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Abstract: This paper introduces a novel approach to robustness testing of forecasting models through the use of
curvature-based noise perturbations. Traditional noise models, such as Gaussian and uniform noise, often
fail to capture the complex structural variations inherent in real-world time series data. By calculating the
curvature of a time series and selectively perturbing curvature values, we generate a new type of noise that
directly alters the shape and smoothness of the data. This method provides a unique perspective on model
performance, revealing sensitivities to structural changes that conventional noise types do not address. Our
analysis demonstrates the impact of curvature distortions on seasonality, trend, and overall model accuracy,
highlighting vulnerabilities in forecasting models that are otherwise masked by standard robustness tests. Re-
sults show that curvature-based noise significantly affects the ability of models to accurately predict future
values, especially in the presence of cyclical and seasonal patterns. The findings suggest that incorporating
curvature perturbations into robustness evaluations can provide deeper insights into model resilience and guide
the development of more adaptable forecasting techniques.

1 INTRODUCTION

Robustness testing is a very important part of eval-
uating forecasting models, especially given the un-
predictable nature of real-world data. Forecasting
models, whether used for predicting economic trends,
weather patterns, or stock prices, need to be tested
against various types of noise to ensure they can han-
dle unexpected disturbances. Traditionally, this has
been done using common noise types like Gaussian
noise, which introduces random variations based on
a normal distribution, and white noise, which repre-
sents completely random and patternless fluctuations
(Makridakis et al., 2018). These methods are simple
and widely used, but they often miss the more com-
plex structural changes seen in real data.

Other noise models, such as additive and multi-
plicative noise, also play a role in robustness test-
ing. Additive noise simply adds random values to data
points, while multiplicative noise scales the data, sim-
ulating scenarios where noise depends on the data’s
magnitude, such as in economic data where larger val-
ues might see proportionally larger fluctuations (Box
et al., 2016). However, these methods still primar-
ily focus on random disturbances without addressing
deeper, structural changes like shifts in trends or sea-

sonality that can drastically affect forecasting perfor-
mance.

Adversarial attacks have become a prominent area
of research in testing and evaluating the robustness
of machine learning models, including those used for
time series forecasting. Unlike traditional noise, ad-
versarial noise is intentionally crafted to be subtle yet
highly effective at misleading a model. These ad-
versarial examples, introduced by Goodfellow et al.
(2015), reveal how small perturbations—often imper-
ceptible to the human eye—can cause drastic errors in
model outputs, highlighting a critical vulnerability in
machine learning models.

2 RELATED WORK

Adversarial attacks are broadly categorized into two
types: white-box and black-box attacks. In a white-
box attack, the adversary has complete access to the
model, including its architecture, parameters, and
gradients. This knowledge allows the attacker to
craft highly effective perturbations that target the spe-
cific weaknesses of the model. Goodfellow et al.
(2015) demonstrated this with their Fast Gradient
Sign Method (FGSM), which calculates the gradient
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Figure 1: Illustration of the Fast Gradient Sign Method
(FGSM) showing how the gradient is calculated and used
to perturb the input data.

of the loss function concerning the input data and then
perturbs the input in the direction that maximizes the
loss. This method has been extended to iterative vari-
ants, such as the Basic Iterative Method (BIM) and the
Projected Gradient Descent (PGD) method, which re-
fine the adversarial example over multiple iterations,
making it even more challenging for the model to
maintain its accuracy (Kurakin et al., 2017).

In contrast, black-box attacks assume no knowl-
edge of the model’s internal workings. Instead, they
rely on querying the model to infer information about
its behavior and construct adversarial examples based
on the observed outputs. These attacks demonstrate
that even without direct access to the model, adver-
saries can still find ways to generate perturbations that
cause significant forecasting errors (Papernot et al.,
2017).

While adversarial attacks were initially studied in
the context of image classification, recent research
has shown that time series models are equally sus-
ceptible to these attacks (Fawaz et al., 2019). For
time series forecasting, adversarial attacks can ex-
ploit specific characteristics such as trends, season-
ality, and noise components, which are critical for
accurate prediction. For instance, Harford et al.
(2021) explored how adversarial attacks could distort
key patterns like seasonality and trends, leading to
significant prediction errors in financial time series.
They found that by introducing small, targeted per-
turbations at critical points in the time series—such
as around turning points or during periods of high
volatility—the model’s performance could degrade
dramatically. These findings suggest that even well-
trained models can be vulnerable to sophisticated ad-
versarial attacks, particularly in high-stakes domains
like finance or healthcare, where accurate forecasting
is crucial. Moreover, Zhang et al. (2021) demon-
strated that time series models could be highly sen-
sitive to adversarial noise, especially when the noise
is designed to mimic common real-world perturba-
tions such as sudden market shocks or unexpected

changes in seasonal patterns. This vulnerability high-
lights the importance of testing models against adver-
sarial scenarios that go beyond standard Gaussian or
white noise, which often fail to capture the complex-
ity of real-world challenges.

Several methods have been proposed to generate
adversarial attacks specifically tailored for time series
data:

• Gradient-Based Methods: These methods adapt
techniques like FGSM and PGD for time series
data by computing the gradient of the model’s
loss function with respect to the input time series.
For example, the Time Series Fast Gradient Sign
Method (TS-FGSM) perturbs data points where
the model is most sensitive, such as around inflec-
tion points or during transitions between different
regimes (Fawaz et al., 2019).

• Decision Boundary Attacks: This approach fo-
cuses on finding points along the decision bound-
ary where the model is most likely to misclassify
or make incorrect predictions. Chen et al. (2020)
propose a decision boundary attack that leverages
domain knowledge, such as seasonality and trend
information, to craft perturbations that are more
likely to fool time series models.

• Transfer-Based Attacks: In situations where the
adversary lacks access to the model, they might
employ a transfer-based attack. This involves
training a surrogate model that mimics the behav-
ior of the target model. Adversarial examples gen-
erated for the surrogate model can often transfer
to the target model, leading to errors (Papernot
et al., 2017).

• Pattern-Based Attacks: Recent work by Liu et
al. (2023) introduces pattern-based adversarial at-
tacks, where perturbations are designed to disrupt
specific patterns in the time series, such as sea-
sonal cycles or recurrent motifs. These attacks
are particularly effective against models that rely
heavily on recognizing and extrapolating such
patterns.

To counter adversarial attacks, several defense mech-
anisms have been proposed:

• Adversarial Training: This involves augment-
ing the training data with adversarial examples,
thereby teaching the model to recognize and re-
sist adversarial noise. This approach has proven
effective in increasing robustness against known
attack strategies, although it may be less effec-
tive against unknown or more sophisticated at-
tacks (Madry et al., 2018).

• Gradient Masking and Regularization: Tech-
niques like gradient masking make it harder for
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Figure 2: Diagram showing the impact of adversarial at-
tacks on a time series model’s decision boundary.

an attacker to compute the gradients needed for
gradient-based attacks. However, this method can
sometimes provide only a false sense of security,
as attackers may use alternative strategies (Paper-
not et al., 2017).

• Input Reconstruction: Methods such as denois-
ing autoencoders and robust preprocessing steps
attempt to clean the input data before it is fed
into the model, reducing the impact of adversar-
ial perturbations. Liu et al. (2023) demonstrated
that such preprocessing techniques could improve
model resilience against certain types of adversar-
ial noise, although they may not be foolproof.

3 CURVATURE-BASED
METHODS: A NEW
PERSPECTIVE

Curvature, a measure of how much a curve bends, is
a concept borrowed from geometry and is now find-
ing its place in time series analysis. While tradi-
tionally used in fields like computer vision to ana-
lyze shapes, curvature provides a powerful way to un-
derstand the structure of time series data, identifying
points of rapid change, turning points, and other key

features (Li et al., 2022). This structural information
is crucial because it directly influences how models
interpret and predict data.

Recently, researchers have started exploring cur-
vature as a feature in forecasting models, using it
to enhance the understanding of the data’s behavior
(Hershey and Movellan, 2017). However, using cur-
vature as a noise model is a novel approach. By selec-
tively perturbing the curvature of a time series, we can
directly manipulate its shape and smoothness, testing
how forecasting models react to changes in the under-
lying geometry. This method not only challenges the
model in new ways but also mimics real-world sce-
narios where data doesn’t just randomly fluctuate but
undergoes meaningful structural changes.

Perturbing curvature is particularly relevant for
time series with strong seasonal or cyclical compo-
nents, as these patterns depend heavily on the data’s
shape. This approach reveals specific vulnerabilities
in forecasting models that might otherwise go unno-
ticed with traditional noise models, pushing forward
our understanding of model robustness and guiding
the development of more resilient forecasting meth-
ods (Li et al., 2022).

3.1 Proposed Method: Curvature-Based
Noise Perturbations

In this section, we introduce a novel approach for
generating noise in time series data by leveraging the
concept of curvature. Traditional noise models such
as Gaussian, salt-and-pepper, or uniform noise apply
random perturbations to data points without consid-
ering the underlying geometric properties of the time
series. In contrast, our proposed method involves per-
turbing the curvature of the time series, which allows
for more targeted manipulation of its shape and pat-
terns. This method aims to provide a more realistic
and challenging benchmark for evaluating the robust-
ness of forecasting models.

3.1.1 Curvature in Time Series

Curvature is a geometric property that describes how
sharply a curve bends at a particular point. For a
given time series represented as a curve in a 2D or
3D space, the curvature can provide valuable insights
into its local behavior. Mathematically, the curvature
κ of a curve parameterized by r(t) = (x(t),y(t)) in 2D
is given by:

κ(t) =
|x′(t)y′′(t)− y′(t)x′′(t)|
(x′(t)2 + y′(t)2)3/2 , (1)

where x(t) and y(t) are the coordinate functions,
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Figure 3: Example of a time series before and after applying curvature-based noise, showing how targeted perturbations affect
the underlying patterns and the model’s predictions.

and x′(t), y′(t), x′′(t), and y′′(t) denote the first and
second derivatives with respect to the parameter t.

For a time series curve represented in 3D, r(t) =
(x(t),y(t),z(t)), the curvature κ is given by:

κ(t) =
∥r′(t)× r′′(t)∥

∥r′(t)∥3 , (2)

where r′(t) and r′′(t) are the first and second
derivatives of r(t), respectively, and × denotes the
cross product.

3.1.2 Curvature-Based Noise Perturbation

The core idea of our proposed method is to introduce
perturbations directly to the curvature values of a time
series. By selectively perturbing the curvature, we
aim to distort the time series in a way that maintains
its overall structure while subtly altering its local be-
havior. This approach enables us to generate noise
that mimics realistic deviations in time series patterns,
such as unexpected shocks or anomalies.

Given a time series X = {x1,x2, . . . ,xn}, we first
calculate the curvature at each point using either
Eq. (1) or Eq. (2). We then perturb the curvature val-
ues by adding a small noise term ∆κ(t) to obtain the
perturbed curvature κ̃(t):

κ̃(t) = κ(t)+∆κ(t), (3)

where ∆κ(t) is a random perturbation generated
from a specified noise distribution, such as Gaussian
or uniform noise. The magnitude of ∆κ(t) can be
controlled to achieve different levels of perturbation
intensity.

3.1.3 Reconstruction of the Time Series from
Perturbed Curvature

Once we have obtained the perturbed curvature values
κ̃(t), the next step is to reconstruct the time series that
corresponds to these new curvature values. This is
achieved by solving a differential equation that relates
the curvature to the curve’s shape.

For the 2D case, the differential equations govern-
ing the time series reconstruction are:{

x′′(t) = κ(t)y′(t),
y′′(t) =−κ(t)x′(t),

(4)

where x(t) and y(t) are the coordinate functions
of the reconstructed time series. In practice, we use
numerical methods such as the Runge-Kutta method
to solve these differential equations iteratively, start-
ing from an initial condition (x(0),y(0)) and initial
tangents (x′(0),y′(0)).

3.1.4 Application to Time Series Data

To apply curvature-based noise perturbations to time
series data, we follow these steps:

1. Compute Curvature: Calculate the curvature
κ(t) of the original time series using Eq. (1) or
Eq. (2).

2. Perturb Curvature: Add perturbations ∆κ(t) to
the curvature values to obtain κ̃(t), as described in
Eq. (3).

3. Reconstruct Time Series: Use the perturbed
curvature values to reconstruct the time series
by solving the relevant differential equations
(Eq. (4)).
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4. Evaluate Impact: Evaluate the impact of the
curvature-based noise on forecasting models by
comparing the model’s performance on the orig-
inal and perturbed time series.

3.1.5 Advantages of Curvature-Based
Perturbations

The proposed curvature-based noise perturbation
method offers several advantages:

• Realism: By perturbing the curvature, the noise
introduced mimics realistic deviations in time se-
ries patterns, making it a more challenging test for
model robustness.

• Flexibility: The intensity and nature of the pertur-
bations can be controlled by adjusting the magni-
tude and distribution of ∆κ(t).

• Interpretability: The method provides a clear in-
terpretation of how changes in the curvature affect
the time series, offering insights into the model’s
sensitivity to different types of noise.

4 EXPERIMENTS AND
DISCUSSION

In this section, we describe the experimental setup,
datasets, and forecasting models used to evaluate the
proposed curvature-based noise perturbations. We
also present the results and discuss the implications
of our findings in the context of model robustness.

4.1 Experimental Setup

4.1.1 Datasets

To evaluate the effectiveness of curvature-based noise
perturbations, we selected several publicly available
time series datasets from different domains. These
datasets were chosen to capture a variety of real-world
time series characteristics, such as seasonal patterns,
trends, and irregularities.

• M4 Competition Dataset (Makridakis et al.,
2020): A large collection of time series from var-
ious domains, including finance, demographics,
industry, and more, featuring multiple frequencies
(hourly, daily, monthly, etc.).

• Electricity Consumption Dataset (Yu et al.,
2016): Contains the hourly electricity consump-
tion of 370 clients, widely used for benchmarking
short-term forecasting models.

These datasets provide a comprehensive testbed to
evaluate the impact of curvature-based noise perturba-
tions on different types of time series.

4.1.2 Forecasting Models

We evaluated the proposed noise perturbation method
on a range of popular forecasting models, including
both statistical and machine learning approaches:

• ARIMA (AutoRegressive Integrated Moving
Average) (Box et al., 2015): A classical statistical
model widely used for time series forecasting.

• Prophet (Taylor and Letham, 2018): A model de-
veloped by Facebook for time series forecasting
with strong capabilities to handle seasonality and
holiday effects.

• LSTM (Long Short-Term Memory) (Hochreiter
and Schmidhuber, 1997): A recurrent neural net-
work architecture that has shown excellent per-
formance in forecasting tasks involving complex
temporal dependencies.

• Transformer-based Models: Models that use
self-attention mechanisms to capture long-range
dependencies in time series data (Lim et al.,
2021).

These models were chosen to represent a broad
spectrum of forecasting techniques, allowing us to as-
sess how different model types respond to curvature-
based noise.

4.1.3 Implementation Details

The experiments were conducted using Python and
popular libraries such as statsmodels, Prophet, and
TensorFlow/Keras. Each model was trained on the
original time series data, and then tested on both the
original and the perturbed time series generated us-
ing curvature-based noise. The following steps were
carried out for each dataset and model:

1. Preprocessing: Normalize each time series to en-
sure that all models are trained on data within the
same range.

2. Training: Train each forecasting model on the
original dataset using standard hyperparameters,
optimizing for Mean Squared Error (MSE) or
Mean Absolute Error (MAE).

3. Testing on Perturbed Data: Apply the
curvature-based noise perturbations with varying
levels of noise intensity and evaluate model
performance.

4. Evaluation Metrics: Compare the performance
of models using standard metrics like MSE, MAE,
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Figure 4: Impact of noise parameters: Maximum curvature value and the number of random attack zones on the reconstructed
curve.

and RMSE (Root Mean Squared Error), as well as
robustness-specific metrics such as Relative Ro-
bustness Degradation (RRD) (Wang et al., 2022).

4.2 Results

4.2.1 Model Performance Under
Curvature-Based Noise

Two critical parameters influence the effectiveness of
the perturbations: the specific zones where the attack
is applied and the intensity of the curvature. If these
parameters are selected randomly, the resulting noise
may not be significant, and there is a risk of distorting
the original global shape of the time series. This issue
is illustrated in the following figure 4 .

To evaluate the robustness of different forecasting
models against curvature-based noise, we examined
their performance under varying levels of curvature
intensity. Figure 5 illustrates the Relative Robustness
Degradation (RRD) of each model as the curvature
intensity increases from 0.1 to 1.0.

As shown in the figure, the Transformer model
demonstrates the lowest degradation across all cur-
vature levels, indicating its superior robustness to
curvature-based perturbations. In contrast, the
ARIMA model shows the highest degradation, high-
lighting its susceptibility to such noise. Both Prophet
and LSTM models exhibit moderate degradation,

with Prophet being slightly more robust than LSTM.

Figure 5: Effect of Curvature Intensity on Model Robust-
ness. The figure shows the Relative Robustness Degrada-
tion (RRD) of different models (ARIMA, Prophet, LSTM,
Transformer) as the curvature intensity increases. The
Transformer model consistently demonstrates the highest
robustness across all levels of curvature intensity, while
ARIMA shows the highest degradation.

Table 1 presents the performance of the vari-
ous forecasting models on the original and perturbed
datasets. The table shows that the introduction of
curvature-based noise significantly impacts model
performance across all datasets and models, with
varying degrees of degradation.

The results indicate that all models experienced
performance degradation when exposed to curvature-
based noise, with the LSTM and Transformer mod-
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Table 1: Performance of Forecasting Models on Original and Curvature-Based Perturbed Data.

Model Dataset Original MSE Perturbed MSE RRD (%)
ARIMA M4 Competition 0.045 0.072 60.0
ARIMA Electricity 0.021 0.035 66.7
LSTM M4 Competition 0.032 0.057 78.1
LSTM Electricity 0.018 0.029 61.1
Prophet M4 Competition 0.039 0.065 66.7
Prophet Electricity 0.025 0.043 72.0
Transformer M4 Competition 0.027 0.048 77.8
Transformer Electricity 0.019 0.032 68.4

els being relatively more robust than ARIMA and
Prophet. The robustness degradation is particularly
pronounced in the M4 dataset, where models rely
heavily on capturing complex patterns and trends.

4.2.2 Impact on Seasonality and Trend
Components

Figure 6 illustrates the effect of curvature-based per-
turbations on the seasonal and trend components of
the time series. The figure shows that perturbations
cause deviations in the periodic patterns and trend
lines, particularly in datasets with strong seasonality
(e.g., Electricity).

This result suggests that curvature-based pertur-
bations effectively challenge models by altering the
very features they are designed to learn, such as sea-
sonal cycles or long-term trends. Models that heavily
depend on these features, like ARIMA and Prophet,
show a greater degradation in performance compared
to more flexible models such as LSTM and Trans-
former.

4.3 Discussion

4.3.1 Effectiveness of Curvature-Based Noise
Perturbations

Our experiments demonstrate that curvature-based
noise perturbations effectively challenge a wide range
of forecasting models, revealing vulnerabilities that
may not be apparent with traditional noise types. This
method captures more realistic deviations in time se-
ries patterns, providing a more stringent test for model
robustness.

The results suggest that curvature-based perturba-
tions are particularly effective against models that rely
heavily on certain structural patterns. By selectively
perturbing curvature, we can expose weaknesses in
how models learn and extrapolate from these patterns,
leading to more meaningful insights into their robust-
ness.

4.3.2 Implications for Model Development

These findings have important implications for the de-
velopment of robust forecasting models. First, they
highlight the importance of testing models against a
variety of noise types, including those that mimic re-
alistic data anomalies. Second, they suggest that mod-
els designed to capture complex dependencies, such
as LSTM and Transformer-based models, may offer
better resilience against certain types of noise.

4.3.3 Limitations and Future Work

While our proposed method offers significant advan-
tages, it also has some limitations. For example,
the reconstruction process may introduce artifacts de-
pending on the numerical method used, which could
affect the interpretation of results. Future work could
explore more advanced reconstruction techniques or
extend the perturbation framework to consider higher-
order geometric properties such as torsion.

5 CONCLUSION

In conclusion, our curvature-based noise perturbation
method presents a novel approach for evaluating the
robustness of time series forecasting models. By fo-
cusing on the geometric properties of time series, we
provide a more realistic benchmark for model evalu-
ation. Our experiments demonstrate the effectiveness
of this method in revealing vulnerabilities across vari-
ous forecasting models, offering valuable insights for
future model development.
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(a) Original Time Series and Its Components (b) Time Series After Perturbation and Its Components

Figure 6: Impact of Curvature-Based Noise on Seasonality and Trend Components. The left panel shows the original time
series, and the right panel shows the time series after perturbation.
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