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Abstract: The fault diagnosis methods for process systems are generally based on rules and experience, which 
struggle with complex and uncertain issues. Therefore, In this study, a fault diagnosis method for process 
systems using adaptive Graph Neural Networks (GNNs) is proposed. This method effectively utilizes the 
correlations and dynamic changing among sensors, constructing a graph structure that reflects the complex 
relationships between sensors. By employing the graph convolutional neural network as the model 
foundation, it effectively extracts the primary changing features of faults, thereby addressing the problem of 
multi-class fault diagnosis. Comparative experiments were conducted using the fault diagnosis task of a 
three-phase flow system. The proposed method outperforms traditional models in terms of accuracy, 
precision, recall, and F1 score, demonstrating its effectiveness in fault diagnosis of process industrial 
systems. 

1 INTRODUCTION 

Process systems are complex systems that include 
various devices and subsystems. These devices are 
interconnected during operation, and a failure in any 
one device can affect the performance of the entire 
system. Therefore, fault diagnosis of process 
systems is of utmost importance. Traditional fault 
diagnosis methods often only consider the 
performance of individual devices, neglecting the 
correlations between devices, which limits the 
accuracy and efficiency of fault diagnosis. In 
traditional control systems, all analysis and control 
strategy designs are based on the premise that the 
characteristics of the process system remain 
unchanged, and all sensors, actuators, and signal 
transmission channels are functioning normally. A 
fault in any unit of the system can affect the normal 
operation and safe production of the system. Faults 
or failures in any part of the process control system 
can pose threats to property and personnel safety, 
causing immeasurable losses and even potentially 
leading to major accidents (Ma et al., 2019).With the 
development of modern process systems towards 
greater complexity, the likelihood of system failures 
increases, along with the economic losses and 
potential harms caused by system failures, such as 
casualties, property damage, and environmental 

pollution. Therefore, timely understanding of the 
operating state of process systems, effective 
anomaly monitoring, and fault diagnosis to take 
appropriate control strategies in response to 
anomalies or faults are crucial for ensuring the 
quality and safe operation of process systems, 
reducing operating costs, and are of great 
significance for the production efficiency of process 
systems. Real-time monitoring of the operational 
state of process systems, especially for the detection, 
diagnosis, and elimination of faults, is necessary to 
ensure the reliability and safety of actual systems. 
This requires the establishment of a process 
monitoring system to monitor the operational state 
of the entire control system in real-time, detect 
changes in the system, and read fault information 
promptly to take effective preventive measures, 
ensuring the safety of process systems and 
preventing catastrophic accidents. Constructing a 
reliable and stable equipment process supervision 
system has become a priority in mechanical 
equipment manufacturing, effectively reducing 
maintenance costs while ensuring the safety of 
industrial machinery equipment. Currently, most 
industrial equipment detection systems rely on 
multiple sensor data for monitoring, such as aircraft 
engines, rotating machinery rolling bearings, 
multiphase flow separators, etc., while these 
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monitoring systems usually store historical data for 
training. For complex industrial mechanical systems, 
multi-sensor data often have high-dimensional and 
complex interaction characteristics (Jiang and Yin, 
2018), posing many challenges to traditional fault 
diagnosis and health monitoring systems, making 
supervised machine learning methods feasible. 

Traditional fault diagnosis methods often focus 
on Statistical Process Control (Yu and Wang, 2005) 
(SPC) and model-based approaches (Wang and 
Wang, 2006, 2009). Nowadays, fault diagnosis in 
complex industrial systems is categorized into two 
main types: model-based and data-driven methods. 
Due to the complexity and high cost of modeling in 
industrial systems, model-based methods are severely 
limited in practical applications. In contrast, data-
driven methods, aiming to extract relevant data 
features and identify fault types through statistical 
analysis or feature discrimination learning, have been 
widely applied and rapidly developed. Common fault 
diagnosis techniques include Support Vector 
Machines(Mahadevan and Shah, 2009), (SVM), 
Multilayer Perceptrons (MLP), Convolutional Neural 
Networks, and Graph Neural Networks. Gu (Gu et 
al., 2014) employed a method combining Principal 
Component Analysis (PCA) and Support Vector 
Machine (SVM) to extract and analyze the fault 
features of rolling bearings. However, real-world 
data often contain noise and may be excessively large, 
which can affect the effectiveness of this diagnostic 
method. Wang(Wang et al., 2005) and others 
conducted fault diagnosis on mixed circuits using 
Multilayer Perceptrons (MLPs) to solve complex 
classification problems. MLPs address the issue of 
non-linearity between features, but when facing 
process fault diagnosis, the prevalence of clear fault 
data scarcity can lead to overfitting or obtaining local 
optimum solutions. Additionally, there is a lack of 
model interpretability. Convolutional Neural 
Networks (CNNs) have also gradually become 
widely applied. Chen (Chen and Yu, 2020) used 
CNNs for feature learning and fault diagnosis in 
multivariable processes. However, small datasets 
cannot support the training of deep networks, and for 
signals transmitted by mechanical or semiconductor 
components, which are mostly converted into image 
signals for convolutional training, this approach fails 
to capture the correlations between multiple 
components. 

To address these challenges, this article proposes 
a fault diagnosis method for process systems based 
on adaptive Graph Neural Networks (GNNs). 
Recently, GNNs have been widely applied in the 
field of deep learning with significant success. Gori 

(Gori et al., 2005) first introduced GNNs, designed 
to directly process graph structures, including 
directed/undirected graphs, cyclic graphs, and 
labeled graphs. Due to their ability to accurately 
represent real-world systems, GNN-based fault 
diagnosis methods have potential advantages in 
processing complex mechanical industrial data, 
especially in mining the topological structures and 
interactions between sensor data. Wu (Wu et al., 
2020) proposed a scalable graph convolution that 
enables semi-supervised learning with graph-
structured data through the combined action of 
GNNs and Convolutional Neural Networks. 

 The application of fault diagnosis of process 
system to graph neural network has gradually 
become a trend. It handles complex relationships, 
automatically learns fault features and works for 
large industrial systems; and performs end-to-end 
training; handles dynamic graphs and multimodal 
fusion, etc. for instance Li (Li et al., 2020) by 
comparing the disadvantages of other deep learning 
networks to show the relationship between mining 
signals, we propose a multiple receptive field graph 
convolutional network (MRF-GCN) based on the 
original model to effectively carry out data 
relationship mining. Yang(Yang et al., 2021) this 
paper proposes a method based on the space-time 
graph, SuperGraph, which can transform the graph 
classification task into classifying the nodes in 
SuperGraph. Zhang (Yu et al., 2021) A fast graph 
convolution network is proposed, using the method 
of wavelet decomposition to preprocess the original 
vibration signal of wind power gearbox to show the 
time-frequency characteristics in the form of graph, 
using the fast graph convolution kernel and specific 
pooling improvement to reduce the number of nodes 
and realize fast classification. Stewart E (Ding et al., 
2020) The deep graph convolution network (DGCN) 
based on graph theory is applied to the fault 
diagnosis of roller bearings. This method uses the 
graph structure constructed to detect the failure of 
roller bearings of different types and severity of the 
same type. Kenning (Kenning et al., 2022) The 
directed graph convolutional neural network 
(DGCNN) is proposed, and a simple method to 
alleviate the inherent class imbalance in the graph is 
described. Zhang (Tong et al., 2021) This paper 
proposes a transmission line fault detection and 
classification method based on graph convolution 
neural network, and establishes a transient fault 
detection and classification framework based on the 
idea of prior knowledge. It is not difficult to see that 
the fusion of data information is crucial for 
industrial process fault diagnosis (Tang et al., 2021). 
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For the identification and classification of faults, we 
need to extend them to the graph level classification 
level. When constructing the graph level 
classification model, the corresponding graph 
topology for each fault to form graph level 
differentiation. At the same time, in order to retain 
the graph structure characteristics, it is necessary to 
effectively fuse the multi-sensor data information to 
ensure the accuracy and comprehensiveness of fault 
identification. 

This paper aims to elaborate an innovative 
method for process system in mechanical industry. 
This method is based on the graph neural network, 
and its core advantage is that it can deeply mine the 
topology structure and mutual influence information 
in the multi-sensor data, so as to improve the 
detection and diagnosis accuracy of system faults. 
First, this paper transforms the one-dimensional time-
domain sensor data into graph structure data, where 
the nodes represent the measurements of each sensor 
and the edges represent the intercorrelation between 
the sensors. After the adaptive node importance 
screening, a graph neural network model was 
constructed. Through the model, hidden information 
about the fault features and topology in multi-scale 
sensor data. 

2  MODELING 

2.1 Relevance and Centrality Filtering 

Fault diagnosis in process systems is a complex 
issue involving many variables and potential 
problems. It often overlooks the linear or nonlinear 
relationships between devices. Graph Neural 
Networks (GNNs) address this by modeling the 
interactions between devices (variables) in the 
system, thereby offering a better solution. 

There is graph G (V, E), V is a collection of 
nodes and E is used to represent the connection 
between nodes. In statistics, Pearson cross-relations 
(Dominic. Edelmann et al., 2021) (Pearson 
Correlation Coefficient) It can be used to reflect the 
degree of linear correlation between two random 
temporal variables. With this point, this paper tries 
to measure the correlation relationship between 
nodes and construct graph data. The Pearson's 
correlation coefficient is as follows: 𝑟 = ∑ (𝑋௜ − 𝑋ሜ)(𝑌௜ − 𝑌ሜ )௡௜ୀଵට∑ (𝑋௜ − 𝑋ሜ)ଶ௡௜ୀଵ ට∑ (𝑌௜ − 𝑌ሜ )ଶ௡௜ୀଵ  (1)

The larger the value is, the stronger the 
correlation between the two nodes is, which solves 
the linear relationship between the device variables. 

r  The Pearson correlation coefficient is used to 
calculate the linear relationship between nodes, and 
then the threshold Q is set to restrict, thus further 
obtaining a streamlined graph data structure, 
reducing the redundancy of data calculation, and 
enhancing the efficiency of data feature extraction. 𝑟௜௝ = ൜0⋯⋯𝑟 < 𝑄1⋯⋯𝑟 ≥ 𝑄 (2)

When the Pearson correlation coefficient 
between any nodes in the graph structure is greater 
than or equal to the threshold value, it is concluded 
that the two nodes are mutually first-order 
neighbors, and otherwise, the connection 
relationship cannot be constructed. 

For each node feature vector viThe eigenvector 
centrality of node i is obtained, and the eigenvector 
centrality score for all nodes is finally calculated and 
normalized. Through the variant sigmoid function, 
the final node importance vector is multiplied as the 
node weight value by the graph adjacency matrix 
from the initial calculation, to obtain the final graph 
structure matrix, thus forming M fault sample maps. 

Eigenvector centrality involves finding the 
principal eigenvector of the adjacency matrix (i. e., 
the eigenvector associated with the maximum 
eigenvalue). Suppose that λ is the maximum 
eigenvalue of the adjacency matrix A, and x is the 
corresponding eigenvector. Then, x satisfies the 
following characteristic equation: 

xAx λ=  (3)
Each element x in the feature vector xiDenotes 

the eigenvector centrality score of the corresponding 
nodes. Usually, we standardize x: 
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2.2 Dataset of Graph 

The graph dataset consists of n small graphs, denoted 
as G = {G1, G2, G3, G4, …, Gn}, where each graph 
Gi = (Xi, Vi, Ei, Yi). Here,𝑋௜ ∈ (𝑛௜ ×𝑚) denote the 
input feature matrix of the nodes, with ni being the 
number of nodes in the i-th graph (in this paper, aside 
from the normal state graph data and the sixth fault 
graph data which have 24 nodes, all other graph data 
consist of 23 nodes), and m being the number of 
features per node. Vi is the set of nodes, Ei represents 
the connections between nodes (including the 
adjacency matrix𝐴௜௞ ∈ ℜ௡೔ೖ×௡೔ೖ ), and Yi denotes the 
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one-hot encoded value of the i-th graph. In the graph 
convolutional layer, the input matrix for the k-th 
layer is denoted 𝐻௜௞ ∈ ℝ௡೔ೖ×ௗೖ , where (𝑛௜௞,𝑑௞) 
represents the number and dimension of node 
embeddings in the k-th hidden layer, with the 
adjacency matrix being denoted k

iA . accordingly. 
Following each graph convolutional layer is a graph 
average pooling layer, which calculates the feature 
vector for each node to obtain a global 
representation, with the value on each dimension 
being the average of the features of all nodes on that 
dimension. After passing through k-layers of 
convolutional and pooling layers, the output enters a 
fully connected layer and an Activation Function 
ReLU to produce the final output. The scores for 
each category are calculated using a Softmax 
function to obtain the model's predicted labels, which 
are then compared with the true labels. At the same 
time, a loss function (such as the CrossEntropy Loss 
function) is used to measure the performance of this 
graph-level classification model, and gradient 
Backward is performed. This process iteratively 
trains the model for effectiveness and stability. 

2.3 Graph Neural Network Based on 
the Weighted Graph under the 
Correlation 

This section is mainly carried out on the 
improvement of graph data operation, so that the 
graph convolutional neural network model is easier 
to extract the feature structure and make more 
accurate prediction. 

In the face of non-European data, according to the 
graph node information and the data model of the 
original connection correlation calculation to get the 
new graph adjacent matrix, the method, while 
retaining the key connection information of the 
original model missing connection due to noise or 
other reasons, and solve the interference of the 
artificial design figure structure, reduce manpower 
and reduce labor cost. 

Table 1 for the graph convolutional neural 
network model input and output parameter 
dimensions, after the original data calculation 
correlation can get the graph connection under 
different fault mode, and for each sensor data change 
adaptive central screening to realize multiple 
weighted graph data set, improve the accuracy and 
stability of GCN (Graph Convolution Networks) in 
data-driven fault diagnosis. 

Table 1: Input-output dimensions of each layer. 

Layer Name Input Data 
Dimension 

Output Data 
Dimensions 

Convolutional Layer M﹡N﹡F M﹡N﹡F’ 
Pooling Layer M﹡N﹡F’ M﹡N’﹡F’’ 

Full Connect Layer M ﹡N’﹡F’’ M*(categories) 

3 EXPERIMENTS 

This section presents the performance evaluation of 
fault diagnosis in mechanical industrial processes 
based on Graph Convolutional Neural Networks 
(GCN). The model structure of the method proposed 
in this paper is shown in Figure 1. Experiments are 
conducted using a three-phase separator dataset to 
demonstrate the following points: Compared to 
traditional fault diagnosis methods, the graph 
convolutional neural network approach is effective 
and stable in fault diagnosis of process industrial 
systems. 

 
Figure 1: Model structure graph. 

3.1 Introduction to the Dataset 

The data set presented in this paper uses the Three-
phase Flow Facility (TFF) data set of the University 
of Cranfield (Ruiz-Cárcel et al., 2015). The 
simulation encompasses the Three-phase flow 
process commonly encountered in sectors such as the 
oil and gas industry, involving three types of mixed 
inputs/outputs: gas, liquid, and solid particles, as 
illustrated in Figure 2. Within the TFF dataset, it is 
possible to introduce various types of faults into the 
system through specific manipulations, simulating 
issues that might occur in a real plant, such as 
blockages, operational errors, or unconventional 
operating conditions. In experiments, the dataset is 
collected under various operating conditions to 
ensure that fault detection is not limited to steady-
state situations. The datasets can be used to evaluate 
and compare the performance of multivariate process 
monitoring techniques based on real experimental 
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data. The dataset includes normal states under 
steady-state working conditions and 6 types of 
simulated faults (all typical faults in actual 
operation), with each fault data transitioning from a 
normal state to a weak fault, to a severe fault, and 
back to a normal state, sampled at a frequency of 
1Hz. 

 
Figure 2: Architecture of the three-phase flow 
facility(Ruiz-Cárcel et al., 2015). 

In this paper, normal data value in the fault data 
are removed, focusing only on the fault states, and 
normalization is applied to each sensor's data. 
Data normalization involves scaling input data to 
a common range, thereby eliminating the impact 
on model recognition caused by disparate ranges 
of feature parameters. The normalization process 
is represented as follows, constraining the input 
parameter values within the range [0,1]. 

minmax

min

xx
xxxn −

−=  (5) 

During the process of creating sample graphs, 
every 20 data points are used to form a feature 
segment to construct the sample graph. 
Subsequently, the fault dataset and the normal 
dataset are randomly merged, with 70% of the 
combined dataset randomly selected as the 
training dataset and 30% as the test dataset. Table 
2 displays the fault classification and the label 
values for each state. Figure 3 shows graph-level 
representations under different fault conditions, 
sequentially corresponding to the faults listed 
below. (a. Normal state; b. Airway blockage; c. 
Water pipe blockage; d. Top separator inlet 
blockage; e. Bypass valve open; f. Pressure surge; 
g. System operation anomaly (manual)). 

 
Figure 3: Display of each fault level diagram. 

Table 2: Label parameters setting. 

Label Fault Type 
0 Normal operation 
1 Gas pipe blockage 
2 Water pipe blockage 
3 Top separator input is blocked 
4 Bypass valve open 
5 Pressure surge 
6 Abnormal operation (artificial) 

 
Figure 4: Experimental step. 

3.2 Setup 

The experimental procedure is illustrated in 
Figure 4. By utilizing different algorithms such as 
PCA+SVM, MLP, CNN, and GAT (Graph 
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Attention Networks) as benchmarks, the method 
presented in this paper is compared against them, 
evaluating the stability and effectiveness of fault 
diagnosis on the aforementioned dataset through 
various metrics. 

This paper employs three metrics to evaluate 
data-driven classification models: Accuracy 
Estimation (Accuracy), Precision, Recall, and F1-
score. Accuracy is the most common evaluation 
metric for classification problems, representing 
the probability of correct predictions for all test 
samples. Precision and Recall are often used 
together as indicators to assess the performance of 
classification models. Precision refers to the 
accuracy of the classification model in predicting 
positive samples correctly, that is, among the 
samples predicted as positive, how many are truly 
positive samples. Recall refers to the rate at which 
the classification model correctly identifies all 
true positive samples, indicating how many of the 
actual positive samples were correctly recognized. 
When precision is high, the model's analysis 
results are more reliable, but it may miss some 
true positive samples. On the other hand, when 
recall is high, the model can effectively identify 
all true positive samples, but it may mistakenly 
classify some negative samples as positive. The 
F1-score is the harmonic mean of precision and 
recall, incorporating the performance of both 
precision and recall, and is commonly used to 
evaluate the performance of binary classification 
models. The F1-score combines the model's 
precision and recall, providing a single numerical 
indicator to measure the model's overall 
performance. Its value generally ranges from 0 to 
1, with higher values indicating better model 
performance.The F1-score includes three different 
scores: micro-F1, macro-F1, and weighted-F1. 
This paper uses the first two for calculating and 
evaluating the classification models. Micro-F1 
calculates the F1 score by aggregating the global 
true positives (TP), false negatives (FN), and false 
positives (FP). First, the true positives (TP), false 
positives (FP), and false negatives (FN) values for 
all categories are summed up, and then these 
values are inserted into the F1 equation to obtain 
the micro-F1 score. Macro-F1 calculates the 
arithmetic mean of the F1 scores for each 
category. This method treats all fault categories 
equally without considering the importance of 
differences between categories. 

The experiment comprises a total of 3281 
sample sets, with each set consisting of 10 data 
points. The training and test sets account for 70% 
and 30% of the total number of samples, 
respectively, resulting in 2296 sets for the training 
set and 985 sets for the test set. Each experimental 
sample is represented by a matrix of size (10 × 
number of nodes) as the X input feature matrix. In 
this paper, except for the normal state and fault 
state with 6 nodes, which have 24 nodes each, all 
other fault states consist of 23 nodes.In model 
training, mini-batch training is employed with a 
BatchSize of 16, and the maximum training epoch 
is set to 100.The experimental method utilizes a 
cross-entropy loss function and employs the 
Adam optimizer along with model parameters, 
with the learning rate set at 0.0005. In the graph 
neural network model, two convolutional layers, 
one Dropout layer (rate = 0.5), and one fully 
connected layer are adopted, as shown in Table 3: 

Table 3: Experimental model parameter setting. 

Parameters/Settings Value Description Remarks 

Learning Rate 0.0005 
Using the 

Adam 
optimizer 

Search 
through the 

grid 
Batch size 16   

Epoch 100   

Dropout Rate 0.5 
After being 

applied to the 
convolution 

layer 

Reduce 
overfitting 

Hidden Layer Size 64   
GCN Layers 3   

Activation Function ReLU   
Early Stop 
Strategy yes Based on the 

validation loss 
Prevent 

overfitting 

Moreover, the experimental method is 
implemented on the basis of PyTorch Geometric, 
and the experimental platform is a computer 
equipped with an NVIDIA RTX3070 and an Intel 
i7 10th generation CPU. 

4 EXPERIMENTAL 
VALIDATION 

This paper tests the performance of the model by 
inputting a randomly assigned test dataset into the 
model trained from the training set. A qualitative 
analysis of each model's fault identification 
classification performance is conducted visually 
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through confusion matrices, evaluating the 
recognition performance for each fault category. This 
analysis also identifies issues within the model in 
graph classification tasks. To reduce the impact of 
randomness in device computation during the 
experiment, the experiment was repeated multiple 
times. It was found that the results did not vary 
significantly, allowing the selection of one set of 
results for comparative analysis across different 
algorithms. This experimental method can quickly 
improve the model's classification accuracy during 
the computation process, and after multiple 
iterations, there is no significant fluctuation in the 
loss value, indicating the model's rapidity and 
stability. Table 4 assesses the performance of the 
experimental method from multiple perspectives by 
displaying the performance metrics of various 
algorithms. 

It's not difficult to see from the accuracy metric 
that the model proposed in this paper significantly 
outperforms traditional fault diagnosis methods and 
existing popular methods, reaching up to 97% 
accuracy. This is a 9.2%, 9.4%, and 15% 
improvement over GAT, CNN, and MLP 
respectively, and a substantial 44% improvement 
compared to the traditional PCA+SVM method. In 
terms of precision, recall, and F1 score, the increase 
in these metrics further indicates a reduced 
probability of making incorrect predictions. 
Consequently, it can be intuitively judged that the 
model method proposed in this paper has 
improvements of 6%, 7.5%, and 9% over the CNN 
method, 25%, 14%, and 20% over the MLP method, 
and 5.8%, 6%, and 6% over the GAT model, 
respectively. From this comparative experiment, it 
can be concluded that the performance evaluation 
metrics of the proposed method are the highest. This 
also demonstrates that the method proposed in this 
paper is effective and robust when implementing 
dynamic process system fault diagnosis for different 
fault classification tasks. 

Table 4: Classify performance comparison of each model. 

Model Precision 
(%) 

Accuracy 
(%) 

Recall 
(%) 

Micro 
F1 

Macro 
F1 

PCA+SVM 53.23 49.66 53.23 0.51 0.36 
MLP 82.78 71.49 82.77 0.76 0.54 

CNN 88.43 90.52 88.43 0.87 0.71 

GAT 88.67 90.8 90.8 0.90 0.86 
this paper 97.86 96.61 96.17 0.96 0.93 

Figure 5 sequentially displays the confusion 
matrix diagrams for PCA+SVM, MLP, CNN, GAT, 
and the method mentioned in this paper: 

 
(a)PCA+SVM 

 
(b)MLP 

 
(c)CNN 
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(d)GAT 

 
(e)Methods of this paper 

Figure 5: Confusion matrix diagram of each model. 

In the confusion matrix, each column represents 
the predicted labels, and each row represents the true 
labels. The values on the main diagonal of each 
model's confusion matrix represent the percentage of 
samples correctly classified for each label during the 
testing phase, while the off-diagonal elements 
represent cases of misclassification.By comparing the 
main diagonals of the five models, it is more 
intuitively observed that PCA and MLP both exhibit 
cases where the misidentification rate is 100%. In the 
CNN model, the recognition rate for the fault of 
mistakenly opening the bypass valve is relatively 
low, and in the GAT model, the recognition rate for 
system faults under conditions of manual 
misoperation is low. The graph-structured optimized 
GCN model proposed in this paper demonstrates an 
accuracy rate of over 89% for the recognition of 
triphasic flow data compared to other models. This 
further proves the effectiveness and robustness of the 
graph neural network model under graph structure 
optimization for recognizing different fault 
categories. It has stronger generalization capabilities 
for fault recognition rates and can effectively extract 
fault features. 

Furthermore, this paper utilizes the t-Distributed 
Stochastic Neighbor Embedding (t-SNE) method 
(Van Der Maaten and Hinton, 2008) to visualize the 
fault features learned by the model and the 
preprocessed original data in two-dimensional feature 
maps, as shown in Figures 6(a) and 6(b). 

 
(a)Feature of Raw Data 

 
(b)Features after model training 

Figure 6: T-SNE Visualization in 2D. 

It can be observed that the fault features after 
model learning exhibit better clustering performance 
and fault separation, effectively revealing the 
inherent structure and correlations within the data. 

5 CONCLUSIONS 

This paper proposes a fault diagnosis method for 
mechanical process industrial systems using a Graph 
Convolutional Neural Network (GCN) model, which, 
compared to traditional intelligent fault diagnosis 
methods that heavily rely on manual feature 
extraction, introduces a novel approach. The 
proposed method combines multi-dimensional time-
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series data with improved graph data obtained 
through correlation calculations and original graph 
data, inputting them into the network model to 
extract features from different fault samples, thereby 
achieving fault type diagnosis. The experiments 
show a significant improvement in commonly used 
metrics such as Accuracy Estimation (Accuracy), 
Precision, Recall, and F1-score, as well as in the 
intuitive representation of confusion matrices and t-
SNE visualizations, compared to traditional 
intelligent fault diagnosis methods. This 
demonstrates a certain superiority, enabling the 
model to fully capture and utilize the structural 
information in the data, thereby further enhancing the 
model's representational capability and prediction 
accuracy. 

In future work, based on graph data under 
continuous time-series operating conditions, effective 
fault features can be extracted using weighted 
windows to enhance the timeliness of fault diagnosis 
by graph neural network models and to predict fault 
occurrence points in advance. Applying this to actual 
operations can effectively reduce maintenance costs 
and labor requirements. 
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