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Abstract: With the rise in digital technology and the fast pace of life, as well as the change in lifestyle due to the 
pandemic, people have started adopting online shopping in the garment industry as well. Hence, research on 
Virtual Try-On (VTO) technologies to be implemented in virtual fitting rooms (VFRs) has drawn significant 
attention. The existing VFR technologies rely on deep generative models with an end-to-end pipeline, from 
feature extraction to garment warping and refinement. While currently there are 2D and 3D VTO solutions, 
the 3D ones have enormous commercial potential in the fashion market as the technology has been proven 
effective for providing a photo-realistic and detailed try-on result. However, the existing 3D VTO solutions 
principally rely on annotated human body shapes or avatars, which are unrealistic. By integrating the 
technologies embedded in both 2D and 3D VTO solutions, this paper proposes a VTO solution that relies on 
geometric settings in the 3D space namely the 3D Virtual Fitting Network (3D VFN), that solely relies on 2D 
RGB garment and single-person human images as inputs, generating a photo-realistic warped garment output 
image by utilizing the geometric settings in the 3D space. 

1 INTRODUCTION 

The COVID-19 pandemic impacted 470 million 
people worldwide by March 2022 in various aspects, 
including social life and the economy. In the garment 
industry, in March 2020, Bloomberg reported that 
approximately 1,089 garment factories in Bangladesh 
had faced orders worth $1.5 billion being scrapped 
(Devnath, 2020). Also, the indefinite closure of 
factories which leads to unacceptable salary cuts and 
retrenchments is unavoidable. In response to the 
pandemic, significant retailers in the United States, 
such as H&M, Nike, Adidas, etc., greatly reduced 
their operating hours or even announced their outlet 
closures. In such scenarios, it is recommended to stay 
home and do online shopping if possible. This has led 
to a notable decline in physical shoppers, which in 
turn increases the number of online shoppers. It can 
be concluded that the pandemic has remarkably 
transformed the human lifestyle as well as shopping 
behavior. For retailers to stand out from other 
competitors, the key is to provide a favorable 
environment for e-shopping. 

 
a  https://orcid.org/0000-0003-2026-5666 

In addition to the pandemic, advanced technology 
has also made, online shopping possible. According 
to Statista, internationally, the total amount of goods 
and services sold online has increased from US$1.3 
trillion in 2014 to US$2.8 trillion in 2018. Up to 2021, 
it has further increased to US$4.9 trillion, and the 
forecast shows that it will grow by 50% in the coming 
four years, to approximately US$7.4 trillion by 2025 
(Chevalier, 2022). As such, Statista states that 
globally as of 2018, the garment industry has 
generated 57% of the total revenue in e-commerce, 
with apparel as the most popular category (Chevalier, 
2022). Specifically, the VFR plays a vital role in the 
clothing and garment industry. It not only eases their 
shopping experience from home with try-on virtually, 
but it also provides retailers with an opportunity to 
bridge the gap between online and offline shopping 
experiences.  

Following the trend, the VTO technology 
embedded in the VFRs has drawn much attention. 
Numerous research on the technology has been done 
with uncountable networks introduced, whereby 
almost all of them are of 2D image-based solutions, 
that do not resort to any 3D information. Such 
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networks include the Virtual Try-On Network 
(VITON) (Han et al., 2018), UVTON (Kubo et al., 
2019), etc., rely only on the Thin Plate Spline (TPS) 
transformation (Bookstein, 1989) for garment 
warping, which is known as inaccurate. Undeniably, 
2D VTO solutions provide promising results 
economically as they only involve the reformulation 
of simple images. Whereas, the 3D VTO solutions 
such as the Monocular-to-3D Virtual Try-On 
Network M3D-VTON (Zhao et al., 2021), Clothing 
Three-Dimensional Reconstruction for Hybrid 
Image-Based Virtual Try-On (CloTH-VTON+) 
(Minar & Ahn, 2020), 3D Multiple Pose Virtual Try-
On Network 3D-MPVTON (Tuan et al., 2021), are 
costly to develop as they require high-specification 
devices for data collection and 3D modeling 
computations, and/or fancy cameras for physics 
simulation to capture 3D information underneath, and 
processing units or sensors for modeling and 
rendering. Nevertheless, they provide promising fine 
details in the output with 3D information underneath, 
enhancing user experiences during garment try-on.  

To address the limitations faced, the 3D VFN 
aims to fit a garment image onto a single-person 
image, synthetically, with photo-realistic details and 
deformations well-preserved. This paper introduces a 
new approach for 3D try-on for garments without 
utilizing any high-end equipment, that wholly relies 
on mathematical computation and image processing 
tasks. With only a garment image and a single-person 
image as inputs, the network reproduces the warped 
garment image in 3D with texture, deformations, and 
any other lifelike information preserved. The 3D 
VFN is comprised of five stages, the Data Refinement 
Stage (DRS), the Geometric Matching Stage (GMS), 
the Depth Estimation and Refinement Stage (DERS), 
the Try-On Fusion Stage (TFS), and lastly, the 3D 
Point Cloud Modelling Stage (3D-PCMS). The main 
contributions of the 3D VFN are:  
• Achieved the garment try-on with semantic 

information well-preserved.  
• Achieved the human body reconstruction in 3D 

space with only a 2D single-person image.  
• Improved the geometric matching of try-on 

quality in terms of alignment and layout 
adaptation. 

• Incorporated the image processing algorithms for 
detecting the edge within an image based on the 
image gradients and for alignment and geometric 
characteristics purposes. 
 
 

2 LITERATURE REVIEW 

2.1 2D VTO Solution 

2D VTO solutions solely rely on RGB images with 
no involvement of 3D information. VITON (Han et 
al., 2018) first generates a clothing-person agnostic 
representation with extensive features. The network 
is equipped with a multi-task encoder-decoder 
generator to generate a course warped garment image 
with the help of the clothing mask, and a trained 
network to generate a final warped garment image 
through composition and refinement processes. To 
preserve the deformations and comprehensive visual 
patterns, VITON (Han et al., 2018) implements TPS 
transformation (Bookstein, 1989) with shape context 
matching estimation. The standard limitation faced by 
most VTO solutions is that they are only applicable 
to images with human models in an upright position. 
To overcome this, UVTON (Kubo et al., 2019) 
implemented ultraviolet (UV) mapping for various 
postures, ensuring high-quality transformation for the 
geometric information. The texture mapping stream 
utilizes UV mapping technology with two assistive 
modules for painting and refinement. It implements 
DensePose for the estimation and mapping of points 
of human pixels in 2D RGB images to 3D human 
module surfaces. The points are mapped to the 
correlated points of the consumer following the UV 
coordinate information found in the IUV, generating 
a highly defined body part. High Fidelity Virtual Try-
On Network via Semantic Adaptation (VTON-HF) 
(Du et al., 2021) proposed a Semantic Map-based 
Image Adjustment Network (SMIAN) which 
aggregates the component features and reconstructs 
the component images through semantic mapping to 
generate aggregated body components. To get rid of 
the texture occlusion and confusion in the semantic 
mapped result, the component synthesizer interlaces 
the processed components with that obtained from 
reference images earlier, to provide a result to be 
further optimized by the SMIAN loss. 

2.2 3D VTO Solution 

3D VTO solutions are believed to be more effective 
because of the 3D information. M3D-VTON (Zhao et 
al., 2021) reconstructs a 3D try-on mesh by taking 
only a garment image and a person image as inputs. 
It proposes a self-adaptive pre-alignment to transform 
the garment image to be deformed with the TPS 
transformation, providing a clothing-agnostic person 
representation and a double-depth map. The map is 
refined with the help of the shadow information to  
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Figure 1:  The overall framework of the proposed 3D VFN. The network comprises five stages (i.) Data Refinement Stage 
(DRS) in green; (ii.) Geometric Matching Stage (GMS) in yellow; (iii.) Depth Estimation and Refinement Stage (DERS) in 
orange; (iv.) Try-On Fusion Stage (TFS) in blue; (v.) 3D Point Cloud Modelling Stage (3D-PCMS) in brown. 

generate a 2D try-on result. The refined 2D result is 
then spatially aligned with the depth map to form a 
RGB-Depth representation, that is furnished with 
colour point clouds to be triangulated to generate 
thefront mesh. While the back mesh implements the 
fast-marching method (Telea, 2004). CloTH-VTON+ 
(Minar & Ahn, 2020), introduces a seamless 
integration of image-based deep learning VTO 
systems and 3D modelling for shaping deformation. 
It offers an edge-to-edge fully automated pre-
programmed 2D clothing matching process. It utilizes 
the SPML model as a reference for 2D matching and 
applies TPS estimation to generate a 2D matched 
result. The vertices of the matched result are 
projected into 2D space for alignment, then again 
projected into 3D space for 3D model reconstruction. 
3D-MPVTON implements the 3D clothing 

reconstruction approach offered in CloTH-VTON+ 
with try-on synthesis, providing far better results and 
improved accuracy. In contrast, 3D-MPVTON offers 
more focused approaches in each stage, giving better 
outcomes with reduced artifacts. 

3 METHODOLOGY 

Figure 1 comprises five stages which are as follows: 
• Data Refinement Stage (DRS) coloured in green. 

This stage is responsible for refining input data 
by performing body posture estimation, 3D 
human body reconstruction, semantic body parts 
segmentation, and filtering of images with the 
Sobel Filter.  
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• Geometric Matching Stage (GMS) coloured in 
yellow. This stage is responsible for the garment-
person alignment and texture mapping.  

• Depth Estimation and Refinement Stage (DERS) 
coloured in orange. This stage is responsible for 
human body depth generation and refinement.  

• Try-On Fusion Stage (TFS) coloured in blue. 
This stage is responsible for garment warping to 
generate a 2D try-on result.  

• 3D Point Cloud Modelling Stage (3D-PCMS), 
coloured in brown. This stage is responsible for 
the unprojection of RGB-Depth representation of 
the try-on result to 3D point cloud data and 3D 
point cloud modeling. 

3.1 Data Refinement Stage (DRS) 

This stage shown in Figure 1, begins with body 
posture estimation with OpenPose with the Body 25 
model. OpenPose comprises a two-branch multi-
stage CNN architecture, which generates the output 
in two forms: a 2D image pose map and JSON key 
point coordinates. The pose map is then passed 
through a feature encoder for 3D human body 
reconstruction and semantic body parts segmentation 
tasks. The 3D human body reconstruction adopts the 
Multi-Level Pixel-Aligned Implicit Function (Saito et 
al., 2020) that predicts the normal maps for both 
frontside and backside of the human detected in the 
image, then reconstructs the human body in 3D space. 
The semantic body parts segmentation proposes an 
approach like DeepLabv3+ that shows a huge 
improvement to DeepLabv2 which produces 
inaccurate and noisy results. The proposed approach 
implements the Atrous Spatial Pyramid Pooling 
(ASPP) scheme and cascades an additional decoder 
module. The proposed approach adapts the Xception 
model (Chen et al., 2018) for its proven outstanding 
performance and rapid computation as shown in 
Table 1. Apart from that, it also incorporates the 
Sobel algorithm on the single-person human image 
for the edge detection process, generating the image 
gradients Sobel X and Sobel Y, which are the first-
order derivatives of the image in the x- and y-
directions, respectively as shown in Figure 2. The 
proposed model is trained on a custom dataset on 
Google Colab with 50 epochs, 2,500 steps, and a 
batch size of 2. 

Figure 3 shows the proposed model architecture 
for semantic body parts segmentation. The ASPP first 
up samples the atrous convoluted features by a factor 
of 4, while the decoder simultaneously performs a 
1x1 convolution for the low-level features to reduce 
its channels to prevent outweighing of important 
 

Table 1: Segmented Body Maps with DeepLabv2, and with 
the Enhanced LIP Dataset with the Proposed Approach. 

Input 
Single-
Person 
Image 

DeepLabv2 (Chen et al., 2018) Proposed 
Approach

Look into 
Person (LIP) 
(Liang et al., 

2018)

Active Template 
Regression 

(Liang et al., 
2015) 

Enhanced 
LIP 

  

features, then both the convoluted features are 
concatenated together. The concatenated features are 
then passed through a 3x3 convolution to refine the 
features. Lastly, the convoluted features are up-
sampled by a factor of four.  

 
Figure 2: The Image Gradients, Sobel X (Middle) and Sobel 
Y (Right) Generated with the 3D Human Body 
Reconstruction by Implementing the Sobel Filter. 

 
Figure 3: Proposed model architecture for semantic body 
parts segmentation. 
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3.2 Geometric Matching Stage (GMS) 

Figure 1 first performs the affine transformation to 
linearly map the garment image to the single-person 
image for alignment in position- and size-wise 
purposes: 

GAff K 00 K G11 G12G21 G22 xAPPSM , yAPPSM - xAGM , yAGM  (1)

Whereby GAff is the affine transformed garment. 
The relationship indicates the scale factor of the size 
of the garment image and the person image, such that 
the garment image is ensured bigger than the person 
image in size. The midpoints of the pose map and 
garment image help align the garment image with the 
pose map to fit the person's size. Subsequently, the 
aligned affine transformed garment is passed through 
the TPS transformation network with the person 
image to obtain a TPS parameter to warp GAff to the 
warped garment, transferring the texture and 
deformations as well. The GMS proposes an 
improvement on the transfer of geometric details with 
affine transformation for alignment before TPS 
transformation, which differs from other VTO 
solutions. The transformations are presented in 
Figure 4 and Figure 5. 

 
Figure 4: The Affine Warped Garment, GAff, with Affine 
Transformation. 

 
Figure 5: The TPS Warped Garment, GTPS, with TPS 
Transformation. 

 

3.3 Depth Estimation and Refinement 
Stage (DERS) 

This stage is shown in Figure 1. M3D-VTON (Zhao 
et al., 2021), introduces an architecture for depth 
estimation and refinement tasks based on U-Net 
(Ronneberger et al., 2015). However, it fails to 
generate fine details, providing a relatively corrupted 
outcome. As an improvement to M3D-VTON, in this 
stage, we use the Deep Residual U-Net (Zhang et al., 
2018) which reorganizes the U-Net structure with 
residual connections and an identity mapping path. It 
comprises three stages: encoder, bridge, and decoder. 
The stages are made up of residual connections built 
by two 3x3 convolution blocks, in which each 
comprises a convolutional layer, a Batch 
Normalisation (BN) layer, a Rectified Linear Units 
(ReLU) activation layer, and an identity mapping 
path. the encoder first encodes the inputs into several 
compact representations by applying a stride of two 
to the first block for feature map halving, instead of 
feature map down sampling with a pooling operation. 
With the bridge that connects the encoder to the 
decoder, the decoder then recovers the compact 
representations and categorizes them pixel-wise. The 
feature map is up-sampled within the decoder and 
concatenated from the encoder before each residual 
unit. Lastly, the multi-channel feature maps are 
unprojected with a 1x1 convolutional block and a 
sigmoid activation layer. The proposed architecture 
combines the pros of U-Net (Ronneberger et al., 
2015) and residual neural network (Zhang et al., 
2018), giving a smoothened training process. It also 
comprises skipped connections between high and low 
levels of the network, which greatly facilitates 
information propagation without degradation, 
reducing the parameters needed. The proposed model 
is presented in Figure 6. The training of the proposed 
architecture is done on Google Colab, with 40 epochs, 
1,500 steps, and a batch size of 3.  

3.4 Try-On Fusion Stage (TFS) 

To synthesize a realistic human body texture for 3D 
human body mesh, this stage implements the Deep 
Residual U-Net (Zhang et al., 2018) constructed in 
the previous section to seamlessly merge the warped 
garment and the single-person image. The synthesis 
action generates a non-occluded 2D warped garment 
image with 3D information underneath, that is 
extracted from the spatial information of the human 
body along the z-axis embedded in the front depth 
map. This is shown in Figure 1. 
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The last stage introduced a try-on fusion network 
for synthesizing a realistic human body texture. The 
network architecture proposed for this stage, is 
similar to that of the DERS, as illustrated in Figure 1. 
The warped garment and the person image merge and 
fuse for a seamless fitting. For obtaining the 2D 
warped garment image, 𝑊 , the synthesis action is 
guided by the front depth map, segmented body parts 
map, and the preserved person-part map. On the other 
hand, the synthesized output also comprises 3D 
information, which will be unprojected in the next 
stage. The 3D data is extracted from the spatial 
information of the human body along with the z-axis 
lying underneath the front depth map. With the 
proposed network architecture, a precise try-on result 
is achieved even for cases with occlusions. 

3.5 3D Point Cloud Modelling Stage 
(3D-PCMS) 

The 3D point clouds are obtained by unprojecting the 
double-depth maps with screened Poisson surface 
reconstruction (Kazhdan & Hoppe, 2013) as shown in 
Figure 7. The frontal mesh texture is coloured 
according to the fitting result, while the back mesh is 
inpainted with a fast-marching method (Telea, 2004) 
by filling the backside of the head with a similar hair 
colour, then mirroring the inpainted image back view 
to the back mesh. Further image processing 
procedures are implemented to generate a complete 
3D human with a warped garment, which includes 
computation of surface normals, screened Poisson, 
and flattening of visible layers. 

4 EXPERIMENTAL RESULTS 

A pre-trained network from Zhao et al.  (Zhao et al., 
2021) is adopted. The network is trained on a dataset 
extracted from randomly extracting images from the 
For evaluating the performance of the algorithm the 
12 test sets are used as shown in Figure 8. The 
platform used is Python 3.8.13 and PyTorch 1.6.0 for 
developing, in an Anaconda environment, on 
PyCharm Integrated Development Environment 
(IDE). 

 
Figure 6: The Deep Residual U-Net Architecture for the 
DERS. 

 
Figure 7: The Image Processing Algorithms Implemented 
in the 3D-PCMS. 
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Figure 8: Test Sets (12 Sets, Each Set is Made Up of a 
Single-Person Image and a Garment Image). 

The results obtained show both good and 
unsatisfying results. For performance evaluation, the 
results are compared with several methods. As shown 
in Table 2 and Table 3 by calculating the Structural 
Similarity Index (SSIM) and Fréchet inception 
distance (FID). The performance evaluations were 
performed on both full-body and upper-body try-ons 
independently. 

Table 2: Performance evaluation for full-body try-on. 

Network SSIM FID 
VITON (Han et al., 2018) 0.8861 27.63 
UVTON (Kubo et al., 2019) 0.8342 23.11 
CloTH-VTON+ (Minar & Ahn, 
2020) 

0.9012 19.25 

3D-MPVTON (Tuan et al., 2021) 0.9134 19.87 
3D VFN (Proposed Network) 0.9342 18.42 

The quality evaluation for full-body try-on shows 
that the proposed 3D VFN achieves the highest SSIM 
of 0.9342, indicating the highest similarity 
measurement between two images, and the lowest 
FID of 18.42, indicating the lowest distance 
measurement between the feature vectors within the 
image. The quality evaluation for upper-body try-on, 
on the other hand, shows that the proposed network 
has the third-highest SSIM and second-lowest FID, 
which also indicates a satisfying try-on quality with 
room for improvement.  

Table 3: Performance evaluation for upper-body try-on. 

Network SSIM FID 
VITON (Han et al., 2018) 0.8941 27.53 
UVTON (Kubo et al., 2019) 0.8843 29.73 
CloTH-VTON+ (Minar & Ahn, 
2020) 

0.8887 27.45 

3D-MPVTON (Tuan et al., 2021) 0.8736 27.89 
3D VFN (Proposed Network) 0.8857 27.51 

 
Figure 9: Examples of the Unsatisfying Cases of the 
Proposed 3D VFN. 

The proposed network also suffers from several 
weaknesses as shown in Figure 9. Firstly, the network 
fails to estimate the spatial gap along the z-direction 
from 2D RGB images which raises distortions. In 
addition, the fast-marching inpainting method 
(TELEA) fails to recognize semantic parts to be 
inpainted accordingly. The weaknesses are mainly 
brought by the immaturity of the network trained due 
to an under-defined dataset. Available datasets only 
provide garment and single-person images in 2D 
RGB, without any sideways and spatial information. 
To achieve higher quality and performance for try-on 
garments, the dataset for training should be fully 
furnished with various annotations. Hence, to train 
the network, the dataset shall comprise garment and 
single-person images taken from all four directions 
(front, back, left, and right). Collecting such a large 
and diverse dataset is challenging as it involves 
capturing numerous images from different 
perspectives. Nevertheless, a more mature network 
can be constructed with such a rich dataset. 

5 CONCLUSIONS 

This paper introduces a 3D VTO solution, the 3D 
VFN, which reproduces the warped garment human 
image in 3D space with photo-realistic information 
preserved. The proposed network solely relies on 2D 
RGB images with 24-bit depth and generates a 3D 
warped garment as output. The network architecture 
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designed comprises of five stages, which are the Data 
Refinement Stage (DRS), Geometric Matching Stage 
(GMS), Depth Estimation and Refinement Stage 
(DERS), Try-On Fusion Stage (TFS), and 3D Point 
Cloud Modelling Stage (3D-PCMS), each carries 
distinct yet significant role. In the architecture, in the 
DRS, the network first takes in the 2D RGB garment 
and single-person images as inputs and then refines 
them into several representations. The GMS performs 
the affine and TPS transformations for alignment and 
geometric characteristics transfer purposes. The 
DERS estimates the human body depth and refines it, 
followed by the TFS for synthesis action to generate 
the 2D warped garment human body image. Lastly, 
the 3D-PCMS models and computes the 3D point 
cloud of the 3D warped garment human body for 
finalising it. For assessing the proposed network, 
SSIM and FID were computed by testing the network 
on several test sets and the results tabulated show 
satisfying results and performance. 
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