Computer Vision Based Smart Security System for Explainable Edge
Computing

N. Nisbet and J. I. Olszewska
School of Computing and Engineering, University of the West of Scotland, U.K.

Keywords:

Explainable Edge Computing, Security and Privacy, Computer Vision Applications, Explaining Object

and Obstacle Detection, Trustworthy Intelligent Vision Systems, Transparent Decision-Support Systems,

Explainable Artificial Intelligence.

Abstract:

Smart cities aim to reach a high quality of life for their citizens using digital infrastructure which in turn

need to be sustainable, secure, and explainable. For this purpose, this work is about the development of
an explainable-by-design smart security application which involves an intelligent vision system capable of
running on a small, low-powered edge computing device. Hence, the device provides facial recognition and
motion detection functionality to any electronic motion picture input such as CCTV camera feed or video. It
highlights the practicality and usability of the device through a support application. Our resulting explainable
edge computing system has been successfully applied in context of smart security in smart cities.

1 INTRODUCTION

Modern smart cities deploy a growing number of edge
computing technologies (Khan et al., 2020), which
include among others internet of things (IoT) de-
vices and artificial intelligence (Al) algorithms to pro-
cess such collected data (Mishra et al., 2024), for
diverse smart applications ranging from air quality
monitoring (Zhu et al., 2023) to building operation
(Slee et al., 2021), maintenance (Xiao et al., 2024)
or surveillance (Sharma and Kanwal, 2024b). How-
ever, newest regulations and standards (Houghtaling
et al., 2024), require these intelligent systems to be
trustworthy. Therefore, using explainable artificial in-
telligence (XAI) (Li et al., 2024) to develop transpar-
ent and reliable edge computing systems is not an op-
tional requirement but a cornerstone aspect of Society
5.0 (Chamola et al., 2023).

In particular, smart cities need trustworthy solu-
tions for smart security (Sharma and Kanwal, 2024a)
which integrates emerging technologies (such as IoT
devices, cloud computing, edge computing) (Sodiya
et al., 2024) and intelligent systems (like computer-
vision systems) into traditional security measures to
improve the safety and security of people, property,
and data (Utimaco, 2024).

Indeed, smart cities tend to an increase in security,
safety, and better living experiences for citizens, and
these smart cities are made possible due to smart cam-
eras and sensors. For example, the city of Barcelona
uses ¢. one million different sensors around the city,

Nisbet, N. and Olszewska, J. I.
Computer Vision Based Smart Security System for Explainable Edge Computing.
DOI: 10.5220/0013016300003886

monitoring everything from traffic to temperature and
even waste management (Lea, 2020). Devices such as
sensors and cameras vary in the amount of bandwidth
required which is where edge computing is making
a big impact, because, quicker and more cost effec-
tive than ever, the sheer amount of data produced by
IoT devices is still time consuming to transport and to
store. Moreover, the ever-growing popularity of IoT
devices is creating more advanced versions producing
much more data (Naveen and Kounte, 2019).

While the majority of smart devices across our
cities are sensors that do not need to constantly send
data every few seconds or even milliseconds, some of
these sensors need quick decisions such as a smart
road detecting an accident and wanting to close a
lane. A single edge device could then control mul-
tiple sensors and enable these quick decisions to be
made without having to send the data to a main hub.
So cutting out this transfer time between multiple sys-
tems sitting in a queue waiting to be delt with can
save valuable seconds. With millions of sensors dot-
ted around a large area, there is also the possibility
data could arrive at different times with the decision
making delayed due to all the information not being
processed in time. Edge devices are thus an efficient
solution to build networks within networks in order to
create fully automated systems with little or no impact
on the wider grid.

As smart cities grow, expand, and develop over
time, edge devices can work with cloud computing in
easing the strain on sudden expansion. Since smart

147

In Proceedings of the 1st International Conference on Explainable Al for Neural and Symbolic Methods (EXPLAINS 2024), pages 147-154

ISBN: 978-989-758-720-7
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

EXPLAINS 2024 - 1st International Conference on Explainable Al for Neural and Symbolic Methods

devices can come in all shapes and sizes, these small,
low-cost edge devices can be fully customised to ac-
commodate any device and slip into the smart city jig-
saw with ease. As the technology develops, the up-
grading process is much easier and cheaper with only
the localised devices needing attention and not the
full network (Khan et al., 2020). Having this amount
of processing power available in small devices is en-
abling data processing closer to the source. Being
able to make sense of the data locally allows quicker
decisions as well as reducing transfer traffic and stor-
age (Shi et al., 2016).

Furthermore, explainable edge computing can
contribute to provide transparent applications closer
to data sources such as IoT devices or local edge
servers. This proximity to data at its source can de-
liver benefits, including not only faster insights but
also explainable decisions along with improved re-
sponse times and better bandwidth availability (IBM,
2024). Therefore, smart security often uses edge com-
puting in conjunction with intelligent vision applica-
tions (Sharma and Kanwal, 2024b) in new-generation,
real-time video surveillance systems (Visionplatform,
2024), in order to process and analyze visual data at
the network’s edge, close to where data is generated,
whilst reducing latency and bandwidth usage.

However, most existing edge computing systems
for smart surveillance embed deep learning algo-
rithms, (Perwaiz et al., 2024), (Aminiyeganeh et al.,
2024), (Sharma and Kanwal, 2024a) which are very
popular but still not considered as explainable or
transparent (Chamola et al., 2023).

So, in this study, we developed an explainable
edge computing system, including two complemen-
tary applications - one (i.e. the support application)
running on the main user’s device and the other one
(i.e. the edge application) integrated on the edge de-
vice, in order to detect, capture, and identify individ-
uals from live videos in context of smart cities.

It is worth noting that our intelligent vision system
is explainable by design and consists in the edge ap-
plication embedded on the edge device with face and
motion detection capabilities. Thus, the edge device
is able to make trustworthy decisions on facial recog-
nition by making the difference between known and
unknown faces which it categorises appropriately.

On the other hand, a user can receive as much
or as little information as they like with the support
application designed to split data from the edge ap-
plication to allow the user to receive all new infor-
mation, known/unknown faces, or motion detection.
This gives full flexibility on the users’ end to select
what they require, how, and when.

Thence, the main contributions of this work are

148

the explainable design and user-friendly development
as well as the real-world deployment of the explain-
able edge computing system for smart security.

The paper is structured as follows. In Section 2,
we describe the developed explainable edge comput-
ing system. Then, we present some experiments using
our system in real-world environment, as reported in
Section 3. Conclusions are drawn up in Section 4.

2 DEVELOPED SYSTEM

2.1 System Design
2.1.1 Communication

The main aim for the smart security application is to
run remotely on a small edge device, and this im-
plies the method of communication needs to be sim-
ple but robust. To make the most of the connectiv-
ity features available in current small edge suitable
devices such as single board devices, the most com-
mon of these communication technologies had to be
explored. Hence, Bluetooth is a very cheap add-on
for any device. However, it was not considered in
this work due to its poor connection range. On the
other hand, Wi-Fi was considered and used for some
testing, but this could not be the only means of con-
nection due to not all devices having this capability.
Therefore, to cater for the most widely available op-
tion, Ethernet has been chosen as the main source
for connectivity, which allows for the best transfer
speeds, while Wi-Fi, which is almost as quick as Eth-
ernet, has been used when the range and needs for
extra equipment were considered as acceptable.

Besides, to provide the best flexibility, one of
the most common web services which is called a
Representational State Transfer Application Program-
ming Interface (REST API) was selected (Au-Yeung,
2020). Indeed, a REST API enables applications to
communicate with a server across a network. Data
and commands are transferred as JavaScript Object
Notation (Json), meaning they are not language spe-
cificc. A REST API works by handling GET, POST,
PUT and DELETE requests through URLs, control-
ling the direction and type of data being sent or re-
ceived (RedHat, 2020). The REST API is handled by
the micro web framework Flask enabling the applica-
tion to send and receive Hypertext Transfer Protocol
(HTTP) requests or responses.

2.1.2 Execution

To enable any camera to be smart implies external
processing and the possible use of a third-party li-

Computer Vision Based Smart Security System for Explainable Edge Computing

brary. Facilitating this for a low-powered, limited pro-
cessing edge device requires careful considerations.
Indeed, the process of taking an image and transform-
ing it into usable data involves advanced computer
vision techniques (Sharma and Kanwal, 2024a), and
there are different algorithms for face recognition to
choose from (Rostum and Vasarhelyi, 2024), (Chen
and Krzyzak, 2024), (Wood and Olszewska, 2012).

In particular, this system needs to integrate im-
age/video processing methods for detecting, captur-
ing and identifying an individual from live videos.
Detecting an individual involves locating a human
face in a live video or a still image. Capturing is
the process of taking that information and storing it
in a way that can be used, and identifying it is know-
ing who the detected person is (Thales, 2020). More-
over, this system aims to be an explainable edge com-
puting system. Therefore, the Histogram of Oriented
Gradients (HOG) algorithm which is based on an ex-
plainable machine learning approach (Chamola et al.,
2023), has been selected. It uses a black and white
or grey scale version of an image, where each pixel
is compared to the ones round about. From this, the
change in gradient is noted, creating a detailed pattern
of the image that can be matched with a face database
for face recognition and identification purposes. An-
other benefit of these patterns is that it is also very
powerful at detecting shapes or moving objects which
is why it is the best option for this work.

2.1.3 Storage

One of the main advantages of a small edge device
is the ability to make quick decisions, reducing thus
the amount of data transfer, but limiting the scope for
storage types that can be considered - with cloud or re-
mote varieties not suitable. Additionally, not all edge
devices are capable of running an operating system
(OS) such as MS Windows. Therefore, cross compat-
ibility is required (Wheeler and Olszewska, 2022).

Despite MySQL being a highly popular manage-
ment system and available for all OS’s, its recom-
mended memory requirements of 4-8GB make it not
suitable for this type of device. Another popular
database called PostgreSQL is also unsuitable due to
its high storage requirements of 512 MB.

Indeed, for a device with limited storage, process-
ing power and possible transfer rates, the database
needs to be lightweight. With these requirements,
the Python-based TinyDB fits the bill. Storing data
in Json format fits also well with the REST API side
of the application. In addition, the database takes up
minimum storage and is user friendly. A TinyDB can
be setup like any other with a single database contain-
ing different tables. Due to the miniscule space each

one takes up, it is easier, and more manageable, to
have a database for each section, as shown in Fig. 1.

l detected face_d ‘ ‘ devices_db
it | [d ot | [d il

moton_cetecton_db unknwr_\mage_dh[‘umeaﬂ_ﬂata_dh‘ ‘ user_dh ‘

id int

int
ipudlic_id |string
user [siring
password [string

string | |date_detected |cate fle_name |string
string | [time_detected [tme name string
latection [string | |devicelp string | [date_found |date
string - lime_found ~ |time
sting o
sting

string
string
istring
string
date

time

Figure 1: Edge application storage diagram.

Figure 2 illustrates how the data flows in our sys-
tem and how the different databases are managed.
Hence, the users make requests to the edge device
from the application on their computer to access the
data through the API call. The API can then control
the retrieval or insertion of the data to the correct lo-
cation. From the edge software, the detected data is
programmatically directed to the correct location to
be stored until required.

user_db
request
umead |_data_db newdaa [+ bgin regiser
e
request
detected_face_db etecte
1 User Computer
request
motion_detection_db detocid
mation L
i
device
unknown_image_db reqest added
e i

devicas_db

Figure 2: System database management diagram.

mmmmm
det lecled

H

2.2 System Applications

Our system consists of two different applications,
namely, the main edge application and a support ap-
plication, as illustrated in Fig. 3. The edge applica-
tion is performing the main data and video process-
ing, while the support application demonstrates how
the edge device can be integrated into other systems.

2.2.1 Edge Application

The edge application has been written mainly us-
ing Python 3 version and has been structured in five
classes (see Fig. 4), with the main class api_server
handling the communication between the application
and external network. The video processing has been
split into a class each for facial recognition and mo-
tion detection with another for processing both. Keep-
ing these separate enable them to be run individually
or together with these processes being managed by
the start_process class.

149

EXPLAINS 2024 - 1st International Conference on Explainable Al for Neural and Symbolic Methods

TITTIT
Video device

Edge Device
3
~ [Video Processing]
EE :
<~

[Facial Recognition] [Motion Detection]

——1

[Detected data]

Edge Device

[Delecled images

obo
S8

File system TinyDB

l Rest API ‘

R A
oo

Router

e

User Device

Process Recieved Data] E

Router ;—% —™

User Device

[D\Sp\ay as usable da‘a] [Received data]

— [—

P=—A =]

= =
User Display Data Store

Figure 3: Our system architecture.

api_server face_detection

auh face_images_path
host_name facial_images
ip_address face_names
quary face_ist

stream_link
device_ip

login) e ——
ge:_new_data(self) get_encoding

ge_new_data_couni(self) found_unknown_image(face_image, device_ip)
ge:_unknown_facesself) found_known_image(face_image, device_ip)
ge:_unknovn_face(id) Tun_detection(stream_ink, device_ip)
gel_unknown_faces_count(sell)
ge_detected_faces(self)
get_detected_face(sel, id)
ge:_detected_faces_count(self)
ge:_motion
‘ge;_motion_detection_count(self) camera_management(device_list) face_images_path
gel_image(sel, file_name) start_camera_process() facial_images
ger_devices(sell) face_names
ge:_device_id(self, data) face_ist
adi_device(sel) f——{ auery
add_devices(self)
update_unknown_face(self)
start_cameras(self)
delete_device(sel!, device_ip}
update_unknown_face(sell)
ger_unknown_fle)
ge:_detected_fle)
update_file(name, fils_name)
update_db(rame, fle_name)
deiete_fle(name, ie_name)
detete_from_dbfle_name)

token_required(func)

stan_process

face_mation_detection

get_encoding)
found_unknown_image(face_image, device_ip)
found_known_image(face_image, device_ip)
run_face_moton(stream_ink, device_ip)

motion_detection

Tun_motion(stieam ik, device_ip)

Figure 4: Class diagram for the Edge Application.

To allow for multiple camera feeds to be
processed simultaneously, the edge application
runs the concurrent.futures library. Available
since Python 3.2, it has two subclasses, namely,
ThreadPoolExecutor and ProcessPoolExecutor,
using multi-threading and multi-processing, respec-
tively. What makes this better than other multi-
processors is that tasks are added to a pool which
allocates them to available resources. This pooling
increases speed and reduces computing power by cre-
ating a repository of all the active tasks and only re-
leases them when the resources are available (Forbes,
2017).

On the other hand, the edge application uses the
Open Source Computer Vision Library (OpenCV)
with the Dlib library to capture, store and retrieve data
from images and video. The Dlib library is a toolkit
originally written in C++ containing machine learn-
ing algorithms. A number of these tools have been
made available for use with Python by means of an
APIL. OpenCV handles a number of these pretrained
algorithms which for this application is mainly the

150

facial landmark detector for HOG encoding. There-
fore, using OpenCV alongside the facial recognition
library (Geitgey, 2020) enables the edge application
to inspect live video footage for face identification.
In particular, as OpenCV stores colour in the BGR
colour space, this needs to be converted in the more
usable RGB. Using the video capture class to gain the
footage as an array of images, the application can then
scan each frame using the facial recognition face loca-
tions class. This uses the pretrained Dlib HOG SVM
to find any facial patterns and the popular library
NumPy to return the patterns as array. These pat-
terns can then be compared to the pre-saved images
of known faces through the face recognition compare
faces class and the similarity can be confirmed using
the face distance class. The found faces are shown us-
ing the OpenCV rectangle class which enables a box
to be displayed using the outer most co-ordinates of
the detected pattern. If the face is known, i.e. matches
a stored image, the image filename, date, and time are
saved to the tiny database table detected_face us-
ing the insert method from the table class (Siemens,
2023). If the detected face is not known, i.e. does not
match any of the stored images, the image with the
newly detected face is saved to a local folder using
the OpenCV function imwrite. The details are then
saved to the unknown_image table in the TinyDB, all
the details are also saved to the unread_data table.
The motion detection also utilises the video cap-
ture class to gain the live video footage as a sequence
of images. This allows the first and second frame to
be captured using the function read which returns de-
coded images that can then be compared to each other
using the function absdiff which calculates the ab-
solute difference for each element in the two arrays.
When motion or a difference in between the
frames has been detected, the new image containing
the difference is simplified to a gray-scale, Gaussian-

Computer Vision Based Smart Security System for Explainable Edge Computing

(b)

(@)

Figure 5: Support Application screens: (a) splash screen; (b) login/register screen, (c) home screen; (d) add-device screen.

blurred image by applying OpenCV functions This
image is then filtered to reduce noise by removing
pixels with too high and low values. These values are
then dilated to over-emphasise the edges and enable
the contours to be used to box off the different area or
detected motion. As with the face detection, the date
and time of the detected motion is inserted into the
TinyDb along with the details of the device IP from
which the detection was found.

2.2.2 Support Application

To highlight the versatility of the edge application and
RESTful API, the support application (see Fig. 5 (a))
has been built on the .Net Core platform or Universal
Windows Platform desktop application. The layout
for the page views are created using the Extensible
Application Markup Language (XAML) using grids
to control the position of visual tools, e.g. TextBlock.

The main and most important screen is the lo-
gin/register page, as displays in Fig. 5 (b), as this
is how the user will connect to the actual edge device.
From here, there is a home screen (see Fig. 5 (c))
which provides the user with an overview of the avail-
able statistics together with the functionality to start
and add devices. Using the add-device screen (see
Fig. 5 (d)), all the details can be added for a camera
with options for the detection setting with face and/or
motion selectable.

The data provided on the data screen (see Fig. 5
(c)) gives a breakdown of all the data that has been
detected since last viewing. When the API from this
page has been called, the data is wiped meaning no
new repeat data will be sent providing the user with a
data stream that can be stored locally.

3 EXPERIMENTS

3.1 Test Setup

To fully test both applications, the developed edge
software was installed on a Raspberry Pi device
(Raspberry Pi 4 Model B, Broadcom BCM2711,

Quad core Cortex-A72 (ARM v8) 64-bit SoC
1.5GHz, 4 GB RAM, Ubuntu 20.10 OS). The support
application was installed on a laptop (Dell Latitude
E5530, Intel Core 17-3610QM CPU 2.30GHz, 8GB
RAM, Windows 10 Professional (20H2) OS) which
was communicating with the edge device, as shown
in Fig. 6. The support application was then used to
receive, collect and display data from the edge device.

Figure 6: Overview of the system hardware setup deployed
in real-world environment.

3.2 Face Detection

The initial testing of our software using the laptop’s
built-in webcam device involved five different indi-
viduals and was performed to test the functionality for
the face detection where the face was detected as ‘un-
known’ after comparing the image against the saved
images in the database, as exemplified in Fig. 7(a).
This unknown detected image was then saved through
the support application as a ‘known’ person who was
then detected when carrying out the same test again,
as illustrated in Fig. 7(b).

Both devices detected the same number of faces
in each of the 35 carried out tests in this series, and
the results on both the laptop and the Raspberry Pi
devices gave an accuracy of 97.14%.

A further series of 200 tests was carried out to
test the full system using a CCTV test video from
Panasonic and containing nine different persons who
were evolving in that video over time. Both devices
were set to 24fps with the same test video and sub-
ject images. Each test was repeated twice - at first,

151

EXPLAINS 2024 - 1st International Conference on Explainable Al for Neural and Symbolic Methods

(b)

Figure 7: Example of face detection: (a) a detected ‘un-
known face’; (b) added to the database and then updated to
‘known face’.

all the faces were ‘unknown’ and secondly, all the
faces were ‘known’. For these latter series of tests on
the CCTV video, the cumulative computational time
were measured on both devices. For the series of tests
which were implemented with no known faces, the
laptop completed the full batch of tests in 12 hours
8 minutes, while the Raspberry Pi took only 6 hours
17 minutes. The other series of tests using all the
known faces was completed much quicker, with the
laptop taking 9 hours 20 minutes, and the Raspberry
Pi only 4 hours 44 minutes. These results were repre-
sentational of the real-world situation, where a much
higher processing time is needed for detecting an un-
known face rather than a known face when perform-
ing a one-to-many search in the database, leading to
the computational processing time of the overall sys-
tem being not only dependent of the image processing
approaches but also of the one-to-many search algo-
rithm complexity. In terms of performance, the first
series of tests showed a precision of over 90%, while
the second series of tests reached a precision of 100%
where no person was missed in any of the tests, and
everyone was detected correctly. Furthermore, even
with the lighting reflections and background clutter,
there were no false positives detected. Therefore,
these tests highlight that the system performance is re-
lated to the training dataset which quality needs to be
carefully considered when deploying such edge com-
puting system.

Besides, during testing on the laptop, it was noted
through its Task Manager that the application used
20-25% CPU and peaked at almost 2GB memory but
steadied out at 250-300MB with the power usage very
high. Having the application running in the back-
ground did not appear to cause any performance is-
sues to other applications being used. In comparison,
the Raspberry Pi monitored via its activity manager
has used more processing power, between 25-35% but
the memory usage was 250-400MB with a peak of
almost 600MB. When using video for testing on the
Raspberry Pi, it was noted that if the device ran hot,
with the temperature symbol flashing in the top cor-
ner, its CPU usage rose to 75%. So, additional cau-

152

tion should be exercised with handling the Raspberry
Pi device as it should be kept in a cool place out of the
sun, with an optional fan fitted.

3.3 Motion Detection

For the motion detection, the system sensitivity can be
adjusted, depending on the device used and subjects
needed. This is achieved by increasing or decreasing
the contourArea which is the area used to compute
the object motion.

Hence, tests were carried out for two different sce-
narios, as shown in Fig. 8, with a close webcam and
distant CCTV camera which required very different
values.

On one hand, Fig. 8 (a) illustrates a typical envi-
ronment this type of device is used for and performs
well - only detecting the motion of people and cars.
It should be noted this test was carried out on quite a
still day. However before settling on, the final value
motion was detected on the trees.

On the other hand, Fig. 8 (b) demonstrates the
other end of the motion scale, with a webcam used
to test close quarters’ motion. For this test, the
contourArea setting was much higher, to allow for
the closer and therefore larger objects’ motion detec-
tion.

Besides, caution should be taken when using the
motion detection feature of the edge computing sys-
tem that the device is fixed and so it does not move,
in order to avoid false positive detections due to the
camera shake, as one can observed in Fig. 8 (c).

(b)
Figure 8: Examples of motion detection: (a) on high sensi-
tivity; (b) on low sensitivity; (c) caused by camera shake.

3.4 Discussion

The developed applications, namely, edge applica-
tion and support application, were both successfully
tested using standard and advanced software testing
approaches (Black et al., 2022), with some series of
tests described in Sections 4.2-4.3, in order to deliver
areliable edge computing system.

Furthermore, this system’s development process
also included user tests involving the participation
of five individuals with different technical knowledge
and backgrounds, to provide feedback helping the de-
veloper to achieve a user-friendly system.

Computer Vision Based Smart Security System for Explainable Edge Computing

Besides, during the development of this explain-
able edge system, ethical considerations were anal-
ysed as well, e.g. to ensure that data and sensitive in-
formation were stored and handled in an ethical way.
It is worth noting that the use of CCTV with smart
technology such as face recognition is a relatively new
concept with the laws and e guidelines still being cre-
ated at national and international levels (e.g. the Gen-
eral Data Protection Regulation (GDPR), EU AI Act
2024, etc.). Although this application does not ven-
ture into this area of detail or intrusiveness, it high-
lights many possible issues the public had and still
has with this area. As CCTV cameras become more
powerful and smaller with high quality lenses and im-
age processing, it is important they are used appropri-
ately (Van Noorden, 2020). Albeit for this applica-
tion, consent would not be available due to the device
being aimed at the security sector, full consideration
into the handling, storing, and removal of data has
been considered. Indeed, full control over the nam-
ing and storing has been programmed in to make it
easy to add or remove images and details. Moreover,
all companies using this edge computing system are
expected to adhere to government guidelines.

It is worth noting that many of the issues relat-
ing to ethics can be improved by the security of the
device (Quincozes et al., 2024) and careful consid-
eration over storage (Ahmadi, 2024). Thence, this
application is running on an Ubuntu device which
is password protected. The communication is also
secured with a password, while the main source of
storage of the Raspberry Pi, which is the mem-
ory card, can be encrypted should it need to be.
For a user to access the edge device, they need
to register their details by sending them using the
HttpClient which encodes them and sends them
through a Basic AuthenticationHeaderValue (Mi-
crosoft, 2024). The API server on the edge side stores
the submitted details in the TinyDb users_db table
and encrypts the password using the Python library
Werkzeug function generate_password-hash. The
encryption is created using SHA256 hash algorithm
with salt, which is random extra data for added secu-
rity in the format method$salt$hash. The added
salt encryption helps disguise the same password
used by more than one user. SHA265 is a vari-
ant of the highly popular SHA-2 which sets the size
to 256 bits, meaning all hashed codes are the same
size. To check the credentials on login, the function
check_password_hash compares the received pass-
word against any stored password and returns true or
false. For added security, a random twelve-digit pub-
lic ID is generated during registration which will be
used for creating a token on login. When a regis-

tered user logs into the edge device, their details are
checked against the contents of user_db for a match.
If all the details are confirmed, a token is generated
using the library PyJWT or Json web token which
uses the HS256 algorithm. HS265 is a Hash-based
Message Authentication Code (HMAC) combining,
in this case, a predefined secret key to encode the gen-
erated user public ID using H265 (Otemuyiwa, 2017).
For extra security, an expiry date can be added to the
token to force users to have to login and to stop old to-
kens being active longer than they need to be. On the
Windows support application, the token is returned on
login through the HttpResponseMessage and stored
locally in memory. Any future requests made to the
edge device for data are thus sent using this token as
Digest authorisation. These received requests are then
decoded using the secret key to gain the user public
key which is check against the results in the user_db.

4 CONCLUSIONS

In this work, we developed an explainable edge com-
puting prototype for the next-generation smart envi-
ronments which require privacy, security and trust.
Hence, we built a system running two applications,
i.e. a user-friendly application to support the main
edge application integrating an intrinsically explain-
able computer vision technologies together with a
small, low-powered edge computing device, in order
to provide an accurate whilst responsible Al-based so-
lution for real-world smart security.

REFERENCES

Ahmadi, S. (2024). Security limplications of edge com-
puting in cloud networks. Journal of Computer and
Communications, 12:26—46.

Aminiyeganeh, K., Coutinho, R. W. L., and Boukerche, A.
(2024). IoT video analytics for surveillance-based
systems in smart cities. Computer Communications,

224:95-105.
Au-Yeung, J. (2020). Best practices for
REST APl design. Available online at:

https://stackoverflow.blog/2020/03/02/best-practices-
for-rest-api-design/.

Black, R., Davenport, J. H., Olszewska, J. I., Roessler, J.,
Smith, A. L., and Wright, J. (2022). Artificial Intelli-
gence and Software Testing. BCS Press.

Chamola, V., Hassija, V., Sulthana, A. R., Ghosh, D., Dhin-
gra, D., and Sikdar, B. (2023). A review of trustwor-
thy and explainable artificial intelligence (XAI). IEEE
Access, 11:78994-79015.

Chen, G. and Krzyzak, A. F. (2024). Face recognition
via selective denoising, filter faces and HOG fea-

153

EXPLAINS 2024 - 1st International Conference on Explainable Al for Neural and Symbolic Methods

tures. Signal, Image and Video Processing. Springer,
18:369-378.

Forbes, E. (2017). Executors and pools. In Learning Con-
currency in Python, pages 159-188. Packt.

Geitgey, A. (2020). face_recognition pack-
age. Available online at: https://face-
recognition.readthedocs.io/en/latest/face_recognition.html.

Houghtaling, M. A., Fiorini, S. R., Fabiano, N., Goncalves,
P. J. S., Ulgen, O., Haidegger, T., Carbonera, J. L.,
Olszewska, J. 1., Page, B., Murahwi, Z., and Prestes,
E. (2024). Standardizing an ontology for ethically
aligned robotic and autonomous systems. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems,
54(3):1791-1804.

IBM (2024). What is edge computing? Available online at:
http://www.ibm.com/topics/edge-computing .

Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S.
M. A., Dang, T. N., and Hong, C. S. (2020).
Edge-computing-enabled smart cities: A compre-
hensive survey. [IEEE Internet of Things Journal,
7(10):10200-10232.

Lea, P. (2020). IoT and Edge Computing for Architects. 2nd
ed. Packt.

Li, Y., Xiao, Y., Gong, Y., Zhang, R., Huo, Y., and Wu, Y.
(2024). Explainable Al: A way to achieve trustworthy
Al In Proceedings of the IEEE International Confer-
ence on Big Data Security on Cloud, pages 150-155.

Microsoft (2024). .NET documentation. Available online
at: https://docs.microsoft.com/en-gb/dotnet/.

Mishra, A. K., Reddy, R. R., Tyagi, A. K., and Arowolo,
M. O. (2024). Artificial intelligence-enabled edge
computing: Necessity of next generation future com-
puting system. In loT Edge Intelligence, page 67-109.
Springer.

Naveen, S. and Kounte, M. R. (2019). Key technologies and
challenges in IoT edge computing. In Proceedings of
the IEEE International Conference on loT in Social,
Mobile, Analytics and Cloud, pages 61-65.

Otemuyiwa, P. (2017). Brute Forcing HS256 is
Possible: The Importance of Using Strong
Keys in Signing JWTs. Available online at:
https://authO.com/blog/brute-forcing-hs256-is-
possible-the-importance-of-using-strong-keys-to-
sign-jwts/.

Perwaiz, N., Fraz, M. M., and Shahzad, M. (2024). Smart
surveillance with simultaneous person detection and
re-identification. Multimedia Tools and Applications.
Springer, 83:15461-15482.

Quincozes, V. E., Quincozes, S. E., Kazienko, J. F., Gama,
S., Cheikhrouhou, O., and Koubaa, A. (2024). A
survey on IoT application layer protocols, security
challenges, and the role of explainable Al in IoT
(XAIoT). International Journal of Information Secu-
rity, 23:1975-2002.

RedHat (2020). What is a REST API? Available on-
line at: https://www.redhat.com/en/topics/api/what-
is-a-rest-api.

Rostum, H. M. and Vasarhelyi, J. (2024). Comparing the
effectiveness and performance of image processing al-
gorithms in face recognition. In Proceedings of the

154

IEEE International Carpathian Control Conference,
pages 1-5.

Sharma, H. and Kanwal, N. (2024a). Smart surveillance
using IoT: A review. Radioelectronic and Computer
Systems, 109(1):116-126.

Sharma, H. and Kanwal, N. (2024b). Video surveillance
in smart cities: Current status, challenges and fu-
ture directions. Multimedia Tools and Applications.
Springer, pages 1-46.

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637-646.

Siemens (2023). TinyDB. Available online at:
https://github.com/msiemens/tinydb.

Slee, D., Cain, S., Vichare, P., and Olszewska, J. 1. (2021).
Smart lifts: An ontological perspective. In Proceed-
ings of the International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowl-
edge Management (KEOD), pages 210-219.

Sodiya, E. O., Umoga, U. J., Obaigbena, A., Jacks, B. S.,
Ugwuanyi, E. D., Daraojimba, A. 1., and Lottu, O. A.
(2024). Current state and prospects of edge comput-
ing within the Internet of Things (IoT) ecosystem. In-
ternational Journal of Science and Research Archive,
11(1):1863-1873.

Thales (2020). Facial recognition:
top 7 trends. Available online at:
https://www.thalesgroup.com/en/markets/digital-
identity-and-security/government/biometrics/facial-

recognition .
Utimaco (2024). What is Smart Security?. Available
online at: https://utimaco.com/service/knowledge-

base/emergency-communications-and-public-
warnings/what-smart-security.

Van Noorden, R. (2020). The ethical questions that haunt
facial-recognition research. Nature, 587:354-358.

Visionplatform (2024). What is edge computing for
computer vision and what are the benefits?. Available
online at: https://visionplatform.ai/what-is-edge-
computing-for-computer-vision-and-what-are-the-
benefits/ .

Wheeler, D. and Olszewska, J. 1. (2022). Cross-platform
mobile application development for smart services. In
Proceedings of the IEEE International Symposium on
Computational Intelligence, pages 203-208.

Wood, R. and Olszewska, J. I. (2012). Lighting-variable
AdaBoost based-on system for robust face detection.
In Proceedings of the International Conference on
Bio-Inspired Systems and Signal Processing, pages
494-497.

Xiao, Y., Huo, Y., Cai, J.,, Gong, Y., Liang, W., and
Kolodziej, J. (2024). ERF-XGB: An Edge-loT-based
explainable model for predictive maintenance. /EEE
Transactions on Consumer Electronics, 70(1):4016—
4025.

Zhu, Y., Al-Ahmed, S. A., Shakir, M. Z., and Olszewska,
J. 1. (2023). LSTM-based IoT-enabled CO2 steady-
state forecasting for indoor air quality monitoring.
Electronics, 12(1):1-12.

