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Abstract: Convolutional Neural Networks have demonstrated high accuracy in medical image analysis, but the opaque
nature of such deep learning models hinders their widespread acceptance and clinical adoption. To address
this issue, we present XAIMed, a diagnostic support tool specifically designed to be easy to use for physicians.
XAIMed supports diagnostic processes involving the analysis of medical images through Convolutional Neu-
ral Networks. Besides the model prediction, XAIMed also provides visual explanations using four state-of-art
eXplainable AI methods: LIME, RISE, Grad-CAM, and Grad-CAM++. These methods produce saliency
maps which highlight image regions that are most influential for a model decision. We also introduce a simple
strategy for aggregating the different saliency maps into a unified view which reveals a coarse-grained level
of agreement among the explanations. The application features an intuitive graphical user interface and is
designed in a modular fashion thus facilitating the integration of new tasks, new models, and new explanation
methods.

1 INTRODUCTION

In recent years, Deep Learning (DL) models have
achieved remarkable success across various fields,
including Computer Vision, Natural Language Pro-
cessing, and Cybersecurity (Shinde and Shah, 2018;
Raghu and Schmidt, 2020). In healthcare, the capa-
bility of DL models to analyze and recognize patterns
can significantly enhance the interpretation of large
volumes of medical images, such as those obtained
from Computed Tomography (CT), Magnetic Reso-
nance Imaging (MRI), Positron Emission Tomogra-
phy (PET), and X-ray scans. Applications include
the detection of anatomical structures, segmentation,
classification, prediction, and computer-aided diagno-
sis (Shen et al., 2017). In this context, Convolutional
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Neural Networks (CNNs) are particularly suited for
analyzing medical images due to their ability to learn
spatial hierarchies of features.

While advances in DL led to the development
of AI-empowered clinical diagnoses support systems
with performance comparable with that of clinicians
(Sokolovsky et al., 2018; Tschandl et al., 2019;
Hannun et al., 2019), the widespread adoption of
such systems is still hindered by several challenges,
mainly regarding the reliability of model diagnoses
(Shortliffe and Sepúlveda, 2018), the clinical sound-
ness of model behaviors (Magrabi et al., 2019) and
the lack of trustworthiness and transparency in the
decision-making process (Shortliffe and Sepúlveda,
2018; Solomonides et al., 2021). The concept of
trustworthy AI has recently been considered also by
government entities, as witnessed, for example, by the
adoption of the AI Act1 and of the GDPR2: AI sys-
tems should be accountable and transparent, and their
decisions should be understood and trusted by human

1https://artificialintelligenceact.eu/the-act/
2https://gdpr-info.eu/
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users. According to GDPR all individuals have the
right to obtain “meaningful explanations of the logic
involved” (Guidotti et al., 2018).

The need for trustworthiness in AI systems con-
tributes to the rise of eXplainable Artificial Intelli-
gence (XAI) (Doshi-Velez and Kim, 2017): XAI aims
to explain AI algorithms and their decision-making
processes, enhancing trust and facilitating the integra-
tion of AI into critical domains such as healthcare,
(Samek et al., 2021; Arnaout et al., 2021; DeGrave
et al., 2021). In medical imaging, one of the most
common XAI approach relates to the generation of
Saliency Maps (SMs) (Borys et al., 2023). SMs are
visual representations that highlight regions of an im-
age that are most influential in a model decision, thus
enabling healthcare professionals to assess the clini-
cal relevance of these regions (Simonyan et al., 2014).

Evaluating the effectiveness of XAI methods, in-
cluding those based on SM, is inherently complex due
to the subjective nature of interpretation. Quantitative
evaluations include metrics that measure the align-
ment between areas identified through SM and those
identified by expert clinicians. A misalignment may
arise when DL models learn complex functions to
map input images to classes without necessarily cap-
turing clinically relevant features. It has been shown
that sometimes they rely on shortcuts, such as arti-
facts or specific markings in images (e.g., logos or
text labels), which fictitiously improve classification
accuracy but do not correspond to true modeling of
diagnostic features (Lapuschkin et al., 2019; Geirhos
et al., 2020). Consequently, while a model might clas-
sify an image accurately, the regions it focuses on may
not align with those clinicians consider important for
diagnosis, potentially compromising the model trust-
worthiness and hindering computer-aided diagnosis
(Cerekci et al., 2024).

In a recent study (Barda et al., 2020), authors
highlight three key components for designing expla-
nations in clinical diagnosis support systems: why
the system provided a certain diagnosis, what should
be included in the explanation, and how explanations
should be presented to users. Authors in (Hwang
et al., 2022) proposed a user-centered clinical deci-
sion support system designed to assist clinical techni-
cians in reviewing AI-predicted sleep staging results.
The aim of the authors was to address the lack of
clinical interpretability and user-friendly interfaces in
existing AI systems. Their findings suggest that in-
tegrating clinically meaningful explanations into AI
systems through a user-centered design process is an
effective strategy for developing a clinical diagnosis
support system for sleep staging. The study high-
lights the importance of providing explanations that

align with clinical knowledge and workflows, which
can enhance the adoption and utility of AI in clini-
cal practice. The user interface of the AI-based clin-
ical diagnoses support systems should be practical in
clinical environments, where the time and resources
of clinicians are constrained (Holzinger et al., 2017;
Shortliffe and Sepúlveda, 2018). The development of
these tools could alleviate time-consuming and costly
clinical tasks and also enhance the performance of
clinical practitioners (Younes and Hanly, 2016).

To practically assess the usefulness of DL mod-
els for medical image classification, a combination of
both specialized medical expertise and DL knowledge
is necessary. Medical professionals can provide in-
sights into the clinical significance of the identified
regions, while DL experts can contribute on unfold-
ing the model’s functioning by designing and lever-
aging explainability techniques. Evidently, the devel-
opment of software and tools to facilitate this synergy
is crucial to foster trustworthiness in AI-empowered
diagnostics.

In this paper we present XAIMed, short for
eXplaining AI decisions on Medical images, a user-
friendly application designed to contribute in bridg-
ing the gap between the opaque nature of CNNs and
the need for explainability in clinical settings: our
primary goal is to provide clinicians with a practi-
cal tool to assess models behavior through intuitive
visualizations. The application allows clinicians to
choose between several classification tasks for medi-
cal images and to add new tasks as needed, supported
by a technical operator. For each task, clinicians can
select specific images for analysis, view the confi-
dence level of predicted classes, and obtain contex-
tual explanations through four SM-based explainabil-
ity methods: LIME (Ribeiro et al., 2016), RISE (Pet-
siuk et al., 2018), Grad-CAM (Selvaraju et al., 2016),
and Grad-CAM++ (Chattopadhay et al., 2018). These
methods are widely used in healthcare and extensively
studied in literature (Borys et al., 2023). Addition-
ally, the proposed application provides a visualization
that aggregates the four SMs into a comprehensive
view, by locally quantifying the level of agreement
between the explanations. This tool aims to facilitate
collaboration between DL experts and medical pro-
fessionals by providing a practical means to explain
the model behaviour on specific images of interest.
This approach allows medical professionals to assess
the model predictions based on their expertise, under-
stand how often they agree with the model decisions,
and determine whether the features identified by the
model align with their diagnostic criteria.

The rest of this paper is organized as follows. In
Section 2 we provide some preliminaries on CNNs
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and SM-based explanation methods. In Section 3 we
describe our application. In Section 4 we illustrate
an example of use case on Invasive Ductal Carcinoma
detection. Finally, in Section 5 we draw some con-
cluding remarks.

2 BACKGROUND

The adoption of CNNs for classification of medical
images is revolutionizing the healthcare sector, en-
abling faster and more accurate diagnoses (Litjens
et al., 2017; Yamashita et al., 2018). These models
consist of multiple layers, typically including convo-
lutional layers, pooling layers, and fully connected
layers. Convolutional layers are designed to automat-
ically and adaptively learn spatial hierarchies of fea-
tures by applying a set of filters on the input images.
The parameters of these filters are learned during the
training process, allowing the network to extract rele-
vant features from the input data (LeCun et al., 1998).
The layers closer to the input learn low-level features
such as edges, textures, and simple shapes, while
deeper layers learn more complex, high-level features
such as parts of objects and entire objects (Krizhevsky
et al., 2012). This hierarchical learning makes CNNs
highly effective for image classification tasks. Pool-
ing layers are used to reduce the dimensionality of the
feature maps, thus decreasing the computational load
and reducing the risk of overfitting. Moreover, these
layers help to make the network invariant to small
translations of the input image, improving its robust-
ness (Scherer et al., 2010). The downstream classifi-
cation task is typically accomplished through a fully
connected network: the first layer takes as input the
high-level features extracted from the convolutional
backbone, whereas the last layer returns the probabil-
ity associated with each class by exploiting appropri-
ate activation functions, namely sigmoid and softmax
in the binary and multi-class case, respectively. No-
tably, such probabilities can be considered as a proxy
for model confidence in the decision making process.

Saliency maps (SMs) are a prominent technique
in XAI, providing visual explanations by highlight-
ing regions of an image that significantly influence
a model predictions. Saliency-based approaches de-
signed for CNNs leverage the spatial information pre-
served through convolutional layers to identify parts
of an image that contribute most to the resulting deci-
sion (Van der Velden et al., 2022). SMs explain why a
trained opaque model takes a certain decision for any
single input instance: as such they are considered a
local post-hoc explanation method. The salient parts
of an image, that have the highest attribution to the

prediction, are highlighted in attribution maps. These
maps are typically represented as heatmaps where a
suitable color code indicate the contribution to the
model output (Ancona et al., 2017). Visual explana-
tions are particularly relevant in medical image analy-
sis due to their ease of understanding, which helps as-
certain whether a model decision-making aligns with
that of a clinician.

The generation of attribution maps can be cate-
gorized into perturbation-based and backpropagation-
based methods (Singh et al., 2020). Perturbation-
based methods analyze the effect of altering input fea-
tures on the model output. This is typically achieved
by removing, masking, or modifying parts of the input
image, performing the forward pass to compute the
model’s prediction, and measuring the deviation from
the initial prediction. Backpropagation-based meth-
ods use gradients and activations during the backprop-
agation stage of DL models to estimate the impact
of each input feature. Specifically, derivatives of the
model output with respect to each input dimension,
such as every pixel in an input image to the model,
are computed. If the gradient is large, it implies that
even a tiny change in that dimension may drastically
change the model’s output, testifying the importance
of that dimension.

In the following, we focus on four popular
saliency-based methods, which are integrated into
our application: LIME, RISE, Grad-CAM, and Grad-
CAM++.

LIME (Local Interpretable Model-agnostic Expla-
nations) (Ribeiro et al., 2016) is a perturbation-based
method designed to explain individual predictions of
an opaque model by approximating it locally with
a simpler, interpretable model. First, a dataset of
perturbed samples is created by slightly altering the
original input. For image data, this involves group-
ing pixels into superpixels, which are contiguous re-
gions with similar pixel intensities, and then ran-
domly switching off these superpixels by setting their
values to a baseline, such as zero or the median value.
Then, the primary, opaque, model is used to predict
the outcomes for each perturbed sample, and these
predictions, along with the perturbed samples, form
a new dataset. LIME assigns weights to the per-
turbed samples based on their proximity to the origi-
nal input, ensuring that samples more similar to the
original input have a greater influence on the sur-
rogate model. An interpretable surrogate model is
then trained on this new dataset, where the inputs are
the perturbed samples and the outputs are the predic-
tions of the primary model. Examples of commonly
used interpretable surrogate models are Linear Re-
gression, which fits a linear model to the data and pro-
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vides straightforward coefficients indicating the im-
portance of each feature, or Decision Trees, which
create a tree-like model of decisions where the im-
portance of features can be easily visualized and un-
derstood, offering a balance between simplicity and
predictive power. Once trained, the surrogate model
is used to explain the primary model’s prediction for
the original input. As the surrogate model is inher-
ently interpretable, its parameters, such as coefficients
in linear regression or splits in a decision tree, can
be used to understand which parts of the input were
most influential in the prediction. LIME strengths lie
in its model-agnostic nature, making it applicable to
any type of model, and its ability to provide local ex-
planations that are specific to individual predictions.
However, it can be computationally intensive due to
the need for multiple perturbations and it may pro-
duce coarse attribution maps due to the superpixel ap-
proach.

RISE (Randomized Input Sampling for Explana-
tion of Black-box Models) (Petsiuk et al., 2018) gen-
erates saliency maps by randomly masking parts of
the input image and observing the impact on the
model’s predictions. In a nutshell, it creates a large
number of binary masks, where each mask randomly
occludes different parts of the image. These masks are
then applied to the input image to generate perturbed
versions of the image. The model prediction scores
(class probabilities) for each perturbed image are
recorded. The importance of each region in the origi-
nal image is determined by aggregating the prediction
scores and weighting them according to the presence
of each pixel in the binary masks. Essentially, areas
that consistently affect the model’s prediction when
occluded are identified as important. This method
provides robust and comprehensive SMs, but it re-
quires numerous forward passes through the model,
thus being computationally expensive. Furthermore,
the results depend on the predefined parameters used
for generating the masks (Cooper et al., 2022), e.g.,
the number of masks, their size, and the fraction of
pixels occluded in each mask.

Grad-CAM (Gradient-weighted Class Activation
Mapping) (Selvaraju et al., 2016) calculates the gra-
dients of a target class flowing into the final convolu-
tional layer of a CNN to produce a localization map
highlighting important regions. Grad-CAM is specif-
ically designed for CNNs and is computationally effi-
cient. It effectively highlights regions with high-level
semantics and detailed spatial information, although
it tends to produce coarse maps that may lack fine-
grained details (Chattopadhay et al., 2018). Despite
this limitation, Grad-CAM efficiency and ability to
highlight important regions in CNNs make it practi-

cal for real-time interpretability.
Grad-CAM++ builds upon Grad-CAM by provid-

ing localization through a weighted combination of
gradients. While Grad-CAM is simpler and faster,
making it suitable for analysis of images where a sin-
gle class is dominant, Grad-CAM++ offers greater
precision in images involving multiple objects or
classes.

The choice of LIME, RISE, Grad-CAM, and
Grad-CAM++ is based on their complementary
strengths and widespread use in the literature. Specif-
ically, Grad-CAM and Grad-CAM++ are among the
most frequently used methods in the medical field due
to their effectiveness in highlighting relevant features
in CNNs (Borys et al., 2023). Although these meth-
ods are often applied to the feature maps of the last
convolutional layer, they can be configured to focus
on different layers depending on the desired trade-off
between high-level abstract information and detailed
spatial resolution. LIME and RISE, on the other hand,
utilize perturbation techniques that consider the en-
tire model, offering an overall perspective that con-
siders the entire neural network. It is important to
note that LIME and RISE are computationally more
intensive compared to Grad-CAM and Grad-CAM++.
The perturbation-based approach of LIME and RISE
requires generating numerous variations of the input
data and analyzing the model’s responses, which can
result in a delay, making the output available only af-
ter a few seconds. In contrast, Grad-CAM and Grad-
CAM++ are more efficient as they directly utilize the
gradients flowing through the network, allowing the
SMs to be produced almost instantaneously. In our
application, the SMs produced by these four meth-
ods are aggregated into a cumulative explanation view
within our application, combining the immediate, de-
tailed insights from Grad-CAM and Grad-CAM++
with the comprehensive, albeit slower, perspectives
from LIME and RISE.

3 THE PROPOSED XAIMed
APPLICATION

XAIMed, the acronym for “eXplaining AI decisions
on Medical images”, is a desktop application de-
signed to support doctors during the diagnostic pro-
cess of medical examinations based on medical im-
ages. XAIMed enables image classification by lever-
aging CNN models and employs well-established
XAI methods to complement diagnoses with visual
saliency-based explanations. SMs highlight the re-
gions of the image that contributed most to the model
decision. Our application features a user-friendly
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Graphical User Interface (GUI), which allows doc-
tors to easily navigate and utilize its diagnostic sup-
port capabilities. It is worth noticing that XAIMed is
designed in a modular fashion which makes it very
straightforward to include new tasks, new models,
and new explanation methods. In the following, we
first discuss the use cases of XAIMed and then present
the proposed approach for obtaining saliency-based
explanations.

3.1 XAIMed Use Cases

The Use Case diagram of XAIMed is reported in Fig.
1.

XAIMed envisions two types of users: a technical
user, whose use cases are highlighted in yellow, and
a physician user, whose activities are highlighted in
green. The use cases shared by both actors are de-
picted in blue.

The technical user configures the application so
that the physician can exploit its functionalities. For
simplicity, we will refer to a medical imaging diag-
nostic use case as a “task” throughout the rest of the
paper.

Technical users can configure tasks, add task de-
scriptions, delete existing tasks, add DL models along
with their metadata, and delete DL models. As for the
task configuration, a dedicated folder must be created
and named to identify the task: such name will be
used within the application for displaying purposes.
The folder will contain a text file with a description of
the task: contextual and domain-specific information
can be included to help physician users understand
task details. A task can be associated with one or
more DL models, i.e., CNNs. For each model, a dedi-
cated subfolder must be created within the task folder.
Each model directory must contain the files needed
for its deployment, such as the files with the weights
and the specifications of the architecture. The model
directory will also include a brief textual description
of the dataset and the CNN model, detailing relevant
information including the number of images used for
training and testing, their resolution, their distribution
across target classes, and the inference time of the
CNN model. Furthermore, a descriptive image that
helps users understand the model performance can be
included. For instance, such visual aid may consist of
a confusion matrix.

Beside configuring tasks, the technical user can
add new CNN models, along with the related infor-
mation, to existing tasks. The technical user can also
remove tasks and models as needed.

Once the tasks are configured according to these
specifications, the application is readily available for

use by a physician user, who interacts with the system
through the GUI.

Both physician and technical users can browse the
available tasks and explore their descriptions. For
each task, the GUI lists one or more CNN models,
along with their respective textual and visual descrip-
tions.

The physician users can select a CNN model and
the folder containing the medical images they want to
analyze within XAIMed. Notably, the physician can
switch between different tasks, models, image fold-
ers and can also add or remove images within the
specified folder at any time. The images compliant
with a selected model are displayed in a list. The
physician can browse the list of images: when an
image is selected, the diagnosis, i.e., the model out-
put, and the associated confidence values are auto-
matically displayed. For interpretability purpose, we
also discretized the confidence values, i.e. the class
probabilities, through equal-width discretization with
three bins. The probability range [0,1] of each class
is divided into Low [0,0.33], Medium (0.33,0.66], and
High (0.66,1] in order to provide the physician users
also with a coarse-grained information regarding the
confidence level.

Furthermore, for any selected image, the physi-
cian can generate SMs using the XAI methods
described in Section 2, namely GradCAM, Grad-
CAM++, RISE and LIME. The generated maps are
displayed collectively within the same window, pro-
viding an overall perspective of the results. A detailed
view can be accessed for each SM and such explana-
tions can be saved as image files. In the following
subsection, we discuss how detailed saliency-based
explanations are obtained.

3.2 Saliency-Based Explanations

In their detailed view, an input image and the associ-
ated SMs are partitioned into a grid of nine equally
sized square cells. For each cell of the grid and for
each XAI method, the following descriptive statistics
are calculated based on the saliency value attributed
to the pixels within the cell: mean, median, mini-
mum, maximum, and standard deviation. The three
cells with the highest mean value of saliency attribu-
tion for each SM are adequately highlighted to indi-
cate the regions with the greatest overall impact on
the diagnosis provided by the CNN model according
to the associated XAI method.

The proposed application also provides a cumu-
lative visual explanation obtained by aggregating the
four SMs into a single one. The rationale for this op-
eration is depicted in Fig. 2.
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Figure 1: Use Case Diagram. The application has two types of actors, technical users, and physician users, and their use cases
are highlighted in yellow and in green, respectively; use cases common to both actors are highlighted in blue.

Figure 2: Generation of a cumulative SM as an aggregation
of the SMs obtained by the four XAI methods: GradCAM,
GradCAM++, RISE, LIME.

The cumulative explanation map quantifies the
level of agreement between the four explanation
methods by using a very simple and intuitive crite-
rion: each cell of the grid is given a score ranging
from 0 to 4 based on the number of methods that iden-
tified the cell among the most influential for the di-
agnosis. The value of 0 indicates that the cell was
not among the three most influential cells for any of
the methods. Higher scores indicate cells consistently
highlighted across all methods, offering a comprehen-
sive view of significant regions.

It is worth noticing that the granularity of the grid,
as well as the number of cells to be selected for each
SM as the most relevant, can be suitably configured
according to the task: in the illustrative example of
Fig. 2, a rather coarse granularity with nine cells

has been considered with the main objective of ob-
taining a rough and concise aggregated explanation.
In this way, physician users’ attention is catalyzed
towards macro-regions of the images rather than on
fine-grained details.

4 CASE STUDY EXAMPLE

In this section, a practical case study of the XAIMed
application is described. After briefly introducing the
medical task and the relevant dataset, we provide de-
tails about the CNN model adopted. Then, we outline
the configuration setup required to initialize the ap-
plication. Finally, we present a detailed, step-by-step
demonstration of the application usage.

4.1 Dataset and Model Details

We consider a medical image binary classification
task aimed at detecting Invasive Ductal Carcinoma
(IDC). For this purpose, the publicly available Breast
Histopathology Images dataset (Cruz-Roa et al.,
2014) is adopted. The dataset comprises 277,524
color image patches that have been extracted from
162 whole-mount slide images of breast cancer spec-
imens. These specimens have been scanned at a mag-
nification of 40x to facilitate the identification of IDC,
the most prevalent subtype among all breast cancers.
The image patches, each measuring 50× 50 pixels
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and featuring 3 channels (RGB), are categorized into
two groups: 78,786 patches labeled as IDC-positive
and 198,738 patches identified as IDC-negative. Note
that the case study considers a binary classification
task but the application also supports multi-class clas-
sification problems.

To address the IDC classification task, a simple
CNN model is adopted: its architecture is detailed in
Table 1.

Table 1: CNN architecture adopted for the IDC classifica-
tion case study.

Layer Feature Map Size Kernel Size Stride Activation
Name Type

Input Image 1 50x50x3 - - -
1 Convolutional 16 50x50x16 3x3 1 ReLU

BatchNorm 16 50x50x16 - - -
Max Pooling 16 25x25x16 2x2 2 -

4 Convolutional 32 25x25x32 3x3 1 ReLU
BatchNorm 32 25x25x32 - - -

Max Pooling 32 12x12x32 2x2 2 -
7 Fully connected - 256 - - ReLU

Dropout - 256 - - -
9 Fully connected - 1 - - Sigmoid

The adopted CNN comprises two sets of convo-
lutional layers, each succeeded by a batch normal-
ization and a max pooling layer. A fully connected
layer of 256 neurons precedes the output layer com-
posed by a single unit with sigmoid activation func-
tion. Dropout is added after the fully connected hid-
den layer, with dropout rate of 0.5. Adam optimizer
is employed to minimize the binary cross-entropy loss
throughout the training process.

A hold-out validation strategy was considered for
assessing the generalization capability of the model.
The 20% of the dataset was exploited as test set.
The remaining 80% was divided into 80% training
and 20% validation set. Notably, patches from the
same patient were consistently assigned to the same
set throughout the process.

Results for IDC Detection are presented in Table
2, in terms of precision, recall, and f1-score for both
classes.

Table 2: Results for IDC detection on the test set.

Class Precision Recall F1-score Support

NO-IDC 0.90 0.91 0.90 42935
IDC 0.77 0.74 0.75 16216

As expected, the unbalanced dataset makes the
identification of the IDC minority class quite chal-
lenging. However, the results can overall be con-
sidered reasonable. It must be emphasized that this
work does not aim to advance the state-of-art with
respect to specific tasks or neural architectures, but
rather to show how such elements can be integrated
within a user-friendly application to support diagno-

sis by physician users. The sole purpose of the perfor-
mance evaluation is therefore to verify that the result-
ing models are reasonably accurate and thus to ensure
that the explainability analysis is valid and meaning-
ful.

4.2 XAIMed Usage: Step-by-Step
Demonstration

Within the XAIMed application, the configuration
step must be performed as discussed in Section 3. Fig-
ure 3 shows the folder structure for the task consid-
ered in this case study.

Figure 3: Overview of the task folder configured for the HIS
Breast Cancer classification case study.

The top-level folder identifies the task and con-
tains the task description.txt file with a textual
description of the task. Furthermore, it also contains
a dedicated sub-folder for the model adopted in our
case study. The following files are stored therein:
the pytorch model weights file (weights.pt), the
script with the architecture specification for load-
ing the CNN (architecture.py), a textual descrip-
tion (description.txt) and a visual description
(description.png) to provide the user with a com-
prehensive overview of the model specification and
performance. When a task is appropriately config-
ured, it becomes available to users of the application
through a dedicated button in the GUI.

When the application is started users are greeted
with the Home screen depicted in Fig. 4.

The interface provides a navigation bar on the left-
hand side and a brief description of the application.
Furthermore, it includes a “help” feature which offers
a guide to the main functionalities of XAIMed. In the
following we describe in detail the steps for selecting
a task, selecting a model, and analyzing the model
predictions and explanations for a given input image.

First, by navigating to the Task & Model Selection
tab, the user can select a task and and an associated
model. Figure 5 shows the Task & Model Selection
screen.

As depicted in Fig. 5, the screen is divided into
four parts. The top-left part shows the available tasks:
we select the HIS Breast Cancer as the current case
study. The bottom-left part displays the content of the
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Figure 4: XAIMed Home screen. It provides a brief de-
scription of the application and access to a user guide. The
navigation bar on the left-hand side shows the functionali-
ties offered by the application.

Figure 5: The Task & Model Selection tab. It displays the
tasks and associated models available in XAIMed.

task description.txt file. The top-right part al-
lows selecting a trained model among those available
for the task under investigation. The model described
in Section 4.1 is selected: the description of the model
and its performance measured on a dedicated test set
can be found at the bottom-right of the screen. Model
performance is shown by means of an image which in
this case shows the confusion matrix on the test set.
Evidently, if a custom alternative visual representa-
tion of the model performance is required, it will be
sufficient to replace the description.png file with
the desired one.

Once a model is selected, the user can access the
Visualize & Explain Diagnoses tab (Fig. 6).

The user can select the image folder and choose
among the images compliant with the selected model.
In this case study, we employed a set of images ex-
tracted from the test set of the HIS Breast Cancer
dataset. The inference process carried out on a se-
lected image provides information about the predicted
class along with the confidence value and the dis-
cretized confidence level. Most importantly, the SMs
can be generated for any selected image, using the
four XAI methods described in Section 2. Further-

Figure 6: The Visualize & Explain Diagnoses tab. It dis-
plays saliency-based explanations for a selected image.

more, the cumulative saliency-based explanation is
obtained as described in Section 3.2: an integer in
[0,4] indicating the level of agreement among the four
methods is superimposed to each of the nine cells in
which the input image is partitioned. The original im-
age is displayed alongside the SMs to facilitate com-
parison.

The Visualize & Explain Diagnoses tab allows
obtaining additional information about the SMs pro-
vided by the four XAI methods. Figure 7 shows the
detailed view regarding the GradCAM++ method.

Figure 7: Detailed view of one of the saliency-based expla-
nation methods, namely GradCAM++.

Descriptive statistics are reported for each cell of
the grid partitioning and the three ones with the high-
est mean values are suitably marked on the image to
highlight the most important regions for the diagno-
sis, according to the chosen method.

For the sake of an adequate visualization, we re-
port in Fig. 8 the example original image along
with the visual saliency-based explanations provided
within XAIMed.

For each XAI method, the resulting SM is shown
in the top row (8b-8e). The bottom row (8g-8j) shows
the grid partitioning of the original image in which the
three cells with the highest mean saliency value ac-
cording to the respective XAI method are highlighted.
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(a) Original (b) LIME (c) RISE (d) GradCAM (e) GradCAM++ (f) Cumulative

(g) LIME, top
three cells

(h) RISE, top
three cells

(i) GradCAM,
top three cells

(j) GradCAM++,
top three cells

Figure 8: Saliency-based explanations: (a) original image; (b-e) SMs extracted with the four XAI methods; (f) Cumulative
SM obtained by aggregating the four explanations; (g-j) grid partitioning of the original image in which the three cells with
highest mean saliency value according to the respective XAI method are highlighted.

The cumulative SM provides an aggregated view as
the count of how many times cells have been high-
lighted as the most influential for the diagnosis.

In the example, the model classifies the image
as negative with high confidence. We observe how
the various XAI methods give high importance to the
lower region of the image: in the aggregate view, in
fact, all lower cells have a count value of 3 or 4.

Finally, the user can opt for persistently storing the
generated maps.

The user can obviously switch between different
sets of images, different models and different tasks at
any time. This allows for a dynamic and thorough
exploration of the data according to the user’s needs.

5 CONCLUSIONS

In this paper, we introduce XAIMed as a decision
support tool designed for computer-aided diagnosis
based on medical imaging, within the framework of
Explainable AI. The proposed tool provides physi-
cian users with diagnoses from a Convolutional Neu-
ral Network (CNN) model, suitably trained for a given
medical image classification task. Furthermore, four
local post-hoc visual explanation methods are imple-
mented within XAIMed, namely RISE, LIME, Grad-
CAM, GradCAM++. Each of the four state-of-art
methods produces a Saliency Map (SM) enabling
the identification of the most influential regions for
the diagnosis of an input image. A cumulative ag-
gregated SM is computed as the level of agreement
among the four methods in order to catalyze physi-
cian users’ attention towards macro-regions of the im-

ages. XAIMed functionality not only provides diag-
nostic outcomes but also enhances understanding of
the model decision-making process, thereby giving
users additional insights to evaluate the accuracy and
trustworthiness of the model diagnoses. The applica-
tion has been implemented in a modular fashion: in
the future, we aim to exploit its flexibility to include
further visual explanation methods and to refine the
explanation aggregation strategy. Another interesting
development of the present work is the involvement
of domain experts, i.e., physicians, to evaluate the us-
ability and usefulness of XAIMed in clinical practice.
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