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Considering the diffusion of smart devices and IoT devices, mobile malware detection represents a task of
fundamental importance, considering the inefficacy of signature-based antimalware free and commercial soft-
ware, which can detect a threat only if its signature is present in the antimalware repository. In the last few
years, many methods have been proposed by academia to identify so-called zero-day malware through ma-
chine learning: these techniques typically extract a series of features from the mobile device to send to a server
where the detection model is located. Typically, these features include network traces or installed applications,
among other information that may compromise user privacy. In this context, Federated learning is emerging
with privacy advantages because the raw data never leaves the local device. In this paper, we propose a method
to integrate federated machine learning in malware detection.Malicious software typically aims to extract sen-
sitive and private data, and mobile devices emerge as particularly enticing targets from the perspective of
attackers. In the experimental analysis, comprising a pool of 10 clients from which 7 are uniformly sampled

at each round, we demonstrate the efficacy of the proposed method by achieving an accuracy of 0.940.

1 INTRODUCTION

Over the years due to the large amount of personal
data employed by technological devices, governments
in each continent introduced several regulations to
preserve the users’ privacy. The European Union
(EU), in May 2018, introduced the GDPR (General
Data Protection Regulation)! to protect personal data
from possible abuse. In detail, the latter allows for di-
rect identification of a natural person, like name and
surname, while from the digital point-of-view, per-
sonal data includes IP addresses, biometric data, and
location information. The rules imposed by the EU
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are very stringent, as reported by Statista®, in 2023,
the European Commission imposed 465 fines (2.1 bil-
lion euros) due to violations of GDPR. One of the
problems related to technological progress is the us-
age of personal data employed by a large amount of
Internet of Things (IoT) devices, which are widely
adopted in different fields. An IoT device is any phys-
ical object connected to the internet, capable of send-
ing and receiving data for monitoring, control, or au-
tomation purposes, and the number of them is bound
to grow. The alarming aspect of IoT devices is the po-
tential for attacks and the resulting theft of personal
data. In 2016, Google introduced Federated Learn-
ing (FL)? as a concept to securely manage personal
data. In essence, FL offers a solution to tackle pri-
vacy concerns linked with centralized machine learn-
ing methods (Mercaldo et al., 2022b; Huang et al.,

Zhttps://www.statista.com/chart/30053/gdpr-data-
protection-fines-timeline/

3https://blog.research.google/2017/04/federated-
learning-collaborative.html?m=1
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Figure 1: The proposed method aimed to identify malware using Federated Learning to preserve users’ privacy.

2024). These methods involve aggregating and stor-
ing sensitive user data in a central server. By train-
ing machine learning models directly on decentral-
ized devices, while keeping user data local, FL en-
ables collaborative model training without compro-
mising data privacy.

A potential threat is a “data breach” which targets the
personal data of numerous users by exploiting vari-
ous techniques, such as malware. To identify the lat-
ter, different methods have been introduced over the
years. By the early 2010s, researchers started to em-
ploy artificial intelligence (Al) in the malware detec-
tion field. In detail, researchers in Al are divided into
two main fields: Machine Learning and Deep Learn-
ing (Rathore et al., 2018) (Liu et al., 2020). Recently,
thanks to the introduction of FL, researchers started to
use that also to classify malware in different IoT en-
vironments (Lin and Huang, 2020) (Rey et al., 2022).
In this paper, we propose a method to identify mal-
ware mobile field precisely in the Android environ-
ment leveraging Federated Learning to be compliant
with the user’s privacy. Specifically, to construct the
dataset for training our model, we obtained grayscale
images by converting the .dex files obtained after re-
verse engineering from the .apk (Android Package)
files. Once the dataset was built, we started training
the model using the MobileNetV3 architecture, which
aimed to be the best mobile vision model.

The paper proceeds as follows: the steps of the
method employed are introduced in Section 2, Section
3 presents the results of the experimental analysis; in
Section 4 we report the current state-of-art literature
about the usage of Federated Learning in the malware
detection, and, finally, in the last section, conclusion
and future research plan are presented.
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2 A METHOD FOR
PRIVACY-PRESERVING
MOBILE MALWARE
DETECTION

This section furnishes an overview of the method
proposed to identify malware employing Federated
Learning. Figure 1 shows the steps performed in the
proposed method. In detail, the latter exhibits several
steps springing from the image creation via the con-
version of Android applications. Subsequently, we
built a proper distribution among the various clients
of the simulation dataset employing the images ob-
tained. As a final step, we trained a model employing
Federated Learning using an architecture reachable
in literature. These aspects will be elaborated upon
in detail, as they form the foundation upon which
the malware classifier can learn without compromis-
ing user privacy, enabling access to data never before
available and thereby enhancing the capabilities that
Al can achieve.

2.1 Image Generation

In the Android environment, once the source code
is developed, the SDK (Software Development Kit)
tool is invoked to compile any data and resource files
into an APK (Android Package)*. The code compiled
and contained in the Android Package turns out not
to be of understanding to humans as converted into
bytecode. To obtain the source code to generate the
image, in this paper, we employed APK Tool’ that
helps to disassemble the application under analysis
and obtain files into a format that can be edited/read
by humans. The files related to the code are saved
using the .dex extension. The Dalvik Executable
code allows developers and security researchers to
understand how an application works at a lower level,

“https://developer.android.com/guide/
components/fundamentals
Shttps://apktool.org/
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enabling them to make modifications or extract in-
formation from the application. To obtain the dataset
to perform the experiments, we extract the dex file
from the apk file of the application under analysis
and convert it into a grayscale image (Iadarola et al.,
2021b), (Iadarola et al., 2021a).

Figure 2 reports an example of
aa9fb22d1f22cebbeddal677db0e29%e3 APK
file belongs to the Fusob ransomware converted into
an image.

Figure 2: A
tained from the
aa9fb22d1f22cebbeddal677db0e29¢3  hash  belonging
to the Fusob ransomware.

example of an image ob-
Android malware with the

2.2 Dataset

The next step was to obtain a balanced dataset to reach
good outcomes. In this research paper, we employed
a dataset composed of images retrieved from six mal-
ware families Airpush, Downgin, Fakelnst, Fusob,
Jisut, and Mecor, together with trusted applications.
Employing Federated Learning is crucial to under-
stand how to distribute the data. In detail, we express
our distributions in probabilities P; # P;, for differ-
ent nodes i and j. Using the Bayesian Rule, we can
rewrite these probabilities starting from specific data
and its label P;(x,y) as P;(y|x)P;(x) and P;(x|y)Pi(y),
the latter allows us to characterize the typologies more
precisely (Kairouz et al., 2021):

e Feature distribution skew: the marginal distri-
butions P;(x) may vary across collaborators, even
if P(y|x) is shared — programmers’ formats can
differ or they could provision a peculiar setup be-
fore inserting the payload, so the application can
differ even if the probability of being a member of
a specific malware family is the same;

e Label distribution skew: the marginal distribu-
tions P;(y) can change for the edges, even if P(x|y)
is the same — clients are tied to particular geo-
regions; WeChat or Alipay are used mainly in
Asian countries, certain phishing or ransomware
behave only in the English-speaking world;

e Quantity skew: each node can hold vastly dif-
ferent amounts of data — users that make heavier
use of the smartphone will accumulate more apk
files.

Malware classification hinges on each of the
aforementioned disparities, as demonstrated in the re-
spective examples. The nature of the application is
not synthetic, intended as a process in which the data
are constructed starting from a sampling process, such
as Monte Carlo or Gibbs. The data have been assem-
bled by scavenging .apk files from the web, select-
ing all the applications with certified malicious code
inside. This fact is significant for distinguishing our
distribution from a function that could generate data
directly for each client. In conclusion, the nature of
the problem, coupled with the volume of accumulated
data, renders it impossible to address in an environ-
ment with a highly non-identically independently dis-
tributed dataset (non-IID).

2.3 Federated Learning

In the last few years, the concept of Federated Learn-
ing has taken hold. The idea introduced with this tech-
nique is to allow the participation of several devices
in the process of Al model development, making it
more accessible, transparent, and accountable, with-
out compromising the privacy of the collaborators.

The main idea at the bottom of Federated Learning is
that each user can participate in collaborative training.
In our simulation, each smartphone acts as an edge
node, contributing to the collective defense against
malware threats. At the heart of this system lies a
central command center, orchestrating the FL process
and fostering collaboration among the smartphones.
Instead of consolidating all data in one central repos-
itory, the command center dispatches model param-
eters to each smartphone, enabling them to conduct
local model training using their unique datasets of ob-
served malware behaviors. Through iterative rounds
of training, composed in turn of multiple local epochs,
smartphones enhance the model’s ability to detect and
mitigate emerging malware threats, leveraging the di-
verse insights gleaned from their respective datasets.
Personal information remains safeguarded within the
confines of individual devices, with only anonymized
model updates transmitted to the central command
center for aggregation. As the federated learning pro-
gresses, the central command center aggregates these
refined updates, synthesizing a collective understand-
ing. The group intelligence forms the basis for en-
hancing the model’s efficacy in detecting malware
threats. Finally, the central command center dissemi-
nates the refined model back to smartphones, empow-
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ering them with enhanced classification capabilities,
as illustrated in Figure 3.

</>
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Figure 3: The server deploys a model, each client generates
private data (step A) on which the local models fit (step B)
and finally, the specialized models are aggregated to refine
the global model (step C). The loop is closed by distributing
back the enhanced model.

2.4 Experiments and Data Analysis

After acquiring the dataset and introducing the
method to preserve client privacy, the next step was
to train and test the model. In addition to those two
phases, we also employed the validation. The lat-
ter allowed us to evaluate the performances of the
model. The model underwent training utilizing the
MobileNetV3 (Howard et al., 2019) architecture. Be-
fore this version, Google presented other two ver-
sions: MobileNet (Howard et al., 2017) and Mo-
bileNetV2 (Sandler et al., 2018). The first introduced
depthwise and pointwise convolution, which simulta-
neously address spatial and feature generation mech-
anisms, thereby reducing the computation needed. In
contrast, MobileNetV2 adopted linear bottleneck and
inverted residual structures. The former influences the
latter, as the previous layer dimensions were wide-
narrow-wide, whereas inverted convolutions reversed
this trend, impacting network performance. To mit-
igate this, the linear bottleneck prevents activation in
the final convolution layer. MnasNet further enhanced
MobileNet architectures by incorporating lightweight
attention modules based on squeeze and excitation
into the bottleneck structure of the final block. Mo-
bileNetV3 builds upon these advancements by in-
troducing the hard-swish activation function, which
combines the Rectified Linear Unit (RELU) with a
sigmoid function to optimize properties near zero.

Additionally, we employed two different techniques
to optimize hyperparameters, namely, Grid Search
and Random Search. The first one enables the defini-
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tion of all possible combinations and was utilized to
explore various parameter combinations for refining
the modified model on the CIFAR-10 dataset, serv-
ing as a preparatory phase for the latter. Instead, in
Random Search, a predefined search space is speci-
fied, and the hyperparameters are randomly selected.
In certain scenarios, Random Search can be more ef-
ficient than Grid Search in large environments due to
its avoidance of complete exploration of all possible
combinations. This is the reason why it was employed
to search for the expansive federated context.

3 EXPERIMENTAL RESULTS

In this section, we illustrate the results retrieved after
the test phase. In detail, in Section 3.1 are reported the
outcomes obtained after using the Grid Search tech-
nique, while in Section 3.2 the results acquired after
the Random Search are shown. The experiments re-
ported in this section were conducted on two different
computers. Specifically, the machine on which the
Grid and Random Searches were executed features
an Intel(R) Xeon(R) Gold 6140M CPU @ 2.30GHz
with 16 Cores and 36 threads, along with 64 GB
of RAM. For the training phase, a different machine
was utilized, equipped with an Intel Core i5-11400 @
2.60GHz, 6 Cores, and 12 threads, complemented by
32 GB of RAM and an NVIDIA GeForce RTX 3060
with 12 GB of VRAM.

The population of clients from which updates are
gathered can be quite large. In our simulation, we
limit this to M, and for each round ¢, we uniformly
and randomly select S®) clients. In practice, the se-
quence of active clients, or the cohort size, is typically
influenced by complex circumstances beyond the con-
trol of the orchestrating server. For example, mobile
devices might only participate when idle, connected
to specific unmetered networks, and charging (Wang
et al., 2021).

In this paper, we employed a dataset composed of
images generated from Android applications. In de-
tail, these applications belong to six different malware
families with a total of 7,386 malicious samples di-
vided into 1,170 Airpush, 763 Downgin, 2,129 Fake-
Inst, 1,275 Fusob, 550 Jisut, and 1,509 Mecor, and
1,060 trusted applications (Mercaldo et al., 2022a;
Tadarola et al., 2021b). Once the dataset was ac-
quired, we partitioned it into training, validation, and
testing, adhering to a split proportion of 65-15-20,
as reported in Table 1. This allocation ensures that
65% of the data is dedicated to training the model,
15% for validating its performance during training,
and the remaining 20% for final evaluation, thereby
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maintaining a balanced distribution for robust model
assessment. The training data is distributed among
the clients to start the federated simulation. The dy-
namics of this process are independent and identically
distributed (IID), as illustrated by the example distri-
bution across M = 7 clients in Figure 4.

Table 1: Number of samples per class of malware and rela-
tive subdivision.

Class Name # Training # Validation # Test
Airpush 749 187 234
Dowgin 489 122 152
Fakelnst 1364 340 425

Fusob 816 204 255
Jisut 352 88 110
Mecor 960 240 299
Trusted 678 170 212
Total 5408 1351 1687

700 A

600
500
400
300 4
200
100 1
0 1 2 3 4 5

Client ID

Classes
3 Airpush
3 Dowgin
3 Fakelnst
I Fusob
[ jisut
3 Mecor
= Trusted

=1

Number of samples
o

o

Figure 4: The classes follow the most suitable distribution,
being identically distributed on each local dataset.

Concluding the dataset-building phase, we trained
the MobileNetV3 architecture, obtaining the results
discussed in the following sections. In addition, to
clarity, reproducibility, and comparative analysis, in
the experiment conducted, we utilized the loss func-
tion “Categorical Focal Cross Entropy” (Lin et al.,
2018). The latter was used to push the training to fo-
cus on miss represented classes, especially consider-
ing the dataset’s particular imbalance:

L(pt) =3 (1 _pt)Y : CrOSSEntrop}’()’true;.Ypred) (N

In Equation 1, it is possible to identify the parame-
ter & as the weight factor for the classes and v as a
parameter that focuses on the misclassified samples,
encouraging the gradient to concentrate on the minor
classes. Thus, setting y = 0 reduces the function to a
classical Categorical Cross Entropy; categorical since
the labels are provided in a one-hot encoding repre-
sentation.

In our setup, we employ two optimizers: one des-
ignated for the server (s) and another replicated for

each client (¢), along with their respective models.
While it’s possible to customize the optimizer for the
server and clients separately, we opted for Stochastic
Gradient Descent with Momentum (SGDM) for both.
Consequently, we have the learning rates Mg and 1c,
as well as the momentums 5 and Be. The client’s op-
timizer operates at each local epoch (1), whereas the
server optimizer only engages when it needs to aggre-
gate the collaborators’ updates occurring at the end of
each round (7).

The de facto standard algorithm, thus more com-
monly preferred, for the cross-device setting is Feder-
ated Average (FedAvg). Where each client performs
multiple updates in a single round. This way, the ag-
gregated gradient will retain more information, and
the server could require fewer rounds to converge,
thus saving communication costs.

With the introduction of schedulers, we used sym-
bols to represent their variables: v denotes the mini-
mum learning rate, while v signifies the decay steps
with the CosineDecay () scheduler. Conversely, ¢
and @ correspond to the decay steps and rate with the
InverseTimeDecay () scheduler.

3.1 Grid Search

To discover the optimal parameter combination, we
initiated a Grid Search, followed by selecting the re-
sultant parameters to standardize the model’s capac-
ity across all layers. This step served as a preparatory
phase for the subsequent Random Search.
For clarity, we instantiated the MobileNetV3 model
and utilized TensorFlow’s Keras method to save its
weights. Each weight was associated with a layer
name, which we used to reload them into the mod-
ified architecture. Specifically, each layer retained
the same name, except for the custom ones. Subse-
quently, we iterated through each layer of the newly
created model to set the trainable flag to True exclu-
sively for the GroupNorm layers. This approach al-
lowed us to freeze and preserve the training of the
original architecture, acknowledging the efforts in-
vested by Google in the ImageNet dataset, which is
composed of wider images, like those in our dataset.
This type of search aims to investigate the weight pa-
rameters over a lower bound of epochs, ensuring that
extensive training results in a well-fitted architecture.
Therefore, all results presented pertain to the train-
ing of the CIFAR-10 dataset limited to 100 epochs
and optimized with the Root Mean Square Propaga-
tion (RMSProp) algorithm. The stopping criterion is
applied when the validation loss value has decreased
by a threshold of € = le — 3 for 5 successive epochs.
To visualize the relationships among the selected
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Accuracy for 6 and y
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Figure 5: Combination of y and 8 to achieve best perfor-
mances in terms of accuracy.

hyperparameters, we utilized a confusion matrix. In
detail, in Figure 5, we illustrate the relationship be-
tween the 8 and 'y parameters that dictate the weight-
ing factor for the classes and the focus on relatively
easy-to-classify samples. It is possible to denote that
the accuracy increases when the parameters are pro-
portionate; indeed, the combination of Yy =5 and
8 = 0.5 achieves the highest score. It’s noteworthy to
recall that with y = 0, we have the standard CrossEn-
tropy loss, and the Focal version becomes unstable
without the weighting factor 8. These observations
are confirmed by our experiments, which show the
peak of accuracy when the parameters are properly
tuned.

In addition, Figure 6 illustrates that utilizing higher
learning rates and momentums enabled the model to
better understand the dataset. We observe that in-
creasing the values of M and B parameters signifi-
cantly improves classification performance with this
model and dataset. One possible explanation could
be that the embedding created by MobileNetV3 ef-
fectively represents the images, thereby necessitating
only minor adjustments to the weights of the dense
layers.

3.2 Random Search

Built the model, the next step was to proceed to the
hyperparameter search phase in the federated environ-
ment. Given its broader scope, this required thorough
preparation. In this subsection, the search phase is de-
scribed step by step.

In detail, all the experiments were conducted with
consistent parameters: the same number of epochs (T
== 1), rounds (T == 15), number of distributed clients
(M == 10), number of sampled clients (§©) == 7),
training batch size (32), and validation/test batch size
(128).

558

Accuracy for nand

0.9 0.1054  0.1088 01128

0.92 0.1552

@ 0.94 0.1548 0.1569

0.96

0.98 0.1425 01611

0.01 0.03 0.05 0.07 0.09
n

Figure 6: The 1 and [} parameters significantly contribute to
the accuracy results.

When retraining or refitting the best combination, the
operations remained consistent as well, with the same
number of epochs (T == 3), rounds (7 == 12), training
batch size (32), and validation/test batch size (128).
The dimensions of distributed and sampled clients
were kept equal.

Each of the random searches has the results reported
in Table 2. We conclude the section by describing
the thought process involved in searching for hyper-
parameters:

1. On top of the discussed architecture, we append
a funneling-style neural network (NN) built with
successive layers, each one half the size of the pre-
vious layer, starting from 64 neurons. Everything
except the last part of the NN is kept frozen, al-
lowing us to utilize MobileNetV3 as an embed-
ding capable of expressing the images in com-
pressed vectors. Starting with simplicity, we uti-
lize the standard SGD optimizer with momentum.

2. Since the complexity of the funneling-style neu-
ral network (NN) is not necessary, we halved the
number of neurons, hoping that reducing the size
of the layers would decrease complexity and fa-
cilitate the training phase.

3. The additional Feed Forward dense NN layer was
not beneficial; instead, it slowed down the conver-
gence rate. In our final attempt, we experimented
with just a single additional layer. Moreover,
we noted that the client momentum parameter Be
positively influenced the learning rate n¢, speed-
ing up the descent towards local minima when
successive directions were similar. Consequently,
we kept Bc ~ 1 and directed our attention towards
optimizing Mc.

4. The server should receive all updates from the
clients, so we kept the parameters Mg and Pg at
their default values. However, realizing that a
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Table 2: Here is the loss and accuracy corresponding to the training and validation datasets, along with the elapsed time of all
the runs. These results represent the best values per random search, as we have reported the identifiers of each simulation out

of the total conducted.

ID/Total L(pqgr) A(Par) £L£(Pwa) A(Pya)  Time
34/78 0.732 0.769 0.771 0.764 16988 s

117/117 0.872 0.722 0.874 0.748 29367 s
2/60 0.698 0.795 0.728 0.800 16104 s
15/36 0.638 0.801 0.573 0.833 6214 s
2/48 0.605 0.814 0.567 0.838 8693 s
10/72 0.604 0.809 0.574 0.817 14767 s
60/72 0.627 0.804 0.546 0.824 12726 s

fixed n¢ was constraining the convergence rate,
we employed a scheduler to regulate the rate
of convergence, particularly in the initial stages
where the learning rate might be sufficiently large
to overshoot a satisfactory minimum. We opted
for the CosineDecay () function as the chosen
scheduler.

5. Following theoretical considerations, a value of
M ~ 0 does not permit convergence as T — oo,
while a value of | ~ 1 may cause oscillations near
the minimum. Therefore, we increased the decay-
ing step and its initial value but decreased the min-
imum.

6. The scheduler previously used decreased the
learning rate with a sinusoidal curve, pro-
viding less control over the initial phase.
Hence, we opted for another scheduler, the
InverseTimeDecay (), which allows for decreas-
ing the learning rate with a fixed step and rate.
Another benefit of this scheduler is that it can act
as a stopping criterion when o = 0 is reached.

7. We have refined the search by selecting the best
parameters from the last round. As observed, a
higher initial learning rate can lead to faster con-
vergence towards the minima, and subsequently
decaying it with a smaller step can refine the gra-
dient descent process.

3.3 Fine Tuning and Results

To identify the best parameters, we conducted several
experiments. In this subsection, we present the out-
comes obtained.

To accomplish the grid search, as outlined in Section
3.1, and thus prepare the model for deployment in the
federated environment, we fine-tuned the customized
architecture on the CIFAR-10 dataset for 400 epochs.
This experiment yielded an accuracy of 0.423 and a
loss of 0.369 on the test set. However, these results
did not achieve satisfactory accuracy. The underlying
reason for these values lies in the frozen architecture,

Table 3: Here are all the hyperparameters chosen for the
refitting phase.

Sched. ITD | B 0.99
Ns L 1 nc %2
o 100 | @ 0.1
Y 5 18 05

which imposes strict control over the convergence ca-
pabilities.

Building upon the insights gained from the model dur-
ing both the grid search and the hyperparameters de-
rived from the random search, as listed in Table 3, we
commenced the training phase and subsequent anal-
ysis of the results. The training phase consisted of
T = 3 local epochs and 7" = 30 rounds, utilizing the
FedAvg algorithm and the Inverse Time Decay (ITD)
scheduler, with a population of M = 10 clients and a
cohort size $©) = 7.

The rate of convergence of the model through the
federated learning rounds is plotted in Figure 7. In
the latter figure, both losses (during the training and
validation phases) decrease almost simultaneously. In
Table 4, the outcomes obtained are reported. These
results demonstrate that the model can accurately
classify data distributed across the federated commu-
nity. Upon examination of the performance metrics,
we note that the variant with Group Normalization
achieves a better loss value for both the training and
test sets, albeit with a slightly lower accuracy. This
could be attributed to the Categorical Focal Cross En-
tropy, which considered some samples to be relatively
easy to classify, thus reducing their importance during
training, similar to how it is used to compute samples
within the test set.

In addition, the obtained results were also pre-
sented alongside the classification accuracy for each
detected malware family, depicted in a confusion ma-
trix reported in Figure 8. As observed, the model
demonstrates robust recognition capabilities across
most families, except Dowgin and Trusted samples.
The model’s predictions were met with perplexity due
to dataset imbalances or similarities among these two
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Table 4: As we can discern from the table, the results appear promising. The MobileNetV3 architecture yields a simple
yet effective embedding of the images, facilitating convergence in both classical and federated learning strategies. In this
scenario, both Batch Normalization and Group Normalization produce comparable results. However, when training capacities
vary among nodes, the utilization of BN may adversely affect global training capabilities due to fluctuations in batch sizes.

Model E(P(TR)) A(P(TR)) E'(P(VA)) A(p(VA)) ﬁ(P(TS)) -A(P(TS))
Centralized w. BN 0.032 0.933 0.041 0.933 0.035 0.930
Centralized w. GN 0.025 0.918 0.050 0.880 0.044 0.875
Federated w. BN 0.023 0.938 0.037 0.930 0.040 0.940
Federated w. GN 0.010 0.961 0.037 0.910 0.036 0.923
Convergence Rate of Federated Learing _ vacy. In 2016, Google introduced FL in the literature
B for the first time to improve language prediction in
° Gboard. Recently, it has also been employed in other
0.20 fields like malware detection. In detail, we furnish an
overview of different work conducted in malware de-
goas tection using Machine Learning and Deep Learning in
010 \ Section 4.1, while in Section 4.2 a resume about the
\ usage of Federated Learning is provided.
0.05 S D
o T 4.1 Malware Detection
0 5 10 15 20 25 30

Figure 7: Loss trend during the training and validation
phases.
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Figure 8: Confusion matrix obtained with the classification
of the test set.

converted applications.

4 RELATED WORK

Federated Learning usage is catching on in different
fields thanks to the possibility of creating collabora-
tive model training without compromising data pri-
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Authors in (Kim et al., 2018) proposed a framework
able to identify malware in the Android environment
using 200 diverse features. This article represents the
first attempt to apply multimodal neural networks in
malware detection. After training the models, they
achieved outstanding results, attaining an accuracy
rate of 98%. This outcome was realized using a vast
dataset comprising over 30,000 images sourced from
both malware samples and trusted Android applica-
tions.

Researchers in (Li et al., 2018) presented an approach
to identify dangerous applications through permis-
sions. In the Android ecosystem, permissions are re-
quired to execute particular actions or access specific
resources on the device. In SIGPID Li ef al. em-
ployed machine learning reached an accuracy, preci-
sion, recall, and F-Measure of 90%.

Thanks to advances in technology, the quantum topic
is gaining momentum nowadays. In (Mercaldo et al.,
2022a), authors presented for the first time the us-
age of quantum machine learning in the malware de-
tection field. In detail, they proposed a comparison
between several state-of-the-art architectures and two
quantum models (i.e., a hybrid quantum model, and
a fully quantum neural network) using a dataset com-
posed of almost 9,000 images of malicious and legit-
imate Android applications.

4.2 Federated Learning

Authors in (Gdalvez et al., 2020) presented “LiM”
a framework based on Federated Learning able to
classify malware. Galvez ef al. employed a semi-



An Approach for Privacy-Preserving Mobile Malware Detection Through Federated Machine Learning

supervised classification on a dataset composed of
50,000 apps. As a result, they achieved an F1 score of
95% on the cloud server, while clients obtained just
one false positive over 100 apps.

Federated Learning is used in several areas of cyber-
security. Authors in (Khramtsova et al., 2020) pre-
sented an FL approach to identify malicious URLSs
within a managed security service provider context,
with consideration of different data characteristics
and customer infrastructure sizes.

Non-identicalness remains an open problem, and
most research fails to address this issue adequately
when discussing Federated Learning. However, au-
thors in (Jiang et al., 2022) have developed a multi-
dimensional model comprising a CNN and a Graph
Neural Network (GNN), aggregated using the custom
algorithm FedAdapt, which dynamically adapts to the
best contributor nodes. This method could address
variance concerns by initializing sub-optimal weights
for the global model and then adapting them locally.
Their approach differs from ours in that they address
the limitations of CNN by leveraging the capabilities
and simplicity of the GNN. In contrast, we propose
the use of Group Normalization to address the limita-
tions of FL.

Researchers in (Abdel-Basset et al., 2022) proposed
for the first time the usage of agnostic Federated
Learning. These techniques aim to be more versatile
and scalable, making them suitable for a wide range
of applications and settings, including those with lim-
ited resources or varying data privacy requirements.
In the framework proposed, they obtained the images
by converting the bytecode from malware applica-
tions. Different from them, we focused our article on
the FL applied to the Android environment.

Another approach to addressing the limitations of fed-
erated learning involves evaluating contributions from
edge nodes. If a contribution effectively improves the
global model, it is chosen, thereby enhancing the final
distributed model. This idea is explored in (Chaud-
huri et al., 2023), where the DW-FedAvg algorithm
dynamically weights the effectiveness of gradient up-
dates proposed by clients. While this approach can
contribute to the learning rate of federated learning
methodologies in non-iid situations, we opt for the Fe-
dAvg algorithm, which minimizes the need for addi-
tional communications between the server and clients,
involving a learning rate scheduler client side in order
to better control the rate of convergence.

In (Fang et al., 2023), researchers introduced a novel
framework called “FEDroid,” leveraging Federated
Learning principles. To obtain a constantly updated
framework, Fang et al. innovatively employed genetic
evolution. This approach simulated the evolutionary

dynamics of malware, facilitating the generation of
diverse Android malware variants from conventional
samples. To train the model they employed a litera-
ture dataset named Drebin. Unlike them, we used a
dataset built by the authors composed of images ob-
tained from the Dalvik Executable code retrieved after
the reverse engineering of the Android Package.

S CONCLUSIONS AND FUTURE
WORK

In conclusion, our work aligns well with the exist-
ing landscape of federated projects focusing on mal-
ware classification. However, some avenues for fur-
ther development could enhance the realism of our
work, bridging the gap between simulations and the
deployment of the federated classifier.

The dataset used for this problem is relatively small,
especially considering the distributed nature of the
FL environment. As new clients join, the dataset
shards become smaller, presenting challenges for lo-
cal convergence. As a future endeavor, we aim to ex-
plore larger datasets tailored to the problem domain
or investigate synthetic data generation methods ca-
pable of accurately reproducing malware characteris-
tics. This would enable us to experiment with Latent
Dirichlet Allocation (LDA) to better understand the
significance of clustered data and to increase the label
distribution skew, without making prior assumptions.
Moreover, the data preparation process, which in-
cludes decompilation, conversion, and labeling of ap-
plications, could be automated within a client-side
application. Such automation would streamline the
initial steps of a decentralized malware classifier.
It’s essential to eliminate the need for specialized
tools, such as Grad-CAM, from the malware analyst’s
toolkit. Alternatively, we could integrate these tools
to forward malicious code to an automated malware
analyst, such as a Large Language Model (LLM).
This approach would enhance the interpretability of
the proposed method and make it accessible to non-
expert users.

Additionally, it’s imperative to analyze data commu-
nication, model deployment, and update protocols in
a distributed environment to assess traffic load and
performance overhead on the client side. This com-
prehensive evaluation will help us ascertain the possi-
bilities and limitations of the proposed methodology.
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