Races in Extended Input/Ouput Automata, Their Compositions and Related Reactive Systems

Evgenii Vinarskii¹, Natalia Kushik¹, Nina Yevtushenko², Jorge López³ and Djamal Zeghlache¹

¹SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France
²Ivanikov Institute for System Programming, Russian Academy of Sciences, Moscow, Russia
³Airbus, Issy-Les-Moulineaux, France

Keywords: Distributed Reactive Systems, Races, Extended Input/Output Automata, Software Defined Networking.

Abstract: Reactive systems can be highly distributed and races in channels can have a direct impact on their functioning. In order to detect such races, model-based testing is used and in this paper, we define races in the Extended Input Output Automata (EIOA) which are related to races in a corresponding distributed system. We define various race conditions in an EIOA modeling them by Linear Temporal Logic (LTL) formulas. As race conditions can be resolved in the corresponding EIOA implementations, we also discuss how a generated counterexample (if any) can be used for provoking a race in a distributed system implementation with the given level of confidence. Software Defined Networking (SDN) framework serves as a relevant case study along the paper.

1 INTRODUCTION

Distributed reactive systems are actively developing nowadays and are becoming more and more adopted in industrial environments and various application areas, such as for example, mobile networking (Silva et al., 2021). These systems are composed of various interacting components and thus, a particular attention should be paid to the interoperability of these components. Even if two components have been carefully verified up to some extent, it is still possible that their composition can contain inconsistencies. It is also possible that two or more wrongly configured/developed components implement the entire system in a reliable way (bugs can mask one another, for example). In this work, we focus on the interactions between two (or more) components of a reactive system. In particular, considering a reactive system shown in Fig. 1, we are interested in the interactions between components C and S of the reactive system and between C and its external applications where S is an embedded component.

The main goal of the paper is the analysis and detection of races in distributed reactive systems. Such races can take place in the channels between the interacting system components, or even in a given component between some of its inputs and outputs, at a designated state. Finally, several actions produced/accepted by the environment, can also compete when sending/getting requests to/from the reactive system.

One of the widely spread approaches for detecting concurrency issues in distributed systems is to establish the causality relationship between requests as seen in PCatch (Li et al., 2023), or to construct a happens-before (HB) graph, as proposed by (Liu et al., 2017) in DCatch. A request e2 causally depends on another request e1, denoted as e1 → e2, if the execution of e2 is directly influenced by the appearance of e1. Li et al. (Li et al., 2022) have extended the application of the HB model to SDNs, implementing the detection of race conditions in SPIDER. (Vinarskii et al., 2019) and (Vinarskii et al., 2023) have explored a complementary domain, focusing on model checking and model-based testing techniques for proactive SDN race detection, and provided a study on concurrency issues within an SDN.

Figure 1: Reactive system with embedded EIOAs.
implementation. Scheduling approach for races detection has been studied in (Veeraraghavan et al., 2011). However, these approaches do not guarantee that races identified in the specification will also appear in the implementation at hand. Moreover, to the best of our knowledge, there remains a lack of studies on developing a probabilistic model to predict race occurrences in distributed reactive systems with the given confidence level. Such a model would bridge the gap between concurrency issues in specifications and those that actually occur in implementations.

To address these challenges, we employ EIOAs to model the behavior of the system components and afterwards, their composition. We introduce the definitions of various types of races and use specific LTL formulas (Baier and Katoen, 2008) to describe the race-free system behavior. Various model checkers such as Spin (Holzmann, 2003), Uppaal (Behrmann et al., 2004), etc. can be utilized for verifying the formulas against the EIOA composition, for which counterexamples that violate LTL formulas present potential races. However, identifying potential races through model checking is only the first step. We emphasize the importance of the second step of studying the conditions for provoking races in an implementation at hand. The third step is to check whether the above first steps are helpful when testing races in real reactive systems. Our work aims to reduce the gap between such specification analysis and observable system behavior, providing a more accurate study of race conditions in reactive systems.

The main contributions of this work are: i) definitions of input/output, input/input and output/output races for EIOAs and their composition, ii) study of the correlation between races in an EIOA and in a corresponding distributed reactive system when the probability message delay distribution in channels is known, and iii) experimental evaluation of the correlation between races in an SDN framework.

The structure of the paper is as follows. Section 2 presents the necessary background. Section 3 is devoted to the description of our SDN case study. Section 4 introduces the notions of input/output, input/input and output/output races in EIOAs and presents their modeling via LTL formulas. Section 5 contains a study of the probability to detect races for an SDN framework, together with some experimental results, while Section 6 concludes the paper.

2 BACKGROUND

In this paper, we consider races in Extended Finite Input/Output Automata, EIOAs, for short. The definition given below, is taken from (Vinarskii et al., 2019). An EIOA A is a tuple (S, I, O, V, T, s_0), where S is a finite nonempty set of states with the designated initial state s_0; I and O are finite input and output alphabets, $I \cap O = \emptyset$; V is a finite, possibly empty set of context variables with set D_V of vectors of context variables’ values if $V \neq \emptyset$; T is a set of transitions. Inputs and outputs can be parameterized, i.e., inputs and outputs of the EIOA are pairs (input, vector of input parameters’ values) or (output, vector of output parameters’ values) and $D_I(D_O)$ is the set of vectors of input (output) parameters’ values if the set of parameters is not empty. A transition is a 6-tuple (s, a, P, v_p, v_o, s') where $s, s' \in S$ are initial and final states of the transition; $a \in I \cup O$; $P : D_V \times D_I \rightarrow \{\text{True}, \text{False}\}$ is the transition predicate; $v_p : D_V \times D_I \rightarrow D_V$ is the context update transition function; $v_o : D_V \times D_I \rightarrow D_O$ is the output update function. Transition (s, a, P, v_p, v_o, s') is executed only when transition predicate P evaluates to true and the vectors of context variables’ values and output parameters’ values are updated according to functions v_p and v_o after the transition execution. A trace $tr = a_1 a_2 \ldots a_n$ of EIOA A is a sequence of actions generated by the sequence of transitions of A. The set of traces generated by A is denoted as $\text{Traces}(A)$.

Given a trace tr over an alphabet $I \cup O$, subtrace $tr_{1..t}$ ($tr_{I\cup O}$) of trace tr where only letters from $I \cup O$ are retained is referred to as I-projection (O-projection) of tr. We note that, the EIOA model can be more complicated, for example, the set of states can have a defined subset of the final states or non-observable actions can be considered, etc. Nevertheless, these cases are not taken into account in this paper and we further demonstrate that such simplification is useful when checking with respect to the race related properties.

As usual, we assume that when dealing with an EIOA, no input is accepted and no output is produced when a transition is executed. However, when both an input and an output are defined at a state, they can ‘compete’ between themselves, i.e., what the machine does first - accepts the input or produces the output is nondeterministically decided. We hereafter refer to such ‘competition’ as an input/output (or output/input) race (a race between input and output actions). Likewise, at a given state of an EIOA two (or more) inputs can be defined, these inputs can also compete to be accepted. In this case, we talk about an input/input race. Similarly, if two (or more) outputs can be produced at the same state, then an output/output race can take place.

As we mention in Section 1, usually, a reactive system is organized as a collection of interacting components. The composition operator is well defined for
classical FSMs and automata, while there is no general definition of the parallel dialogue-based composition operator for EIOAs. In this paper, we study a special case of the binary composition operator when one of the components is an embedded component and has no context variables; moreover, there are no infinite external output sequences (oscillations) in the composition. We also assume some limitations on the context variables in another component: the set of context vectors is finite. In this case, the composition can be derived based on a truncated successor tree. The nodes of the tree are pairs of states of the components, along with context vectors, while edges are labeled with external and internal input and output actions. The root of the tree is labeled by the pair of initial states of the components and the initial context vector. We then ‘hide’ internal actions calculating parameters’ values by composing functions via a corresponding path that is finite, as there are no oscillations. In the same way, we collect functions for context variables. Note that despite such limitations for embedded components, this operator allows to model the composition of controller-based distributed systems, for example, the SDN controller and switch composition.

For the race detection in EIOAs and their compositions, formal verification can be used based on LTL formulas. An LTL formula is a formula $\varphi ::= a \land \varphi_1 \land \varphi_2 | \neg \varphi | X \varphi | RF(id) | \exists i \forall \tau \exists CF(id) | GF(id)$, where: a is an atomic proposition, X denotes the ‘next’ operator, U denotes the ‘until’ operator, F denotes the ‘eventually’ operator and G denotes the ‘globally’ operator. The conditions when a path satisfies the LTL formula φ can be found in (Baier and Katoen, 2008).

3 CASE STUDY

In this paper, we use an SDN framework as a relevant case study (Fig. 2). Such framework allows to experimentally evaluate the proposed methodology which aims at detecting race conditions within the composition of EIOAs and provoking related concurrency issues in reactive systems. Namely, as our case study, we use the SDN framework that allows to dynamically reconfigure the network by decoupling the control plane from the data plane and pushing flow rules by the controller to the switches’ flow tables (forwarding devices) (McKeown et al., 2008). These flow rules are responsible for redirecting traffic incoming to switches on the data plane.

Since we are interested in detecting race conditions affecting the data plane paths, we derive the EIOAs to model the behavior of the SDN controller (see Fig. 3), Open vSwitch (see Fig. 4), and their composition (see Fig. 6). To construct these EIOAs, we rely on the approach considered in (Vinarski et al., 2019) and refer to the ONOS project documentation (Berde et al., 2014), the OpenFlow specification (McKeown et al., 2008), and the REST API guidelines (Koshibe et al., 2014). The inputs and outputs within these EIOAs are defined with specific semantics to accurately represent the interactions within the SDN infrastructure.

- $(\varphi F(id, \tau))$: the controller receives from the environment a request for adding a flow rule with the identification number id having the timeout equal to τ seconds.
- $(\varphi G(id))$: the controller receives from the environment a request for retrieving information about the flow rule with the identification number id.
- $(\varphi D(id))$: the controller receives from the environment a request for deleting the flow rule with the identification number id.
- $(\varphi R(id))$: the controller sends a message to the environment with information about the flow rule with the identification number id, i.e., $(\varphi R(id))$ is the response to $(\varphi G(id))$.
- $(\varphi F(id))$: the controller sends a message to the environment of deleting a flow rule with the identification number id.
- $(\varphi E(id))$: the controller sends a message to the environment of expiring a flow rule with the identification number id, i.e., $(\varphi E(id))$ is the response to $(\varphi F(id))$.

To distinguish the internal communication between the controller and the switch from the external communication, we annotate these interactions with the index c_S. The fragment of the EIOA C shown in Fig. 3 models the behavior of the SDN controller. Since we focus on the race detection related to the configurations of a flow table, EIOA C has the states with the following semantics: c_0 is the initial state,
c₁ corresponds to the behavior of the controller after receiving input (\(\text{?PF}, \text{id}, \tau\)) (transition T₁). At the same time, EIOA C has the context variables ct, tt, gf_flag and df_flag with the following semantics: ct is a Boolean array, which indicates the installed flow rules. tt is an integer array with the timeout values for the flow rules. For every flow_id the following holds: if ct[flow_id] = TRUE and tt[flow_id] > 0, then after the execution of each transition the value of tt[flow_id] is reduced by one unit.

The fragment of EIOA S shown in Fig. 4 models the behavior of the OpenVSSwitch. Since the composition described in Section 2 requires that an embedded EIOA does not have context variables, this EIOA has only input/output parameters.

The fragment of the composition is shown in Fig. 5 where the controller communicates with the environment that is represented by one or more applications via external actions (actions at the Northbound interface) and with the switch via internal actions (actions at the Southbound interface); at the same time, the switch communicates only with the controller. These components communicate in the following way:

- When the controller executes an external action, the switch does not execute any actions. For example, in Fig. 5, the controller moves from state c₀ to state c₁ after receiving (\(\text{?GF}, \text{id}\)), while the switch remains at state q₀.
- When the controller and switch are ready to execute the same internal action (possibly, with the same parameter value), they both execute this action and move to the next states. Here we notice that if this internal action is an input (resp. output) action in the controller, then this action is an output (resp. input) action in the switch. For example, in Fig. 5 when the controller sends (\(\text{!GF}_C, \text{id}\)) at state c₁, it moves to state c₂, while the switch moves from state q₀ to state q₁ after receiving (\(\text{?GF}_S, \text{id}\)).

After hiding internal actions (Barrett and Lafortune, 1998), we obtain the composition of the controller and the switch shown in Fig. 6. The pair of states (c₀, q₀) in Fig. 5 corresponds to the state s₀ in Fig. 6, whereas the pair (c₄, q₂) in Fig. 5 corresponds to the state s₅ in Fig. 6.

Coming back to the topology shown in Fig. 2, there are four hosts and four switches on the data plane. The flow table for switch s₁ has two dis-
tinct flow rules: the first rule redirects all the incoming traffic from switch \(s_1 \) to \(s_2 \) with the timeout of one second. The SDN controller pushes this flow rule to \(s_1 \) after getting an input \((?PF_{CS},1,1)\). After one second the first flow rule expires and the SDN controller will produce \((?FE,1)\). The second rule has the timeout of two seconds redirecting all the incoming traffic from switch \(s_2 \) to \(s_4 \). The SDN controller pushes this flow rule to \(s_1 \) after getting an input \((?PF_{CS},2,2)\). The second flow rule expires, and \((?FE,2)\) is produced. Due to unknown delays in the internal input channel it can happen that even if \((?PF,1,1)\) arrives before \((?PF,2,2)\) to the controller, \((?PF_{CS},2,2)\) arrives before \((?PF_{CS},1,1)\) to the switch. As a result, the second flow rule can expire earlier than the first one, i.e., output sequence \((?FE,2),(?FE,1)\) will be observed, instead of the expected \((?FE,1),(?FE,2)\). It is the output/output race and some packets can be redirected to a longer path \(h_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow h_4 \) instead of a shorter one \(h_1 \rightarrow s_1 \rightarrow s_4 \rightarrow h_4 \). Therefore, the concurrency between some inputs and outputs can influence the data plane configuration. The possibility of the above situation can be presented as a violation of the following LTL-formula: \((?PF,1,1)&\&?X(?(FE,1)&\&?(FE,2))\rightarrow XX(\neg(?(FE,1)&\&?(FE,2)))\)\(^1\), that means that if \((?PF,1,1)\) precedes \((?PF,2,2)\) then \((?FE,1)\) has to be produced before \((?FE,2)\).

4 RACES IN AN EIOA

In Section 2, we discussed the composition operator for EIOAs, ensuring that the resulting compositions remain within the class of EIOAs discussed in this paper. The latter allows to define races for a single EIOA and extend such races’ definitions for the composition of EIOAs.

Input/Output Races. These races can occur when there exists a state of a corresponding EIOA where both an input and an output are specified, i.e., at a given state the decision of accepting an input or producing an output is made nondeterministically by the EIOA.

Definition 1. Given an EIOA \(\mathcal{A} = (S,I,O,V,T,s_0) \) and a pair \((i,o)\in I \times O\), \(\mathcal{A} \) is \(i/o \) race-sensitive if there exists a trace \(\beta \) leading to a state \(s \) where input \(i \) and output \(o \) are defined, i.e., \(tr = \beta,i \in \text{Traces}(\mathcal{A})\). Otherwise, \(\mathcal{A} \) is \(i/o \) race-free.

As an example, we consider EIOA C&S shown in Fig. 6 and input/output pair \((?PF,0,1),(?FE,0)\).

EIOA C&S is \((?PF,0,1)/(?FE,0)\)-race-sensitive since \((?PF,0,1),(?FE,0)\) are defined at state \(s_2 \). \((?PF,0,1),(?GF,0)\) brings C&S to state \(s_2 \), and traces \(tr_1 = (?PF,0,1),(?GF,0),(?PF,0,1) \) and \(tr_2 = (?PF,0,1),(?GF,0),(?FE,0) \) are both in \(\text{Traces}(C&S) \). This race can occur if two simultaneous requests for adding rules are pushed by both applications and a sudden expiration of the flow rule with \(id = 0 \) occurs before accepting request \((?PF,0,1)\) for adding a flow rule from another application, i.e., \((?FE,0)\) precedes \((?PF,0,1)\). This situation can be presented as a violation of LTL-formula \(\Phi_{in,out} = G((?PF,0,1) \rightarrow X(\neg((?PF,0,1)&U(?(FE,0))))) \) (see Section 5).

Input/Output Races. We hereafter keep working with the topology shown in Fig. 1, where two applications submit their requests to the reactive system. These requests can compete and thus, provoke input/input races for the corresponding EIOA.

Definition 2. Given an EIOA \(\mathcal{A} = (S,I,O,V,T,s_0) \) and two applications \(APP_1, APP_2 \), \(\mathcal{A} \) is input/output race-sensitive if there exist state \(s \) where inputs \(i_1 \) and \(i_2 \) are defined, \(\beta \in (I \cup O)^* \) leading to state \(s \), \(\alpha_1, \alpha_2 \in (I \cup O)^* \) and traces \(tr = \beta,i_1,i_2, tr' = \beta,i_2,i_1, \alpha' \) such that \(tr,tr' \in \text{Traces}(\mathcal{A}) \) and \(tr_{io} \neq tr'_{io} \).

Consider again EIOA C&S shown in Fig. 6, inputs \((?PF,0,1),(?DF,0)\) that are defined at state \(s_2 \) and \(?s_2 \) where \(\beta = (?GF,0) \) bringing C&S to state \(s_2 \). Suppose that \((?PF,0,1)\) is pushed by \(APP_1 \), while \((?DF,0)\) is pushed by \(APP_2 \). Traces \(tr = (?GF,0),(?PF,0,1),(?DF,0),(?FE,0) \) and \(tr' = (?GF,0),(?DF,0),(?PF,0,1),(?FE,0) \) are both in \(\text{Traces}(C&S) \). Since \(tr_{io} \neq tr'_{io} \), C&S is input/output race-sensitive. The following LTL-formula \(\Phi_{in-out} = (?(DF,0)&\&?X(?PF,0,1)&?X(?PF,0,1)&\&?X(?DF,0)) \rightarrow XX(\neg(?(DF,0)&?U(?(FE,0)))) \) can be considered for that matter, which means that if a trace starts from \((?PF,0,1),(?DF,0)\) or \((?PF,0,1),(?FE,0)\) then \((?FE,0)\) cannot appear before \((?DF,0)\).

Output/Output Races. Similarly to the input/input races, output/output races for reactive systems can occur at a state of EIOA where both outputs are defined and can compete to be produced.

Definition 3. Given an EIOA \(\mathcal{A} = (S,I,O,V,T,s_0) \), state \(s \) and outputs \(o_1 \) and \(o_2 \) defined at state \(s \), \(\mathcal{A} \) is output/output race-sensitive if there exist \(\beta \in (I \cup O)^* \) leading to state \(s \) and traces \(tr = \beta,o_1,o_2, tr' = \beta,o_2,o_1 \) such that \(tr,tr' \in \text{Traces}(\mathcal{A}) \).

Consider again EIOA C&S shown in Fig. 6 and outputs \((?FE,0),(?FE,1)\) defined at state \(s_1 \). Trace \((?PF,0,1),(?PF,1,1)\) brings C&S to state \(s_1 \), and \(tr = (?PF,0,1),(?PF,1,1),(?FE,0),(?FE,1) \) and \(tr' = (?PF,0,1),(?PF,1,1),(?FE,1),(?FE,0) \) are in

\(^1\)There can be more complex formulas which take into account timeouts of the flow rules.
Traces (C&S). The latter makes C&S output/output race-sensitive (see (Vinarskii et al., 2019) for details). This situation can be presented as a violation of LTL-formula $\Phi_{out_out} = G((?F?E, 0) & & ?X(?F?E, 1)) \rightarrow XX(\neg(F?E, 0) U (F?E, 1)))$.

In order to check that the EIOA (the composition of EIOAs) satisfies LTL-formulas, various model-checkers can be used. However, identifying a race condition within an EIOA does not necessarily imply its appearance in the related reactive system when a counterexample is applied. This discrepancy can often be caused by the reactive system’s nondeterministic behavior, which may be influenced by the channel timeouts. Consequently, we need to study the conditions when a corresponding race can be provoked in an implementation at hand, and we further show that this can happen if we apply the corresponding counterexample several times. In Section 5, we present an estimation of the probability that a race condition occurs in the reactive system when the counterexample is applied an appropriate number of times.

5 FROM EIOA RACES TO RACES IN REACTIVE SYSTEMS

In Section 4, we introduced the race definition for an EIOA that in this paper is considered as the formal model (the specification) of a reactive system (an implementation at hand). As usual, the specification cannot describe all the aspects of the implementation behavior, and thus, not all races in a reactive system can be detected when using the composition of EIOAs as its specification. Moreover, the specification describing the behavior of a reactive system does not have timed variables, while for some implementation an input/output race significantly depends on message delays in external and internal channels and the EIOA model does not capture this issue. However, usually the message delays in the channels are normally distributed (Sukhov et al., 2016) and therefore, for initiating a trace under interest it is needed to apply a corresponding counterexample several times to the reactive system at hand (if we want to observe the race in the implementation). We calculate the number of times to apply a counterexample by counting an instant when the probability for observing every possible specification trace for a given sequence of applied requests exceeds the given threshold. We further show how this can be done for the SDN framework from Section 3 in Fig. 7 and Fig. 8 when the message delays in all channels have the normal distribution.

5.1 Estimating the Race Probability in Distributed Reactive Systems

We consider the reactive system shown in Fig. 1, there are four channels via which messages are transmitted. Those are two external channels and two internal channels. Let $t_{A1C}, t_{A2C}, t_{CA1}, t_{CA2}, t_{CS}, t_{SC}$ be random variables that specify the time that requests from/to applications APP1 and APP2 spend in the corresponding channel. We assume that $t_{A1C}, t_{A2C}, t_{CA1}, t_{CA2}, t_{CS}, t_{SC} \in \mathcal{N}(\mu, \sigma^2)$, i.e., have the normal distribution with the same parameters: the mean μ and the variance σ^2.

Consider input/output pairs (i_1, o_1) and (i_2, o_2) that can be executed at the same state s of the composition of EIOAs where input i_1 is pushed by APP1 and i_2 is pushed by APP2. If i_1 and i_2 are pushed at the same timestamp T then o_1 and o_2 start to compete in the internal channel to/from the embedded EIOA. Let inputs i_1 and i_2 be accepted by EIOA C at time instances $T_{i_1} = T + t_{A1C}$ and $T_{i_2} = T + t_{A2C}$ correspondingly while o_1 and o_2 are produced by C at time instances $T_{o_1} = T_{i_1} + t_{CS} + t_{SC}$ and $T_{o_2} = T_{i_2} + t_{CS} + t_{SC}$. In the above formula, $t_{CS} + t_{SC}$ and $t_{CS} + t_{SC}$ are time delays for messages to spend in internal channels. We assume that the system behavior allows to accept inputs i_1 and i_2 in any order but the next input should be applied later than the output to the previous input is produced. The reason is as follows. Assume that being at state s EIOA C accepts i_1 earlier than i_2, then C moves to state s'. The expected behavior for C being at state s' is to accept i_2. However, due to (i_2, o_2)-race it can happen that output o_1 is produced earlier than input i_2 arrives, denoted as $o_1 < i_2$. In this case, after producing o_1 the EIOA moves to state s' that can differ from s'. Thus, (i_2, o_2)-race affects the behavior of the EIOA. Since $o_1 < i_2$ happens when $T_{o_1} < T_{i_2}$, the probability $Pr(o_1 < i_2) = Pr(T_{o_1} < T_{i_2})$. By definition, $T_{o_1} = T_{i_1} + t_{CS} + t_{SC}$ and $T_{i_2} = T + t_{A2C}$, and thus, $Pr(T_{o_1} < T_{i_2})$ implies that $Pr((T + t_{A2C} + t_{CS} + 2\sigma^2) < (T + t_{A1C})) = Pr((t_{A1C} - t_{A2C} - t_{CS} - 2\sigma^2) > 0)$. Since random variables t_{A1C}, t_{A2C}, t_{CS} and t_{SC} have the normal distribution with the same mean μ and variance σ^2, $(t_{A1C} - t_{A2C} - t_{CS} - t_{SC}) \in \mathcal{N}(-2\mu, 4\sigma^2)$. Therefore, $Pr((t_{A1C} - t_{A2C} - t_{CS} - t_{SC}) > 0) = \int_{-\infty}^{\infty} e^{-\frac{(t_{A1C} - t_{A2C} - t_{CS} - t_{SC})^2}{2\sigma^2}} dt$ and $Pr(o_1 < i_2) = \int_{0}^{\infty} e^{-\frac{(t_{A1C} - t_{A2C} - t_{CS} - t_{SC})^2}{2\sigma^2}} dt$. 732
5.2 Studying the Race Probability in the SDN Framework

In order to confirm that our approach can be applied for studying real reactive systems, we performed experimental evaluation with the SDN framework. Similar to (Vinarskii et al., 2019), experiments were performed with the ONOS Controller and the Mininet (de Oliveira et al., 2014) simulator, executed under a virtual machine running on VirtualBox Version 5.1.34 for Ubuntu 16.04 LTS with 4GB of RAM, and a quad AMD A6-7310 APU with AMD Radeon R4 Graphics processor. Our experimental setup corresponds to the topology in Fig. 2, i.e., the simulated network contains the ONOS Controller and a single Open vSwitch version v2.11.0 and two applications implemented as Perl scripts. The goal of the experiments is (i) to derive a distribution for the message delay in channels and show that it can be approximated with the normal distribution, and (ii) estimate the efficiency of the proposed strategy for race detection in the composition of the ONOS Controller and the Open vSwitch. All the Perl and Python scripts utilized in the experimental setup are accessible via (Vinarskii, 2024).

We first evaluate the distribution of random variable \(t = t_{AC} + t_{SC} + t_{CA} + t_{CS} \), assuming that \(t \) is the continuous random variable defined over interval \([0, \infty)\). For this purpose, we consider the topology with a single switch and two applications. At the first step we get the probability density function for installing a single message. For this reason, one rule is pushed 1000 times in order to collect the necessary statistical data; the results are shown in Fig. 7. According to the distribution density function shown in Fig. 7, the distribution can be approximated with the normal distribution with mean \(\mu_1 = 1.42 \) and variance \(\sigma^2_1 = 0.02 \), i.e., \(N(1.42, 0.02) \). In order to exclude the influence of the whole system installation on this distribution, we have got the evaluation of the probability density function for installing two messages. Similarly, according to the distribution density function shown in Fig. 8, this distribution can be also approximated with the normal distribution \(N(1.67, 0.04) \) with mean \(\mu_2 = 1.67 \) and variance \(\sigma^2_2 = 0.04 \). The difference of these two distributions can be considered as the rough estimate for the message delay in external and internal channels. This difference also is normal with parameters \(\mu = \mu_2 - \mu_1 = 0.25 \) and \(\sigma^2 = \sigma^2_2 + \sigma^2_1 = 0.06 \), i.e., \(t \in N(0.25, 0.06) \). Therefore, since \(t = t_{AC} + t_{CS} + t_{CA} + t_{CS} \), one can argue that \(t_{AC}, t_{AS}, t_{CA}, t_{CS}, t_{SC} \) are normally distributed, and the distribution is approximated with mean \(\mu \) and variance \(\frac{\sigma^2}{4} \), i.e., their distribution is approximated with

\[
\mathcal{N}(\frac{\mu}{4}, \frac{\sigma^2}{4}), \text{ i.e., with mean } \frac{\mu}{4} = 0.0625 \text{ and variance } \frac{\sigma^2}{4} = 0.0015.
\]

Coming back to the SDN topology shown in Fig. 2, consider the EIOA (see Fig. 6) which models the SDN controller and switch \(s_1 \) composition. Assume that \(APP_1 \) deletes rules from the flow table, i.e., it sends input ?DF to the composition. At the same time, \(APP_2 \) inserts rules to the flow table, i.e., it sends input ?PF to the composition. Thus, the input/output race occurs when output !FD is produced earlier than input !PF is obtained by the composition.

Consider sequences \(seq_1 = ?DF_j, !FD_j \) (from \(APP_1 \)) and \(seq_2 = ?PF_j, !FE_j \) (from \(APP_2 \)) where \(j \) is the index of the flow rule. The race condition involves a conflict between output action !FD of \(APP_1 \), and input action !PF of \(APP_2 \). The race occurs if input action !PF happens after output action !FD.

The probability \(\Pr(DF_j < PF_j) = \int_{0}^{\infty} e^{-\frac{(t+2)^2}{2\sigma^2}} dt \approx 0.187 \). Thus, with the probability \(1 - 0.187 = 0.813 \) the race will not occur in the experiment.

In order to provoke this race in the experimental setup, we have run two applications simultaneously for at least 0.99. Since 0.187 < 0.01, the race will be detected with the probability of at least 0.99, if the experiment is performed at least 23 times.

![Figure 7: Time distribution for pushing one flow rule.](image1)

![Figure 8: Time distribution for pushing two flow rules.](image2)

In the experiments, as an index we use the priority of the flow rule.
23 times: seq₁ of APP₁ and seq₂ of APP₂. In order to distinguish between different runs, we have run flow rules with priority 40000 + i. If there are no races, then as a result, we should get the empty flow table of the rules of switch s₁. However, according to the performed experiments, after observing sequences seq₁ and seq₂ 23 times, the rule with the priority 40022 is still in the table after the script execution. The results clearly show that in this case, the probability threshold 0.99 is sufficient to observe the (?PF, ?FD)-race.

6 CONCLUSIONS

In this paper, we considered concurrency issues in the composition of EIOAs and reactive systems which can be modeled by EIOAs. In particular, we introduced the formal definitions of input/output, input/input and output/output races that can occur in the composition of EIOAs. We used a probabilistic approach to establish the correlation between races in the composition of EIOAs and their appearance in a reactive system implementation. In order to check, how practical is our approach, we performed an experimental evaluation with the SDN framework.

This paper opens a number of directions for future work. Despite the fact that the proposed approach is generic, experiments were only carried for the SDN framework. The proposed approach relies on the LTL-based model checking solutions for describing and detecting races in SDN; in the future, other formal verification techniques and their applicability to the problem of interest can be investigated.

REFERENCES

