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Abstract: With the adoption of autonomous driving systems and scenario-based testing, there is a growing need for
efficient methods to understand and retrieve driving scenarios from vast amounts of real-world driving data. As
manual scenario selection is labor-intensive and limited in scalability, this study explores the use of three Large
Vision-Language Models, CLIP, BLIP-2, and BakLLaVA, for scenario retrieval. The ability of the models to
retrieve relevant scenarios based on natural language queries is evaluated using a diverse benchmark dataset
of real-world driving scenarios and a precision metric. Factors such as scene complexity, weather conditions,
and different traffic situations are incorporated into the method through the 6-Layer Model to measure the
effectiveness of the models across different driving contexts. This study contributes to the understanding of
the capabilities and limitations of Large Vision-Language Models in the context of driving scenario retrieval
and provides implications for future research directions.

1 INTRODUCTION

The automotive industry is undergoing a transforma-
tion driven by technological advances, particularly in
the area of autonomous driving systems. As the com-
plexity of vehicle functions rises, the need for man-
ifold sensors and robust validation and testing meth-
ods becomes paramount. Traditional miles-driven ap-
proaches struggle to keep pace with the rapid evolu-
tion of autonomous driving technology and the com-
plexity of real-world scenarios with rising automation
levels. Scenario-based testing (SBT) has emerged as
a promising solution to address the challenges associ-
ated with the validation of autonomous driving sys-
tems. By defining a comprehensive set of scenar-
ios that encompass different driving conditions, en-
vironments, and edge cases, SBT provides a system-
atic approach to evaluate the performance and safety
of autonomous vehicles. However, manually gener-
ating and selecting relevant scenarios can be time-
consuming, resource-intensive, and limited in scala-
bility. In recent years, the emergence of Large Vision-
Language Models (LVLMs) has revolutionised the
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field of artificial intelligence (AI), enabling machines
to understand and generate content across different
modalities, including text and images. LVLMs, have
the ability to understand complex scenes, objects, and
contexts from both textual descriptions and visual in-
put. Harnessing the power of LVLMs for scenario
retrieval (SR) in the automotive industry has the po-
tential to accelerate the validation process and in-
crease test efficiency. By using LVLMs, automotive
engineers and researchers can significantly reduce the
time and effort required for scenario selection and val-
idation. Focusing on the six layers of the 6-Layer
Model (6LM), three popular publicly available pre-
trained LVLMs, Contrastive Language-Image Pre-
training (CLIP), Bootstrapping Language-Image Pre-
training 2 (BLIP-2), and BakLLaVA, are analysed.
Quantitative and qualitative evaluations show the ef-
fectiveness and practicality of LVLMs in facilitating
efficient and comprehensive SBT through SR.
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2 RELATED WORK

In the field of information retrieval in the automo-
tive domain, research has mainly focused on objects,
anomalies and scenarios.

Langner et al. (2019) propose a method for deriva-
tion of logical scenarios through clustering of dy-
namic length segments of driving data represented as
time series. This provides the ability to derive distri-
butions from clusters of concrete scenarios. A map-
ping between a functional description of a driving sce-
nario and real driving data has not been elaborated.

Montanari et al. (2020) cluster recurring patterns
of scenarios based on timeseries data. Clusters of sim-
ilar scenarios and corner cases can be identified. This
does not include the ability to query for these scenar-
ios based on their functional descriptions.

Elspas et al. (2020) introduce a pattern matching
mechanism based on regular expressions in order to
extract driving scenarios from timeseries data. Rules
for each scenario need to be derived in a knowledge
driven process and adequate patterns need to be de-
fined before the data is processed. As this rule-based
method detects cut-ins and lane change maneuvers,
it is possible to interpret extracted patterns with func-
tional descriptions and encode them in retrievable rep-
resentations.

In another contribution Elspas et al. (2021) have
used fully Convolutional Neural Networks (CNNs)
for time series in order to extract scenarios. As their
approach requires labeled datasets with ground truth
annotations for supervised learning, the applicability
may be questioned and the domain may be limited re-
garding the complexity of annotating all relevant as-
pects in a representative training dataset.

Ries et al. (2021) propose a trajectory-based
clustering method based on Dynamic Time Warping
(DTW) for the identification of similar driving sce-
narios. This provides the ability to query similar tra-
jectories of dynamic objects, but does not take into
account all aspects of driving scenarios and abstrac-
tion layers.

To date, most of the methods for information re-
trieval include object retrieval methods, such as the
works of Girshick et al. (2014); Girshick (2015);
Kang et al. (2017); Hu et al. (2016). In the context
of object retrieval, the work of Rigoll et al. (2023)
needs to be specifically addressed, as it proposes a
method using CLIP for object retrieval from automo-
tive image datasets, combining the object labels into
prompts. While it addresses object retrieval in the
automotive domain for the purpose of querying ob-
jects for machine learning datasets, it does not ad-
dress driving SR. To address more safety-critical driv-

ing scenarios, object retrieval can be extended by
anomaly detection methods such as those provided by
Unar et al. (2023); Rai et al. (2023).

The first to focus on the retrieval of overall driving
scenarios is Wei et al. (2024). In this work, the authors
propose a multi-modal birds-eye-view (BEV) retrieval
method using BEV-CLIP, which provides a global
feature perspective for holistic driving SR based on
the overall context and layout. However, the method
does not apply to a general 6LM-oriented framework,
but to the occurrence and location of objects from
BEV in complex scenes.

So far, no work has specifically addressed SR
through functional scenario descriptions based on the
structure of the 6LM, hence the ability to query and
ground all aspects of driving scenarios with natural
language.

3 THEORETICAL FRAMEWORK

3.1 Real Driving Data

Modern vehicles are equipped with manifold types of
sensors in order to accurately perceive the environ-
ment. Additionally, software services provide value
to the driver. Vehicle data can thus be recorded from
different sources and in different modalities.

• Raw sensor data such as RADAR and LiDAR pro-
vide distance and velocity information through
point clouds. Furthermore, camera sensors pro-
vide images and depth information from different
perspectives of the ego-vehicle.

• Bus data includes all data transmitted over the ve-
hicle’s bus systems. It contains data from the en-
tire functional chain, such as raw sensor data, as
well as fused objects and high-level information.

• System log data is recorded directly from the dif-
ferent subsystems and digital in-vehicle services.

In scenario databases, retrieved data can be en-
riched with multiple external data sources such as
map data or knowledge (Petersen et al., 2022). As
LVLMs are mostly provided as pre-trained models for
images and texts, the concept described in this work
leverages camera data to extract the features for SR.

3.2 Scenario-Based Testing

The rising complexity of automotive systems makes it
necessary to break down the real world into a subset
of representative scenarios. SBT reduces the amount
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of validation and verification (V&V) while maintain-
ing sufficient test coverage to achieve regulatory com-
pliance. Scenarios are seen as the ”[...] temporal de-
velopment between several scenes in a sequence of
scenes”, where a scene is a snapshot of the environ-
ment, including scenery, dynamic elements, and all
self-representations of actors and observers as well as
their relationships to each other (Ulbrich et al., 2015).

3.2.1 6-Layer Model

The work of Scholtes et al. (2021) provides context
to these scenarios in the 6LM. The framework pro-
vides a structured description of driving scenarios, di-
viding them into six layers. The first layer describes
the road network and its regulations, including road
markings and traffic signs. To further detail its at-
tributes for analysis purposes, the attribute-layers 11,
12, and 13 are created. Layer 11 contains only the
road itself, while 12 contains the road markings and
13 the existing road signs. Layer 2 includes roadside
structures, while layer 3 covers temporary modifica-
tions to layers 1 and 2, such as construction signs.
Dynamic objects such as vehicles and pedestrians are
introduced in layer 4 with a time-dependent descrip-
tion. Layer 5 is divided into attribute layers 51 and
52, which contain daytime and weather. Environmen-
tal conditions and digital information for communi-
cation are included in layer 6. In addition, to evaluate
distinct queries, all six layers are further detailed in
three levels, which can be seen in Table 1.

3.3 Scenario Descriptions

Menzel et al. (2018) introduce a terminology that out-
lines abstraction layers for driving scenarios, showing
that scenarios take on different levels of abstraction
at different stages of automotive system development
along the V-model (Dröschel and Wiemers, 1999), as
seen in Figure 1.

3.3.1 Functional Scenario

Functional scenarios are described in natural lan-
guage during the concept and design phase of the de-
velopment process, to be definable and understand-
able by human experts. They can contain different
levels of detail and structures.

3.3.2 Abstract Scenario

Abstract scenarios provide a machine-interpretable
format for execution using virtual validation tech-
niques such as X-in-the-Loop (XiL). They are de-
scribed using modeling languages or Scenario De-

scription Languages (SDLs) (Bock and Lorenz,
2022).

3.3.3 Logical Scenario

Logical scenarios are described by parameter ranges
and distributions rather than physical events. Virtual
testing methods aim to sample from these distribu-
tions to generate concrete scenarios and evaluate them
in test cases.

3.3.4 Concrete Scenario

Real driving data, consisting of sensor-, bus-, and sys-
tem log data, represents concrete scenarios as it pro-
vides concrete physical values at specific points in
time.

3.3.5 Test Case

Scenarios being mapped to metrics and acceptance
criteria are called test cases. They can be functional,
logical, or concrete scenarios. Hereby, validation
metrics can be related to safety, comfort, and usabil-
ity.

3.3.6 Relationship of Different Scenario
Abstractions

In order to obtain logical scenarios, it is necessary to
cluster concrete scenarios based on their specific at-
tributes. The mapping of concrete and logical scenar-
ios to functional scenarios makes them interpretable
for human experts. This also applies to abstract sce-
narios in terms of machine interpretability. Test cases
make them measurable. Drawing relationships be-
tween different abstraction layers is therefore a re-
quirement for an effective SR method. (Figure 1).

functional
scenarios

operationsdesign V&V

implementation

logical scenarios

parameter space
x [-1.5 ; 3]

t [72 ; 189]
y [0.25 ; 12.6]

concrete scenarios

real-world drive

SR system
(LVLMs)

semantic
information

query
(e.g. highway at daytime)

output

described in natural language

Figure 1: Concept of SR to map concrete scenarios to func-
tional scenarios.
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Table 1: Attribute Layers of the 6LM with: Road (11), Road Markings (12), Road Signs (13), Roadside Structures (2),
Temporal Modifications (3), Objects (4), Daytime (51), Weather (52) and Communication (6), with up to three levels of detail.

Level of Detail
1 2 3

L
ay

er
s

(6
L

M
)

6 Source (e.g. Traffic Light) Information (e.g. Color Red) -
52 Weather Condition (e.g. Rain) Intensity (e.g. Strong) -
51 Illumination (e.g. Night) Intensity (e.g. Dusk) -
4 Type (e.g. Pedestrian) Behaviour (e.g. Moving) Maneuvers (e.g. Cut-in)
3 Type (e.g Construction) Location (e.g. On-Road) -
2 Environment (e.g. Urban) Scenery (e.g. Bridge) Specification (e.g. Residential)
13 Type (e.g. Street Sign) Specification (e.g. Velocity) Sign Value (e.g. 100km/h)
12 Type (e.g. Lane) Specification (e.g. Dashed) Lane Count (e.g. 3)
11 Category (e.g. Highway) Road Character (e.g. Curvy) Road Size (e.g. Large)

3.4 Scenario Retrieval

The urgency of safety assessment based on realistic
driving scenarios, coupled with the open-world prob-
lem of automated driving, requires the collection of
large amounts of driving data due to the multitude of
use cases that need to be covered within operational
design domains (ODDs) for higher levels of automa-
tion. Pütz et al. (2017) outlined a concept and moti-
vation for a scenario database containing real-world
driving scenarios for V&V. However, while this data
is highly representative, it often lacks structure and re-
quires additional annotation to be effectively queried
for scenarios. These queries may involve defining pa-
rameter ranges, identifying patterns and trajectories,
or applying similarity metrics. The challenge is to
draw relationships between different scenario abstrac-
tion layers such as functional scenarios and real-world
driving data. Traditional SR methods are inadequate
to capture the complexity and variability of real-world
scenarios. Using LVLMs for SR addresses these chal-
lenges by structuring and interpreting driving data to
provide interpretable results for engineers.

3.5 Large Vision-Language Models for
Information Retrieval

The ability to embed data in foundation models that
have been pre-trained on large amounts of data with
different modalities, such as speech, images, time se-
ries, or graphs, has gained significant interest in re-
search, industry, and society. For application to spe-
cific tasks and data, there are two predominant ap-
proaches: fine-tuning and in-context learning. Fine-
tuning involves updating the model weights to a spe-
cific target dataset and metric, which requires re-
training the model. Due to the size of the parame-
ters of such models, this process can require signif-
icant computational resources and time. In-context

learning, on the other hand, does not require updating
the weights. Instead, the goal is to provide the model
with context for the specific task or dataset through
targeted prompts. With these prompts, the model can
generate more domain-specific responses. This can be
done by manually exploring and designing prompts
for the specific tasks, or by training additional models
to generate prompts that achieve the best performance
on the targeted task, called soft prompting (Lester
et al., 2021). This method has shown superior perfor-
mance to fine-tuning in resource-constrained down-
stream tasks (Devlin et al., 2019). To retrieve infor-
mation, LVLMs perform an encoding process of both
images and texts into a numerical representation that
captures their semantic and visual features. After en-
coding both textual and visual inputs into feature rep-
resentations, LVLMs employ algorithms to match and
retrieve relevant information. These algorithms anal-
yse the similarity between the encoded features of the
query and the features of the database items. The re-
trieved information is then ranked based on the sim-
ilarity scores, with the most relevant items presented
to the user. Regardless of their potential, LVLMs are
exposed to several challenges such as bias in data and
fairness as well as the difficulty to distinguish right
answers by the model and wrong but well formulated
answers, also denoted as hallucination (Zhou et al.,
2023).

4 METHOD

The method presented in this comparative study aims
to provide a systematic approach to SR facilitated by
functional scenario descriptions that effectively serve
as natural language queries (Figure 1). Central to
this method is the process of projecting images into
the embedding space of a pre-existing LVLM. This
operation involves encoding the images into vector
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representations within the model’s embedding space.
These vector representations are then stored and in-
dexed in a vector database to allow efficient retrieval
based on similarity metrics. To generate embeddings
the LVLM is prompted with natural language queries.
By leveraging the contextual understanding intrinsic
in LVLMs, these embeddings encapsulate semantic
information relevant to the queried scenarios. In addi-
tion, the retrieval process includes scoring the similar-
ity between the query embeddings and those stored in
a vector database. This similarity scoring mechanism
facilitates the retrieval of the most relevant scenarios
based on their proximity to the query in the embed-
ding space. The retrieved scenarios are then returned
as the output of the retrieval process.

4.1 Dataset

Some datasets, such as Berkeley Deep Drive Explana-
tion (BDD-X) (Kim et al., 2018), contain a mapping
of driving scenes to language descriptions. However,
they do not encode structured information in the sense
of the 6LM. Since no ground truth data is provided, a
retrieval-precision-based evaluation approach is per-
formed, which evaluates the relevance of the retrieved
image with respect to the query. Therefore, the se-
lection criterion of the dataset is that the driving
scenes visually encode as much scenario-related in-
formation as possible. For evaluation purposes, the
Berkeley Deep Drive 100K (BDD100K) dataset (Yu
et al., 2020) is used. It contains 100,000 images of
1000 driving scenes in different contexts, seasons,
daytime and weather conditions, taken from the ego-
perspective of vehicle windshields. The variety of im-
ages related to all aspects of the 6LM including scenes
on highways, rural roads, residential and urban areas,
as well as various environmental conditions such as
day, night, dusk, or dawn, makes it suitable for the
evaluation of the presented method.

5 MODELS

To analyse the method proposed in this paper, the SR
capabilities of three LVLMs, CLIP, BLIP-2, and Bak-
LLaVA, are evaluated comparatively.

5.1 CLIP

CLIP is a multi-modal LVLM model capable of un-
derstanding images in the context of natural language
(Radford et al., 2021). To be retrievable, all images
are processed by the image encoder and projected
into an embedding vector which is stored and indexed

query

all images

text encoder

image encoder

embedding of
images

vector
database

output
top k

embedding of
texts

Figure 2: SR with CLIP.

query

all images image
encoder

Q-Former vector
database

output
top k

LLM

Figure 3: SR with BLIP-2.

within a vector database (Figure 2). Queries are then
projected by the text encoder into the same embed-
ding space in order to retrieve ranked results based on
the cosine similarity for cross-modal understanding.
As a result of using natural language queries, CLIP
can search a large dataset of images and identify those
that are relevant to the query, making it potentially
suitable for SR.

5.2 BLIP-2

BLIP-2 is a generic and compute-efficient method
for vision-language pre-training that leverages frozen
pre-trained image encoders and Large Language
Models (LLMs) (Li et al., 2023). Through the Query-
ing Transformer (Q-Former), BLIP-2 is able to har-
vest the capabilities of already trained powerful vi-
sion and language models without having to update
their weights when applied to downstream tasks such
as visual question answering and image-text genera-
tion. Q-Former bridges the gap between two modal-
ities and aligns their representation with improved
performance, therefore showing potential for multi-
modal tasks such as SR (Figure 3).

5.3 BakLLaVA

BakLLaVA is based on the Large Language and Vi-
sion Assistant (LLaVA) model (Liu et al., 2023).
LLaVA itself combines the Large Language Model
Meta AI (LLaMA) model of Touvron et al. (2023)
and a visual model using visual attributes. This ar-
chitecture is extended by BakLLaVA using the Mis-
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BakLLaVA

all images

text
vector

output
top k

vector
database

queryprompt*

*based on Table 1

Figure 4: SR with BakLLaVA.

tral 7B LLM (Mistral AI, 2023), which improves the
fusion of language and vision and refines the model’s
ability to understand and generate both text and im-
ages. It further enhances the capabilities of LLaVA
by incorporating techniques for representation learn-
ing, attention mechanisms, and multi-modal fusion,
resulting in a potentially suitable model for a more
detailed SR. All images are processed by BakLLaVA
with a prompt, instructing the model to caption the
images based on the information described in Table
1. The captions are stored in a vector database with
the index of the respective images to be queried for
SR (Figure 4).

6 EVALUATION

To analyse the ability of SR, the LVLMs are evaluated
considering each layer of the 6LM with its different
levels of detail, as shown in Table 1. Consequently,
the models are prompted using different queries cor-
responding to all attribute layers and their correspond-
ing levels. A total of 189 queries is assigned to each
model. Specifically, 60 queries are executed in layer
1, 24 in layer 2, 12 in layer 3, 36 in layer 4, 48 in layer
5, and 9 in layer 6. The imbalance in query distribu-
tions is due to the different attributes and granularities
of each 6LM layer. The goal is to determine the ef-
fectiveness of the models in handling these queries,
thereby revealing their capabilities of SR. Since la-
beled datasets of real driving scenarios are missing
for SR, a manual analysis of the retrieved samples
has to be performed. The precision at k (prec@k)
metric provides a simple and clear interpretation of
the results by focusing on the top recommendations
of the model. For evaluation, the number of relevant
items among the top k instances, denoted as nk, de-
termines the precision at a given value of k (k ≥ 1).
Since prec@k ranges from 0 to 1, it allows the model
to reach up to 100% precision, especially for low val-
ues of k.

prec@k =
nk

k
(1)

For evaluation purposes, k is chosen to be k =
{1;5;10}. Furthermore, the average of all precision

11 12 13 2 3 4 51 52 6
0
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n

CLIP
BLIP-2

BakLLaVA

Figure 5: Average precision for CLIP, BLIP-2, and Bak-
LLaVA on all layers, including attribute layers, of the 6LM.

values over all calculated prec@ks is used for simpli-
fication. This comprehensive evaluation framework
aims to provide insight into the performance of the
LVLMs, elucidate their capabilities across different
layers and levels of detail, and provide a holistic un-
derstanding of their SR ability.

6.1 Results and Discussion

The evaluation of CLIP, BLIP-2, and BakLLaVA,
shown in Figure 5, reveals differences in average pre-
cision across different layers of a scenario. Bak-
LLaVA shows consistently higher average precision
across all layers, achieving 92.74% compared to
78.78% achieved by BLIP-2 and 62.86% achieved by
CLIP. The analysis identifies layer 51 as the best per-
forming layer for all models with an average precision
of 100%. Conversely, layer 3 has the lowest precision
for CLIP and BLIP-2 with 35.83% and 42.50%, re-
spectively, while layer 11 has the lowest precision for
BakLLaVA with 79.44%. A spread in precision can
be observed for all three models. CLIP and BLIP-2
have wider ranges of 64.17% and 57.50%, while Bak-
LLaVA has a narrower range of 20.56%. All models
show a slight trend indicating that precision tends to
increase with higher layers. However, they differ in
the increase or decrease trend of precision between
certain layer transitions, especially from layer 11 to
12 and from layer 3 to 4. For all other layer transi-
tions, the increase or decrease trend in precision is the
same for the three models. Further examination of the
attribute layers for layers 1 and 5 provides additional
insight. For CLIP, there is no noticeable trend across
the attribute layers of layer 1. In contrast, BLIP-2 and
BakLLaVA show better identification of scenarios for
the road signs in layer 13 compared to road markings
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Figure 6: Heatmaps showing average precision of the LVLMs with different levels of detail of the 6LM as in Table 1. NaN
values indicate intentional omissions of experiments.

(12) and the road itself (11). Additionally, in layer
5, more detailed scenario queries for heavy and light
weather conditions in attribute layer 52 lead to a de-
crease in precision.

To further evaluate the levels of detail, the
heatmaps in Figure 6 show that CLIP achieves an

average precision of 86.14% for level 1, 59.39% for
level 2, and 21.67% for level 3 across all layers. Fur-
ther, BLIP-2 achieves 91.27% for level 1, 75.43% for
level 2, and 61.33% for level 3. In contrast, Bak-
LLaVA achieves higher average precision across all
levels, with 98.89% for level 1, 91.62% for level 2,
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Table 2: Exemplary challenging queries and the corresponding answers of the BakLLaVA model.

Scenario Query Answer (BakLLaVA)

What types of
vehicles are visible

in the scene?

In the scene, there are several types of vehicles present:
A large white bus with blue stripes, which appears to be
a public transit bus. Two green taxi cabs. A red car. A
black SUV. A white car. A motorcycle. A truck. The

vehicles are on a city street, and there are also
pedestrians visible on the sidewalks.

Where is the dark
red car located?

The dark red car is in the left lane of the highway,
moving in the same direction as the other traffic.

In which directions
are the different cars

driving?

In the image, there are cars in the opposite direction of
the camera’s perspective. The most prominent vehicle is
a yellow taxi cab, which is driving on the right side of

the road. Behind the taxi, there are other vehicles,
including a white van and a black SUV. The road

appears to be a one-way street, and the vehicles are
moving in the same direction as the taxi.

Is a car turning to a
specific direction in

this scene?

The car in the image that appears to be turning to the
right. It’s a black car, and you can see the front end of it
as it’s making the turn. The car is positioned in the right

lane, which is typically used for right turns, and it’s
angled towards the right side of the image, indicating

that it’s in the process of turning.

and 81.50% for level 3. Present NaN values indicate
an intentional omission of an experiment for this par-
ticular level of detail, as no appropriate queries could
be formulated. Dark coloring in the heatmap corre-
sponds to high precision, with CLIP showing scat-
tered coloring and achieving dark colors primarily at
level 1. As the level of detail increases, the coloring
becomes lighter, indicating lower precision. BLIP-2
still shows a scattered coloring with slightly darker
patches compared to CLIP. Conversely, BakLLaVA’s
heatmap is dominated by dark colors at all levels, with
only a few spots showing lighter coloring. All three
models exhibit comparably low precision in layer 11
with detail level 3, especially when the model queried
to distinguish between large and small intersections.
In addition, layer 13 with detail level 3 shows a sig-
nificant disparity in precision, with CLIP failing to
detect speed signs with specified speed values, while
BLIP-2 and BakLLaVA perform effectively in this re-
gard. Layer 4 with detail level 3 poses a challenge
for the models as they are queried to retrieve maneu-
vers such as following, braking, turning, and cut-ins.
However, BakLLaVA shows a 62% and 50% higher
precision in this task compared to CLIP and BLIP-2.

To further investigate BakLLaVA’s ability to ad-
dress specific aspects and levels of detail, as it is the

best performing LVLM in this evaluation, a qualita-
tive analysis was performed using an image dialogue.
Table 2 shows four exemplary dialogues out of a set of
25 questions that were asked to further investigate the
possible level of detail of additional aspects. Red col-
ored answers represent wrong answers of the model
to the given query. The results show that BakLLaVA
is able to answer the query adequately even for fine-
grained scene descriptions such as color, number and
location of certain objects. Boundaries were espe-
cially investigated in the description of motion direc-
tions, including car directions, turning directions, and
lane directions. In these cases, model hallucination
was observed, in which the model not only provided
incorrect movement directions, but also began to de-
scribe the scene incorrectly.

The evaluation results show the general ability of
LVLMs to query camera data of real driving data for
driving scenario related information. Up until the 10
best recommendations by the model (k = 10), CLIP,
BLIP-2 and BakLLaVA are able to achieve high aver-
age precision scores. With higher degrees of detail in
the query, the performance of both, CLIP and BLIP-
2, degrades, while BakLLaVA is still able to encode
many contexts in further detail degrees, such as de-
scribing the exact speed limit value on a speed sign.
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Further investigations through a visual dialogue show,
that BakLLaVA can provide even more detailed infor-
mation about object attributes and locations. On the
other hand, all of the evaluated models struggle with
information encoded in temporal sequences of images
such as detailed maneuvers or object movement direc-
tions embedded in layer 4. This might also be related
to the static nature of the inputs, as not videos but sin-
gle input images were fed into the models.

7 CONCLUSION

The elaborated method outlines the potential of us-
ing pre-trained LVLMs for semantic enrichment and
retrieval of real driving data with natural language
queries in the form of functional scenario descrip-
tions. Specifically, BakLLaVA, consisting of an im-
age encoder and Mistral 7B as the LLM backbone,
achieves accurate query results even for detailed spec-
ifications such as the location and color of objects en-
coded in the images.

Future work should focus on several key areas.
One key is to create a dataset tailored for SR with
LVLMs that includes multi-modal driving data such
as time series or point clouds additional to images.
Incorporating external data sources such as map- and
weather data can provide additional semantic struc-
ture to produce meaningful joint embeddings. The
ability of LVLMs to incorporate other SR tasks, such
as querying abstract scenario descriptions from con-
crete, logical, and functional scenarios, offers poten-
tial for more efficient and effective SBT. Metrics like
recall at k (recall@k) should be evaluated in addition
to prec@k to ensure the relevance of the retrieved sce-
narios. Furthermore, future research should investi-
gate prompt engineering techniques, incorporate tax-
onomies for different use cases, and explore the tem-
poral domain using video language models. The im-
pact of fine-tuning compared to in-context learning,
and the associated trade-off in computational cost for
the SR task, may have important implications for fu-
ture research directions. User studies with domain
experts querying scenarios can be conducted to ex-
plore the feasibility of the concept and the ability of
the models to cope with domain-specific language.
Analysing combined queries that jointly integrate dif-
ferent scenario layers can provide a more comprehen-
sive understanding of the SR capability. Besides re-
trieval performance, additional metrics such as com-
putational efficiency, storage requirements, and re-
trieval time should be considered. These efforts will
advance SR methods in the automotive domain for
V&V tasks.
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