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Diffusion models have revolutionized the field of generative machine learning due to their effectiveness in cap-
turing complex, multimodal data distributions. Semi-supervised learning represents a technique that allows
the extraction of information from a large corpus of unlabeled data, assuming that a small subset of labeled
data is provided. While many generative methods have been previously used in semi-supervised learning
tasks, only few approaches have integrated diffusion models in such a context. In this work, we are adapt-
ing state-of-the-art generative diffusion models to the problem of semi-supervised image classification. We
propose Diff-SySC, a new semi-supervised, pseudo-labeling pipeline which uses a diffusion model to learn
the conditional probability distribution characterizing the label generation process. Experimental evaluations
highlight the robustness of Diff-SySC when evaluated on image classification benchmarks and show that it
outperforms related work approaches on CIFAR-10 and STL-10, while achieving competitive performance on
CIFAR-100. Overall, our proposed method outperforms the related work in 90.74% of the cases.

1 INTRODUCTION

Semi-supervised learning (SSL) represents a machine
learning (ML) paradigm wherein a model leverages
both labeled and unlabeled data to achieve enhanced
predictive performance. Traditional supervised learn-
ing relies solely on labeled data for training, thus re-
quiring a labour-intensive and costly annotation pro-
cess. In contrast, SSL reduces the labeling effort by
utilizing abundant unlabeled data alongside a smaller
set of labeled samples. The labeled subset provides
explicit guidance for the model, allowing it to learn
from known examples. The unlabeled data is used
to enhance the model’s understanding of the broader
data distribution and to improve generalization. SSL
is particularly valuable in scenarios where obtaining
annotations is resource-intensive or impractical, as it
maximizes the utility of available labeled data while
harnessing the vast, often readily accessible, unla-
beled data for achieving enhanced performance (Yang
etal., 2023).

Generative learning comprises a set of methods
which focus on modeling and understanding the un-
derlying statistical structure of a given dataset. Dif-
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fusion models represent a class of generative mod-
els that simulate the diffusion process of particles
through a system, capturing the dynamics of how data
spreads or evolves over time (Dhariwal and Nichol,
2021). While generative models such as Generative
Adversarial Networks (GANSs) or Variational Autoen-
coders (VAEs) have been extensively explored in the
past for designing semi-supervised learning proce-
dures (Yang et al., 2023), only few studies have em-
ployed diffusion models for this task (You et al., 2023;
Gong et al., 2023). These approaches use diffusion
models as generative processes for images, by sam-
pling new instances to be added to the training set.
This paper introduces Diff-SySC, a new approach
based on diffusion models for semi-supervised image
classification. Our approach uses a diffusion model
for label generation. Our goal is to train a model to
learn the distribution p(¥|x), where x denotes the in-
put image, y represents the corresponding target la-
bel of x and y describes an aggregated label obtained
using the neighbors of y. We design a self-training
semi-supervised procedure using the trained diffusion
model to progressively generate pseudo-labels for the
unlabeled data. To the best of our knowledge, our
proposal of directly using diffusion to model the la-
beled data distribution in a semi-supervised fashion
is the first of its kind. To summarize, the main con-
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tributions of the paper are the following: (1) integra-
tion of diffusion models for label generation in semi-
supervised learning; and (2) design of an iterative
pseudo-labeling pipeline that is robust to noisy labels.
To achieve the proposed goals, our work aims to an-
swer two research questions: RQ1. How can diffu-
sion models be used for designing a semi-supervised
image classification approach? and RQ2. How robust
is the semi-supervised diffusion-based method when
evaluated on literature established image classifica-
tion benchmarks and how does its performance com-
pare to related work?

The rest of the paper is organized as follows. Sec-
tion 2 briefly presents the main literature advance-
ments in the approached fields. The methodology em-
ployed for designing and validating our Diff-SySC
model is introduced in Section 3. Section 4 presents
the experimental analysis, while a discussion of the
results is conducted in Section 5. Section 6 concludes
the paper and indicates directions for future work.

2 BACKGROUND

2.1 Semi-Supervised Image
Classification

In their survey, (Yang et al., 2023) divide the SSL
approaches in several classes of methods: generative
methods, consistency regularization methods, graph-
based methods, pseudo-labeling methods and hy-
brid methods. The first category comprises different
methodologies using generative models with the goal
of improving the performance of semi-supervised
classifiers. These strategies include the use of GANs
and VAEs for pre-training, the integration of unsuper-
vised training objectives and generative architectural
components in supervised classifiers (Springenberg,
2016) or the generation of additional training sam-
ples by class conditioning. Recently, diffusion mod-
els have been incorporated into semi-supervised train-
ing pipelines. (You et al., 2023) employed a diffu-
sion model for augmenting the training set of a semi-
supervised classifier, by generating new images for
multiple labels. The approach was able to outperform
strong baselines on the ImageNet dataset, achieving
an accuracy of 59% using one label per class and
74.4% when using five labels per class.

The majority of the SSL methods employing con-
sistency regularization (Zhang and Qi, 2020) follow
the Teacher-Student structure that involves training a
Teacher model using the labeled data, and then using
this model to train a Student model using the unla-
beled data. Some approaches opted for using the same

network as both Teacher and Student models. One
such example is the [I-Model (Sajjadi et al., 2016),
which applies a consistency regularizer on the pre-
dictions obtained by the network using two differ-
ent augmentations of the same image. The Mean
Teacher (Tarvainen and Valpola, 2017) method com-
putes an exponential moving average (EMA) of the
network’s parameters to build a teacher model. The
Mean Teacher approach was evaluated on the CIFAR,
SVHN and ImageNet datasets and it significantly im-
proved the state-of-the-art results on ImageNet with
10% labels by reaching an error rate of 9.11%. The
pseudo-labeling based SSL methods produce artifi-
cial labels for the unlabeled data and use them in the
following training stages. There are many variations
of this semi-supervised pipeline, with methods such
as Pseudo-label, Noisy Student (Yang et al., 2023),
Meta Pseudo Labels (MPL) (Pham et al., 2021) or
SimCLRv2 (Chen et al., 2020).

Hybrid methods incorporate multiple complemen-
tary techniques in order to achieve improved perfor-
mance. MixMatch (Berthelot et al., 2019) is an ex-
ample of such an approach which produces pseudo-
labels by averaging and sharpening the predictions
for multiple augmentations of a sample. MixMatch
was able to consistently outperform baselines such as
the IT-model, Pseudo-labeling and Mean Teacher on
CIFAR-10 and SVHN. FixMatch (Sohn et al., 2020)
builds on the intuition given by other hybrid methods,
but proposes a simplified and more effective train-
ing procedure. FixMatch generates pseudo-labels
for unlabeled data by passing weakly augmented im-
ages through the classification network. The gen-
erated pseudo-labels are used during training as tar-
gets for strong augmentations of the images. Fix-
Match was evaluated on the CIFAR, SVHN, STL-10
and ImageNet datasets and it was able to outperform
more complex baselines such as MixMatch, Pseudo-
labeling, Mean Teacher and the IT-Model. CRMatch
(Fan et al., 2023) extended FixMatch by adding a
feature loss and a rotation prediction training objec-
tive. CRMatch was able to consistently outperform
other approaches on multiple datasets. (Zheng et al.,
2022) proposed the concept of SSL based on similar-
ity matching (SimMatch). In SimMatch, the key com-
ponent is the integration of consistency regulariza-
tion at both semantic and instance levels. SimMatch
achieved state-of-the-art performance on the CIFAR
and ImageNet benchmarks. SimMatchV2 (Zheng
et al., 2023) introduced multiple consistency regular-
ization terms, by defining a graph in which sample
images and their augmentations represent nodes and
edges are weighted by the similarities between nodes.
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2.2 Diffusion Models for Classification

Denoising Diffusion Probabilistic Models (DDPM)
(Dhariwal and Nichol, 2021) are generative models
which learn to sample new data points by defining
an iterative denoising procedure. DDPMs consist of
forward and backward diffusion processes. The for-
ward process progressively adds Gaussian noise to
a data sample x( until it becomes indistinguishable
from an isotropic normal distribution. In the back-
ward process, a neural network is trained to approx-
imate the conditional probabilities needed for sam-
pling the original image x( from the corrupted version
XT.

The Classification and Regression Diffusion
(CARD) framework introduced by (Han et al., 2022)
extended generative diffusion models to classification
and regression tasks. The proposed approach first
trains a classifier network fp in a supervised man-
ner on the available dataset D to approximate the ex-
pected value of the output y given the input x. Af-
terwards, a diffusion model is trained, by iteratively
corrupting the ground truth label values yj. The for-
ward diffusion process outputs yr, which is character-
ized by a normal conditional probability distribution
centered around the classifier prediction fg(x). Dur-
ing the backward diffusion process, the CARD model
learns to reconstruct the original yg label value.

(Chen et al., 2023) used the innovations brought
by CARD to introduce a new generative perspec-
tive on the task of learning with noisy labels. In
their framework, Label-Retrieval-Augmented Diffu-
sion (LRA-Diffusion), the labeling of a sample is
viewed as a stochastic process. Intuitively, LRA-
Diffusion aims to recreate through a diffusion pro-
cess the true, clean label of a sample starting from
a noisy one. Due to the fact that the clean labels are
not available, the model uses annotations refined by
aggregation over the nearest neighbors. In order to
identify the neighbors of a data point, LRA-Diffusion
computes distances in the embedding space learned
by an unsupervised feature extractor f,. The labels
of the neighbors of a data point are used to construct
an aggregated label, y, which is corrupted throughout
the forward diffusion process. To reconstruct y, the
backward diffusion process makes use of representa-
tions learned by f,,. By augmenting the training pro-
cess with labels retrieved from the neighborhood of
the learned representations, the architecture becomes
highly resistant to noisy labels.
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3 METHODOLOGY

For answering research question RQI1, this section
introduces the methodology employed in developing
and validating our Diff-SySC approach.

Let us consider the input space X and a set of
given classes/labels C = {cj,c2,...,cx} (the output
space). Assuming that each input instance belongs
to a class, we are given a single-label classification
task formalized as a function f : X — (C. In this for-
malization, f(x) represents the class assigned to an
object x € X. In ML, the classification task should be
formalized as searching for an approximation of f by
minimizing a loss (error) function £ defined on the
input space. We further consider the SSL setting, in
which we have a dataset X C X consisting of a small
number of labeled samples (X*) and a larger number
of unlabeled ones (X*) such that X = X’ UX" and
XN X" =0. For each instance x € X' its label is
known and is denoted as y* € C. Let us denote by
Y! = {y*]x € X’} the set of available labels for the
instances from X*.

3.1 Overview of Diff-SySC

We introduce the Diff-SySC approach that inte-
grates a LRA-Diffusion model into a semi-supervised
pipeline. Figure 1 provides a high-level overview of
Diff-SySC, highlighting the motivation behind our
proposal. On the left and right sides, we show a rep-
resentation of the feature extractor embedding space.
As with any semi-supervised context, we rely on
several assumptions. The clustering assumption im-
plies that the data samples sharing the same labels
tend to form clusters in a lower-dimensionality man-
ifold. The continuity assumption implies that close
data samples have a strong likelihood of sharing the
same label. The low-density assumption indicates that
decision boundary planes do not intersect with high-
density regions (Yang et al., 2023).

The center of Figure 1 presents the training pro-
cess of the diffusion model. We train a LRA-
Diffusion model through the methodology proposed
in (Chen et al., 2023). The feature embeddings of
the input sample x, obtained using a pre-trained CLIP
(Radford et al., 2021) model, are used as condi-
tioning information in the backward diffusion pro-
cess. Diff-SySC is an iterative procedure that ini-
tially trains a LRA-Diffusion model 2 on the avail-
able labeled data <X Ly é>. Subsequently, the trained
model is used to generate pseudo-annotations for the
unlabeled dataset X", which are added to (X* 7Y/">.
The training stage of the Diff-SySC approach is de-
scribed in Algorithm 1. Thus, for each iteration i, a
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Figure 1: General overview of Diff-SySC. A LRA-Diffusion model is trained on the labeled dataset. The confident pseudo-
labels generated at the end of one iteration are added to the labeled set and the training is repeated until convergence.

LRA-Diffusion D; is trained on the current labeled
dataset (X‘,Y").

Once the training of the model is finished, at
the end of an iteration, the predictions of the model
are calibrated using temperature scaling (Guo et al.,
2017). This technique is employed in order to achieve
a better reflection of the likelihood that the predicted
classes are correct, by granting a more accurate quan-
tification of the model’s confidence in its predictions.
The optimal temperature parameter T is found using
the validation dataset (X",Y"). More specifically, a
range of temperature values is considered and the
value which minimizes the Expected Calibration Er-
ror (Guo et al., 2017) on the validation set is selected.

Using the trained model 2); and the temperature T,
the confident pseudo-labels dataset (X”,Y?) is con-
structed via annotation. The selection of confident
predictions aids in limiting the amount of noisy labels
introduced by the usage of pseudo-labels. Concur-
rently, the demonstrated robustness of LRA-Diffusion
to noisy labels represents another strategy for reduc-
ing the impact of incorrect pseudo-labels.

The annotation process is further described in Al-
gorithm 2. For each unlabeled data sample, the
model’s label prediction and its confidence in the
pseudo-label are computed. If the model’s confi-
dence is larger than the threshold v, the pseudo-label
is stored in the annotated dataset.

The predicted class and its confidence are ob-
tained as follows. For any input image x, we sam-
ple from the model’s learned distribution p(¥|x). The
obtained logits z = (z1,...,z) are further divided by
the temperature T. The scaled logits z;/T are given
as input to a Softmax function o, where 6;(z/T) =

exp(zi/7)
Tk exp(z;/7)
probabilities of the model for input x. Thus, the pre-
dicted confidence for sample x is the maximum entry
in the vector 6(z/7), while the predicted label y* is the

, in order to obtain the calibrated class

Algorithm 1: Diff-SySC Training.

Input: labeled set <X ¢ Y £>, unlabeled set X“, validation
set (X¥,Y"), confidence threshold , max. no. of
iterations m

Output: the best performing diffusion model

i+ 0;D<+0

while i < m do

D; + Train(X',Y); D+ DU{D;}

T < Calibrate(2;,X",Y")

(XP,YP) < Annotate(D;, X", 1,7)

if X” = 0 then

\ break

end

Xt xtuxr Yt ytuyr

XU X1\ XP

if X" = 0 then

‘ break
end
ii+1

end
return BestModel(D)

Algorithm 2: Diff-SySC Annotation.

Function Annotate (D, X", 1,7):
XP+—0;YP <0
for x in X* do
y* « predict_label(D, T, x)
conf < predict_confidence(D, 1, x)
if conf > y then
| XP e XPU{x}YP « YPU{Y}
end

end
return (X7, Y?)

index in the array corresponding to this maximum
value.

The augmented labeled set, obtained after the an-
notation procedure, is further used to train a new
LRA-Diffusion model D;,i > 1 from scratch. The
process is repeated until any of the following conver-
gence criteria are met: (1) all unlabeled samples have
been annotated (X" = 0); (2) there are no new con-
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fident predictions (X” = 0); (3) a pre-defined maxi-
mum number of iterations m has been reached. After
the training iterations have been completed, the ob-
tained models are evaluated on the validation set and
the best performing model is selected. This model is
afterwards evaluated on the test set.

3.2 Performance Evaluation

The performance of Diff-SySC is evaluated on im-
age classification datasets with various proportions of
labeled data. We randomly sample a fixed number
of data points from each class to form the labeled
dataset (X*,Y"). The validation dataset (X",Y") is
built using 10% of the data, while all the remaining
data samples are used to form the unlabeled subset
X*. The performance of the trained model D,y is
evaluated on a fixed test set. For each dataset and la-
beled set ratio, the training is repeated three times,
using three different random seeds and corresponding
data splits. The performance of the models is mea-
sured using the Error Rate, a standard evaluation met-
ric used for semi-supervised image classification. It
is defined as the proportion of incorrect predictions
given by the model: Err =100 - "“;;:#f“ The mean
and standard deviation of the obtained error rate val-
ues are reported.

4 EXPERIMENTAL SETUP

4.1 Datasets

Diff-SySC was evaluated on three semi-supervised
image classification benchmarks. Table 1 summa-
rizes the characteristics of the datasets: the number
of available samples, the number of classes and the
number of labeled samples used in our experiments.

Table 1: Summary of publicly available image datasets used
for the training and evaluation of Diff-SySC.

Dataset No. of | No. of | No. of labeled
samples | classes | data samples
CIFAR-10 60000 10 250 /4000
CIFAR-100 | 60000 100 2500 / 10000
STL-10 113000 10 250/ 1000

CIFAR-10 and CIFAR-100 (Krizhevsky, 2009)
represent balanced datasets of images of resolution 32
x 32 containing real world objects and animals. Each
dataset is formed of 50000 training images and 10000
testing images. During the training of the models, we
only use a small percentage of randomly selected la-
bels despite the fact that the datasets are fully labeled.
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The STL-10 dataset (Coates et al., 2011) is formed of
images with resolution 96 x 96. The training set con-
tains 5000 labeled images and 100000 unlabeled im-
ages. While the labeled subset is formed of samples
belonging to 10 classes, the unlabeled subset contains
a mixture of in-distribution samples, which are from
these classes, and out-of-distribution examples, which
belong to different categories. Following the protocol
introduced in the literature (Zheng et al., 2023), we
sample 250 and 1000 images from the available train-
ing data to form the labeled set X! and we add the
remaining samples to the unlabeled dataset. The test
set is formed of 8000 images.

4.2 Training Diff-SySC

The experiments were conducted using two Nvidia
RTX 3090 GPUs. Table 2 presents the most important
hyper-parameters used for training Di ff-SySC. Addi-
tionally, in all experiments, the number of neighbors
was set to 10 and the maximum number of iterations
m was set to 4. The CLIP feature extractor was used,
specifically the ViT-L/14 architecture.

Table 2: Overview of the main hyper-parameters: pseudo-
labels confidence threshold 7, batch size and number of
training epochs per iteration.

[ Dataset | No.oflabels [ y  Batchsize |  No. of epochs |
e e
CIFAR-100 12050% 8:? 1 {300,400,450,500}

sti0 s oss| 3 R

The experimental analysis revealed that for large
initial labeled datasets, the model could be trained ef-
fectively using large batch sizes and a relatively small
number of epochs. In these cases, the initial iter-
ation generally produced a diverse set of confident
pseudo-labels, which benefited the subsequent train-
ing epochs. For CIFAR-10 and STL-10, the best re-
sults were obtained using a confidence threshold of
0.95 and a large number of training epochs for the
first iteration. In subsequent iterations, a significantly
smaller number of training epochs was used, as con-
vergence was reached faster due to the high labeled
data count.

However, setting a high confidence threshold on
CIFAR-100 (i.e. y> 0.9) led to overfitting in the
last training iterations of Diff-SySC. This was caused
by the fact that the mean confidence of the model’s
predictions on the unlabeled dataset was generally
smaller than 0.7. Therefore, when using large con-
fidence thresholds, the annotation stages would only
label new data samples that were very similar to the
training set, thus affecting the model’s ability to gen-
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eralize to the true data distribution. We also observed
that, in contrast to CIFAR-10 and STL-10, using a
small number of epochs for CIFAR-100 led to under-
fitting during the last iterations. This could be caused
by the complexity of this dataset.

S RESULTS AND DISCUSSION

This section presents the experimental results ob-
tained by evaluating the Diff-SySC model on semi-
supervised image classification benchmarks. With
the goal of answering RQ2, we compared our ap-
proach with multiple related work methods presented
in Section 2: the Pseudo-labeling approach (Lee
et al., 2013), consistency regularization methods: I1-
model (Sajjadi et al., 2016), Mean Teacher (Tarvainen
and Valpola, 2017) and hybrid methods: MixMatch
(Berthelot et al., 2019), FixMatch (Sohn et al., 2020),
CRMatch (Fan et al., 2023), SimMatch (Zheng et al.,
2022) and SimMatchV2 (Zheng et al., 2023). One
of the goals of our proposed semi-supervised model
Diff-SySC is to make use of the information present
in unlabeled data to improve the learning process of
a supervised model. In order to validate this hy-
pothesis, we also report the performance obtained by
our framework after the first training iteration, i.e., a
LRA-diffusion model trained only on the available la-
beled data.

Table 3 presents the error rate obtained by evalu-
ating Diff-SySC on the datasets described in Section
4.1. The mean and standard deviation are reported
for three different runs of the algorithm. The re-
sults show the consistent improvement of Diff-SySC
over the supervised diffusion model baseline, high-
lighting the benefit of using a dataset augmented with
pseudo-annotations. This result validates that our ap-
proach constitutes an effective semi-supervised learn-
ing technique, producing models capable of leverag-
ing information from the unlabeled data samples. The

largest improvement over the supervised baseline can
be observed on the STL-10 dataset and on the CIFAR-
10 dataset with 250 labels. This could be explained
by the fact that, in these settings, the original labeled
training subset is small and the pseudo-labeling step
significantly increases the number of training sam-
ples, leading to a more diverse dataset.

Figure 2 shows the number of confident pseudo-
labels generated in each iteration for the CIFAR-10
dataset using the 250 label configuration. As illus-
trated in Figure 2, the annotation process produces a
large number of labels after the first iteration. More-
over, we observe that in all iterations the great major-
ity of generated pseudo-labels are correct. This sug-
gests that the training protocol is effective in itera-
tively annotating the unlabeled samples, even when
Diff-SySC is exposed to 0.5% of labeled data. This
gradual annotation is controlled via the confidence
threshold y which helps in mitigating the risk of noisy
labels. Additionally, these results confirm our initial
hypothesis that learning the neighboring labels distri-
bution leads to a more robust mechanism of generat-
ing accurate pseudo-labels.

BN Correct pseudo-labels
I Incorrect pseudo-labels

25000 1

20000

15000

Label count

10000 -

5000 4

1 2 3 4
Iteration

Figure 2: Number of confident pseudo-labels generated for
CIFAR-10 (250 initial labels) at the end of each iteration.

When comparing our approach to the results re-
ported in the literature, we note that Diff-SySC is
able to outperform all the related work approaches on

Table 3: Comparison with related work. The mean error rate (%) and the standard deviations over 3 runs are shown for our
Diff-SySC and for the supervised baseline. The methods shown in italic are run by us, while the rest of the results are taken
from (Zheng et al., 2023). The best results are marked in bold.

Dataset CIFAR-10 CIFAR-100 STL-10

Method 250 4000 2500 | 10000 250 1000
I1-model (Sajjadi et al., 2016) 48.73+1.07 | 13.63+0.07 | 56.40+0.69 | 36.73+0.05 | 52.20+2.11 | 31.34+0.64
Pseudo-labeling (Lee et al., 2013) 51.1242.91 | 15.324+0.35 | 55.374+0.48 | 36.58+0.12 | 51.90+1.87 | 30.77+0.04
Mean Teacher (Tarvainen and Valpola, 2017) | 37.56+£4.90 | 8.29+0.10 | 44.37+0.60 | 31.3940.11 | 49.30+2.09 | 27.92£1.65
MixMatch (Berthelot et al., 2019) 13.004+0.80 | 6.554+0.05 | 39.29+0.13 | 27.74+0.27 | 32.054+1.16 | 20.1740.67
FixMatch (Sohn et al., 2020) 4.95+0.10 | 4.26+0.01 | 27.71+£0.42 | 22.06+0.10 | 8.64+0.84 | 5.824+0.06
CRMatch (Fan et al., 2023) 4.61+0.17 | 3.65+0.04 | 24.13+0.16 | 19.89+0.23 | 14.87+5.09 | 6.53+0.36
SimMatch (Zheng et al., 2022) 5.364+0.08 | 4.414+0.07 | 26.214+0.37 | 21.504+0.11 | 8.2740.40 | 5.7440.31
SimMatchV?2 (Zheng et al., 2023) 5.044+0.09 | 4.33+0.16 | 26.66+0.38 | 21.374+0.20 | 7.5440.81 5.65+0.26
Supervised 7.12+0.85 3.704+0.12 | 31.59+0.06 | 23.41+1.07 | 8.58+0.50 | 9.13+0.47
Diff-SySC 3.65+0.10 | 3.26+0.06 | 30.45+0.08 | 21.36+0.25 | 1.15+0.49 | 0.64+0.20
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the CIFAR-10 and STL-10 datasets, with the largest
margin of improvement being obtained on the STL-
10 dataset. On CIFAR-100 our method achieves
error rates that are comparable to the results re-
ported in the literature in the 10000-label regime. On
the CIFAR-100 dataset with 2500 labeled samples,
Diff-SySC has a higher error rate than the best litera-
ture approach, CRMatch, but it still is able to outper-
form other methods, such as the II-Model, Pseudo-
labeling, Mean Teacher and MixMatch. The results
obtained on CIFAR-100 could be due to the larger
number of categories in this dataset and the shared
similarities between classes that belong to the same
super-class. This leads to a more complex label dis-
tribution that the model needs to learn.

To summarize, on CIFAR-100, considering
both datasets (with 2500 and 10000 labels), our
Diff-SySC approach outperforms the related work
depicted in Table 3 in 72.2% of the cases (13 out of
18 comparisons). Overall, considering all datasets
and experiments, a better performance is observed
for Dif£-SySC in 90.74% of the cases (49 out of 54
comparisons). We also note small standard devia-
tions of the error rates achieved by our proposed semi-
supervised diffusion-based architecture, thus empha-
sizing the stability and robustness of D1 ff-SySC.

Figure 3 gives insights into the training dynamics
by showing the accuracy obtained during the train-
ing iterations and the proportions of labeled and un-
labeled data, as progressively more annotations (real
and generated labels) are used for training the model.
The top figure shows the train and test set accuracy
of the model after each of the training iterations.
Additionally, the proportion of correctly generated
pseudo-labels is depicted in the case of CIFAR-10
and CIFAR-100. This metric is omitted in the case
of STL-10 due to the fact the ground truth labels are
not available for the unlabeled data. Figure 3 high-
lights that the largest number of annotations is gen-
erated at the end of the first iterations, with a good
accuracy (over 90% of the pseudo-labels generated
after the first iteration are correct), while fewer sam-
ples are annotated during subsequent iterations. Even
though the accuracy of the pseudo-labeling procedure
decreases over the iterations, as it becomes more dif-
ficult to annotate new samples, the test set accuracy
is not affected. This highlights the robustness of our
approach to the presence of noisy pseudo-labels.

Additionally, we analyze how the training con-
vergence is reflected within the pseudo-annotation of
the unlabeled dataset. For the CIFAR-10 with 250
labels and STL-10 with 250 labels, only a few un-
labeled samples have not been confidently pseudo-
labeled throughout the training process. Meanwhile,
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on CIFAR-100 with 10000 labels, the training does
not conclude with a complete coverage of the unla-
beled dataset. This phenomenon can be attributed to
the higher complexity of the data involved and the
observed overfitting accumulated throughout the it-
erations, as shown on the top row. Nonetheless, the
confident pseudo-labels are predominantly accurate,
with 97.96% aggregated pseudo-labels accuracy on
CIFAR-10 and 87.05% on CIFAR-100.

A potential limitation of our method is the depen-
dence on a pre-trained feature encoder for training the
diffusion model. While general-purpose models like
CLIP can be effective in most cases, other tasks that
involve images sampled from a very different distri-
bution (e.g., medical images, radar or satellite data),
may require more specialized encoders. Nevertheless,
our framework is flexible enough to allow the inte-
gration of any type of feature extractor trained in an
unsupervised manner on the unlabeled data. A sec-
ond limitation is represented by the fact that the unla-
beled data is not used directly during training until it
is pseudo-annotated with confident predictions. This
could constitute a drawback in scenarios with very
few labels per class, as the initial model, Dy, may not
have enough information to be effectively trained. A
possible strategy to alleviate this issue is to integrate
unsupervised objective functions in the training of the
LRA-Diffusion model.

6 CONCLUSIONS

In this work, we introduced a diffusion-based ap-
proach for semi-supervised learning, Diff-SySC. The
method was evaluated on three image benchmarks:
CIFAR-10, CIFAR-100 and STL-10, with varying
ratios of labeled data. The research questions for-
mulated in Section 1 have been answered. RQI
was answered by introducing the multi-stage semi-
supervised learning approach Diff-SySC which uses
a diffusion model for label generation, unlike the ex-
isting literature approaches that use diffusion mod-
els for enhancing the training dataset. For answer-
ing RQ2, Diff-SySC was compared with multiple
related work methods covering diverse methodolo-
gies and strategies for semi-supervised learning. The
conducted comparison highlighted a performance im-
provement achieved by Diff-SySC over the related
work in 90.74% of the cases. In addition, the robust-
ness and stability of Diff-SySC has been emphasized
through small standard deviations of the error rates
achieved by our model over multiple runs.

Future work will investigate extensions of our
method that integrate unsupervised loss functions,
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Figure 3: Top: accuracy of Diff-SySC. Bottom: proportions of labeled, pseudo-labeled and unlabeled data per iteration.

such as consistency regularizers. Diff-SySC will
be further evaluated on more challenging real-world
tasks and datasets such as rainfall nowcasting, which
is an important task in meteorology that presents a
particularly difficult annotation process.
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