, respectively.

The use of the features of the “synthetic” skeletons
SFront

Synt and SLat
Synt requires a deeper analysis. When us-

ing the features of SFront
Synt , the Accuracy rates are worse

than those of SFront∗ and SFront∗
Pro j . This can be fully

explained by considering how the “synthetic” skele-
tons were generated as described in section 3.2. The
skeleton joints of SFront

Synt are computed as the weighted
mean of the joint coordinates of the skeleton projected
from the Lateral view (SLat

Pro j) and those of the detected
skeleton (SFront ). So, SFront

Synt is negatively affected by
the influence of the projected Lateral skeleton, which
has lower confidence levels. Indeed, the Accuracy is
89.05% for the ASFormer and 92.75% for the MS-
TCN++. Edit and F1-score metrics follow the same
trend, too.

Conversely, the Accuracy rates of SLat
Synt improve

as, in this case, the “synthetic” skeleton SLat
Synt is

positively affected by the influence of the projected
Frontal skeleton, which has higher confidence lev-
els. Indeed, the accuracy reaches 93.26% for the
ASFormer and 92.22% for the MS-TCN++. Analo-
gously, Edit and F1-score values reach maximum val-
ues in this case.
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Table 1: Performance rates on action segmentation obtained by applying ASFormer and MS-TCN++ architectures and using
different combinations of features.

Accuracy Edit Score F1 @ {60, 70, 80}
ASFormer

SFront∗ 91.74% 86.43% 80.10% 73.72% 61.13%

SFront∗
Pro j 94.51% 95.08% 91.03% 87.97% 78.24%

SFront
Synt 89.05% 84.01% 73.78% 65.70% 52.06%

SLat∗ 87.38% 78.75% 66.14% 58.96% 45.31%

SLat∗
Pro j 91.18% 90.34% 79.62% 72.89% 59.45%

SLat
Synt 93.26% 91.41% 87.69% 81.69% 73.05%

MS-TCN++

SFront∗ 93.17% 94.69% 89.58% 84.04% 77.55%

SFront∗
Pro j 94.45% 93.89% 90.24% 87.80% 81.80%

SFront
Synt 92.75% 92.12% 88.20% 85.39% 76.59%

SLat∗ 90.64% 94.02% 85.93% 79.69% 68.74%

SLat∗
Pro j 91.59% 92.89% 87.54% 83.20% 75.47%

SLat
Synt 92.22% 93.18% 87.14% 83.17% 74.85%

(a)

(b)

Figure 9: Qualitative representation of action segmentation
for 2 videos within the HARMA dataset. (a) result obtained
when applying the ASFormer model to skeleton features
obtained from the Frontal view; (b) result obtained when ap-
plying the MS-TCN++ model to skeleton features obtained
from the Lateral view. GT stands for Ground Truth.

To further support the obtained segmentation re-
sults, Fig. 9 shows a qualitative representation of
action segmentation obtained by applying ASFormer
and MS-TCN++, respectively, on two videos within
the HARMA dataset. These videos have been chosen

to display challenging situations when using skeleton
features obtained from the Frontal (Fig. 9(a)) and
Lateral (Fig. 9(b)) camera, respectively. As can be
seen, both models, ASFormer and MS-TCN++, per-
form better when using the “synthetic” skeleton fea-
tures (SFront

Synt and SLat
Synt ). This result is mainly evident

when considering Action2 (dark blue bars) and Ac-
tion3 (light blue bars), that are optimally segmented
in the case of “synthetic” skeleton features rather than
the other skeleton features (SFront∗ and SFront∗

Pro j , SLat∗

and SLat∗
Pro j).

In detail, the action segmentation Accuracy, Edit,
and F1@{60, 70, 80} reach 89.28%, 100%, 66.67%,
66.67% and 44.44% for the ASFormer and 77.08%,
100%, 81.81% 81.81% and 54.54% for the MS-
TCN++, respectively, compared to the Ground Truth
(GT) of the videos considered in Fig. 9.

5 CONCLUSIONS

Human action recognition and segmentation are ac-
tive topics of research in many fields of applica-
tion such as healthcare, agriculture, surveillance, and
manufacturing where the monitoring of human ac-
tions is fundamental. In this paper, we focus on
the use of skeleton data for human action segmenta-
tion in the manufacturing context by using a multi-
camera system composed of two Azure Kinect cam-
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eras. Skeleton data represents the human pose and
movement, focusing on body joints’ spatial config-
uration and temporal dynamics. In particular, this
work aims to investigate action segmentation perfor-
mance by estimating a projected skeleton and a “syn-
thetic” skeleton, which can be either a combination
of the skeleton information provided by both cameras
or an estimate when one of the cameras fails to pro-
vide skeleton data due to occlusion or being out of
range. When using a multi-camera system, one view
can provide more reliable data than others due to dif-
ferent factors, such as the camera’s particular orienta-
tion or the software’s ability to extract particular fea-
tures, such as skeleton information. As proved by the
experiments, the proposed approach addresses these
issues by estimating new skeletons, taking advantage
of the most reliable view.
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