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Abstract: The eighth wave of Coronavirus infection in Tokyo hit high records in December 2022. This paper aims to 
build a Tokyo-based down-scaled simulation environment to explain the eight epidemic trends using agent-
based modelling and extended SEIR denotation. Four key factors are examined in this research, that are: 1. 
Vaccination, 2. Virus mutation, 3. Government policy and 4. PCR test. Our investigation uncovers that the 
reported cases during the eight epidemic waves represent merely a fraction of the true extent of infections. 
Additionally, our study innovates by simulating the decline of antibodies at the individual level. Our study 
also innovates in combining agent-based modelling and extended SEIR modelling to simulate eight 
continuous epidemic waves in Tokyo, considering circumstances like Olympics, state of emergency 
declaration, traveling policies etc. Upon analyzing the simulated outcomes, we observe a correlation between 
the onset of new epidemic waves and the decrease in the population possessing antibodies. Our simulation 
further indicates the necessity for aligning the level of PCR testing with the available medical resources. 
Finally, by comparing the simulation results with actual data for the eighth wave, we forewarned of a potential 
resurgence in the epidemic during May and June 2023.

1 INTRODUCTION 

On May 8, 2023, a significant measure was taken in 
Japan as the government downgraded COVID-19 
from a class 2 infectious disease to a class 5 disease, 
marking a pivotal moment in the country's fight 
against the virus.  This reclassification signifies a shift 
in the severity and risk assessment of COVID-19 in 
Japan, prompting a re-evaluation of public health 
policies and strategies. This paper specifically 
focuses on the critical contribution of epidemiology 
in the context of SARS-CoV-2 in Japan, aiming to 
shed light on its vital role in advancing global health 
objectives during the ongoing COVID-19 pandemic.  
At the initiation of our study, we posit that the 
epidemic trend is chiefly shaped by four aspects: 
vaccination; virus mutation; government policy, and 
PCR testing. This assumption is grounded in the 
following considerations: 1) vaccination plays a 
crucial role in generating antibodies, thereby curbing 
the spread of the Coronavirus; 2) mutations in the  
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Table 1: Summary of agents’ health status. 

virus can potentially enhance its transmissibility by 
evading immunity; 3) government policies, such as 
travel restrictions, aim to mitigate the spread of the 
virus; and 4) the adequacy of PCR testing capacity 
significantly influences the tally of confirmed cases. 

This study utilizes an extended SEIR framework 
(refer to Table 1) along with the construction of an 

States Meanings 

S1 Susceptible, healthy, no antibody or vaccination  

E Exposed, within the infection range to I1 

I1 Infected, unconfirmed and not tested 

I2 Infected, confirmed via PCR test 

V Healthy, vaccinated, possess antibody 

R Healthy, cured, possess antibody 

S2 Healthy, susceptible, vaccinated, lose antibody 

D Dead 
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agent-based model. Further elaboration on these 
methods will be presented in Sec. 3. The actual data 
pertaining to the four factors mentioned are sourced 
from the Tokyo Metropolitan Government and will be 
utilized for model validation. Our primary objective 
is to replicate the onset, peak, decline, and maximum 
daily infection rates of each wave. In continuation of 
our previous study (Chu et al., 2023), our goal is to 
not only explain the occurrence of the eight waves but 
to simulate possible infectious diseases in the future. 

The paper is structured as follows: Firstly, we 
review existing literature on Coronavirus modelling 
research, covering both international and Japanese 
studies (Sec. 2). Next, in the data and methodology 
section (Sec. 3), we explore the four key 
considerations and elaborate on our research 
methodology. Following that, in the model 
construction section (Sec. 4), we explain how the 
model was developed. Then, in the verification and 
calibration phase (Sec. 5), we offer substantial 
evidence of the model's effectiveness, a long with 
a cautious calibration process. Subsequently, we 
conduct analysis and depict findings from simulations 
(Sec. 6). Finally, we summarize recommendations 
and draw conclusions (Sec. 7). 

2 LITERATURE REVIEW 

2.1 A Review of International Research 

To provide a comprehensive overview, this literature 
review begins by examining the current state of 
international research in the field. 

Purkayastha and colleagues compare the 
simulation results among five epidemiological 
models for transmission of SARS-CoV-2 in India 
(Purkayastha et al., 2021). According to their 
research, SEIR-FANSY model outperforms others by 
having the highest certainty in terms of width of 95% 
credible interval. Still their research fails to capture 
the government interventions or citizen’s behavioural 
changes. While policies like lockdown across India 
did play an unignorable role in epidemic spreads.  

Chadi and others pointed out the problems of 
vaccine distribution, whether to prioritize vaccinating 
those who had received the first dose or those who 
had never vaccinated (Saad-Roy et al., 2021). Despite 
the controversy surrounding this approach, many 
jurisdictions have decided to proceed with the 
delayed second dose strategy. This has resulted in a 
significant increase in the number of people who have 
been vaccinated. Researchers, however, argue that 
one-dose strategies may be effective in the short term, 

but may not be the best approach in the long term if 
they do not account for immune robustness. Their 
study serves as inspiration to properly ensure the 
vaccination rate of the second dose when conducting 
vaccination simulations. 

Hoertel and others build a stochastic ABM model 
based on real-world data, including information on 
the demographics of the French population, the 
transmission dynamics of the virus, and the 
effectiveness of various NPIs (Hoertel et al., 2020). 
The model was applied to simulate the spread of the 
disease under different scenarios, including the 
implementation of different NPIs such as social 
distancing, mask wearing, and contact tracing. Their 
model is well calibrated and validated with a 
Pearson’s R value of 0.99 for ICU-bed occupancy as 
well as cumulative mortality. One of the limitations 
of their research is not considering the decline of 
antibodies which an individual acquires through 
either recovery or vaccination. 

Cai and his team developed an age-structured 
stochastic compartmental susceptible-latent-
infectious-removed-susceptible model to simulate 
transmission of SARS-CoV-2 Omicron in China (Cai 
et al., 2022). Furthermore, their model takes into 
account specific data on vaccine coverage among 
different age groups, the effectiveness of vaccines 
against various clinical outcomes, the gradual decline 
of immune protection over time, the utilization of 
diverse antiviral therapies, and the implementation of 
nonpharmaceutical interventions. Nonetheless, the 
mortality rate was assumed to remain constant over 
the projection period, while it actually depends on 
multiple factors such as virulence and medical 
resources. 

2.2 A Review of Japanese Research 

To delve deeper into the subject matter, the literature 
review then shifts focus to research conducted by 
Japanese scholars. 

Chiba outlines strategies for controlling the 
spread of epidemics in Japan, focusing on mobility 
restrictions, reduced restaurant operating hours, and 
remote work (Chiba, 2021).  

Yamauchi et al. investigate the relationship 
between epidemic trends, governmental 
interventions, and daytime population density in 
Tokyo. Their findings indicate a positive correlation 
between increased contact opportunities and higher 
infection rates (Yamauchi et al., 2022). 

Murakami et al. employ agent-based modelling 
and GPS analysis to simulate the spread and 
containment of infections in Tokyo. Their research 
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underscores the significance of city-wide lockdowns 
and preventive measures in service establishments 
(Murakami et al., 2022).  

While several studies have contributed valuable 
insights into the transmission dynamics and control 
strategies of COVID-19, there are still important 
research gaps that need to be addressed, such as the 
absence of simulation models that incorporate 
antibody decline on an individual level, the lack of 
consideration for the impact of declining immunity 
due to recovery or vaccination, and the need to 
explore optimal vaccination strategies.  Furthermore, 
existing research often fails to capture the oscillatory 
growth and decay behavior of the virus incidence 
curve, particularly in terms of the subsequent waves 
after the initial outbreak. This limitation in 
predictability is particularly relevant given the 
observation that the number of confirmed patients in 
the eight epidemic waves in the Tokyo were only the 
tip of the iceberg. Difference in prediction and 
observation suggests a need for more comprehensive 
modelling approaches. Moreover, the literature 
review reveals that previous studies have not fully 
accounted for the interplay between government 
interventions, citizen behavioral changes, and the 
dynamics of virus transmission. Understanding the 
role of government policies and individual behaviors 
in the spread of the virus is crucial for designing 
effective control measures. 

To address all these research gaps, this study aims 
to explain the eight epidemic waves in the Tokyo 
using agent-based modelling and an extended SEIR 
denotation. By incorporating the dynamics of 
antibody decline on an individual level and 
considering factors such as vaccination, virus 
mutation, government policy, and PCR test, this 
research seeks to provide a more comprehensive 
understanding of the transmission dynamics and 
control strategies for COVID-19 in the Tokyo area. 

3 DATA AND METHODOLOGY 

3.1 Data Collection 

We conducted a preliminary examination of the four 
proposed factors using publicly available data and 
information from the Tokyo Metropolitan website. 
All the gathered data and information are utilized in 
the model development outlined in Sec. 4. 

 
1 Severe rate = The number of severe patients receiving 

medical treatment/ The number of confirmed patients. 

3.1.1 Vaccination 

It is clear that mass vaccination plays a crucial role in 
decreasing the severity and mortality rates (Larrauri 
et al., 2022). Table 2 provides an overview of the five 
vaccination rounds conducted in Tokyo.  

Table 2: Timeline of vaccination rounds in Tokyo and 
vaccination rates as of Nov. 30, 2022. 

Table 3: Timeline of mutated variants first detected in 
Tokyo and the relative severe rates. 

Date Events Severe 
rate1 

2020.01.24 1st COVID-19 case detected 23.81%

2021.01.12 1st Gamma case detected 0.76% 

2021.04.20 1st Delta case detected 1.00% 

2021.08.31 1st Delta N501S case detected 0.84% 

2021.11.30 1st Omicron case detected 3.57% 

2021.12.25 
(Approx.)

1st Omicron BA.2 case detected 0.56% 

2022.04.12 1st Omicron XE case detected 0.02% 

2022.04.22 1st Omicron BA.4 case detected 0.02% 

2022.04.29 1st Omicron BA.5 case detected 0.02% 

2022.07.13 1st Omicron BA.2.75 case detected 0.05% 

2022.07- 
2022.10 
(Approx.) 

1st Omicron BA.4.6 case detected 
1st Omicron BF.7 case detected 
1st Omicron BN.1 case detected 
1st Omicron BQ.1 case detected 
1st Omicron BQ1.1 case detected 

0.02% 
~0.06%

2022.10.28 1st Omicron XBB case detected 0.01% 

Vaccination 
round 

Starting 
Date 

Interval  
between doses 

Vaccination 
rate  

1st  2021.04.12 Not applicable 78.1% 

2nd  2021.05.03 3~8 weeks 77.5% 

3rd  2021.12.01 6~7 months 65.7% 

4th  2022.05.25 5~6 months 80.4% for 
the elderly

Bivalent  2022.09.20 3 months - 
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3.1.2 Virus Mutation 

Table 3 provides an overview of the initial detection 
dates of notable mutated viruses in Japan, alongside 
their corresponding severity rates. As depicted in 
Table 3, there is an observable trend indicating a 
decrease in virus lethality. 

3.1.3 Government Policy 

When examining governmental measures, this paper 
highlights municipal governance, healthcare 
interventions, border controls, and preventative 
measures related to the Olympics. The Tokyo 
Metropolitan Government implemented seven states 
of emergency, as detailed in Table 4. While standard 
regulations were enforced during four of these 
emergencies, the remaining three saw relaxed 
regulations. Additionally, Tokyo adopted Highly 
Active Antiretroviral Therapy (HAART Therapy) for 
COVID-19 treatment starting July 19, 2021 (Table 5). 

Table 4: Timeline of state of emergency/ quasi-state of 
emergency in Tokyo. 

Events Duration 

1st  wave state of emergency 2020.04.07~2020.05.25 

2nd wave state of emergency 2021.01.08~2021.03.21 

1st wave quasi-state of emergency 2021.04.12~2021.04.24 

3rd wave state of emergency 2021.04.25~2021.06.20 

2nd wave quasi-state of emergency 2021.06.21~2021.07.11 

4th wave state of emergency  2021.07.12~2021.09.30 

3rd wave quasi-state of emergency 2022.01.21~2022.03.21 

Table 5: Government approved COVID-19 therapies and 
relevant death rates of the confirmed cases. 

Therapies Duration Death% 

Before HAART Therapy  2020.01.26 ~ 2021.07.18 1.2% 

HAART Therapy applied  2021.07.19 ~ 2021.12.23 0.45% 

Lagevrio and Paxlovid  2021.12.24 ~ 2022.11.27 0.10% 

Distribution of ‘Xocova’  2022.11.28 ~ 2023.01.02 0.001%

The Ministry of Health, Labour and Welfare of 
Japan authorized the emergency use of Shionogi's 
oral medication, 'Xocova,' for COVID-19 treatment 
on November 22, 2022 (Matsuyama, 2022). 
Distribution of 'Xocova' commenced on November 

28, 2022, benefiting approximately 1 million citizens. 
This development contributed to a further decrease in 
the severity and mortality rates (refer to Table. 5). 

Regarding border measures, Japan briefly opened 
its borders to foreign residents twice in 2020. Since 
Oct 11, 2022, Japan has ceased border operations, 
fully reopening its border to independent travellers 
with no daily cap. 

Japan held the Tokyo Olympics from July 23 to 
August 8, 2021. The first Olympic team arrived in 
Japan on June 1, 2021 (Zhang, 2021). Athletes were 
required to depart within 48 hours of completing their 
events (International_Olympic_Committee, 2021), 
implying a departure period from July 25 to August 
10, 2021. Approximately 79,000 individuals travelled 
to Japan for the Tokyo Olympics (McCurry, 2021). 

3.1.4 PCR Test 

The PCR (Polymerase Chain Reaction) test detects 
genetic material from specific pathogens and is 
widely used for diagnosing COVID-19. In Tokyo, 
PCR testing is conducted either by medical 
institutions or health centers, with the latter primarily 
responsible for conducting major inspections. 
Typically, Tokyo residents undergo PCR testing on a 
voluntary basis, following the advice of their 
physicians and assessing their own health conditions. 
Criticism regarding the shortage of PCR testing 
capacity has been persistent. 

As of March 6, 2022, PCR testing has been 
covered by medical insurance. This allows medical 
facilities to directly solicit tests from private testing 
institutes and other entities. Additionally, with 
insurance coverage approval for the antigen detection 
kit "Lumipulse SARS-CoV-2 Ag", saliva-based tests 
were accessible to asymptomatic patients from July 
17, 2022 (MHLW, 2023b). Moreover, residents can 
opt to register on the Tokyo Metropolitan 
Government website to receive a complimentary 
antigen test kit delivered to their home if they believe 
they have symptoms or have been in close contact 
with an infected individual. This measure helps 
alleviate the burden on medical facilities for testing 
and consultations. In the event of a positive antigen 
test result, the individual can promptly begin a 14-day 
self-quarantine to mitigate further transmission of the 
infection. 

3.1.5 Other Considerations 

Another aspect taken into account in this study is 
school breaks. During winter, spring, and summer 
vacations, students tend to travel longer distances 
compared to regular term periods. 
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3.2 Methodology Discussion 

3.2.1 Agent-Based Modelling 

In this research, we utilize NetLogo (Wilensky, 
1999), a beautiful agent-based modelling (ABM)  
software, to simulate the dynamics of the epidemic. 
The rationale behind this choice is rooted in ABM's 
ability to capture the nuanced individual 
heterogeneity within complex environments. When 
studying large-scale epidemic phenomena, it's crucial 
to account for variations in individual attributes due 
to the significant social and physical interactions 
among them. ABM can be fine-tuned by adjusting 
model parameters to ensure that the calculated R0 
aligns with real-world measurements. 

3.2.2 Extended SEIR Denotation 

Our model incorporates individual health statuses, 
drawing inspiration from the SEIR model (Hethcote, 
2000), while also introducing additional statuses such 
as 'Vaccinated' and 'Dead', enhancing the precision of 
health status description (Refer to Table 1). 

4 MODEL CONSTRUCTION 

4.1 Space and Population 

A total of 13,920,000 individuals reside in Tokyo, 
resulting in a population density of 6,264 individuals 
per square kilometre (Statistics Bureau of Japan, 
2021). The city has approximately 7,291 hospital 
beds in total. Assuming uniform distribution of static 
properties (such as infrastructure) and identical 
distribution of dynamic properties (such as 
population movement) throughout Tokyo city, our 
approach involves constructing a rectangular block 
measuring 2 kilometres in length, designed to mimic 
the geometry of the Tokyo area. Epidemic dynamics 
are simulated within this block using downscaled 
population and infrastructure figures. Refer to Fig 1 
for further details. 

By applying the aforementioned uniformity 
assumptions, the entire Tokyo region, comprising 23 
municipalities, is linearly downscaled into a 
rectangular block measuring 2 kilometres in length and 
1 kilometre in width. It should be emphasized that the 
population density and hospital’s capacity depicted in 
Fig. 1 correspond to actual data. The adjusted count of 
entries and exits to and from a block fluctuates with 
each time interval in response to governmental 
directives and incoming and outgoing data. 

 
Figure 1: Illustration of post-scaled simulation 
environment.  

4.2 Social Contact 

In the model, agents are initially distributed 
randomly, with their location recorded as their place 
of residence. We presume that at the start of each day, 
all agents, excluding the quarantined ones, have the 
freedom to roam outdoors randomly for up to 8 hours 
in any direction within a radius denoted as 𝑟௠௔௫. This 
range matches their typical daily activities and varies 
based on their identity (whether they are employed, 
students, or unemployed). During these random 
walks, agents have opportunities to encounter other 
pedestrians, potentially leading to infection 
transmission. At the end of the day, agents return to 
their designated residences. 

Although the social contact model described in 
this paper may not fully account for individual 
interactions at a precise level, we expect that its 
collective results will closely mirror those observed 
in broader epidemic contexts. A similar principle is 
evident in the microscopic modelling of fluid 
dynamics: despite variations in the molecules and 
interaction potentials of distinctive fluids, large-scale 
flow dynamics adhere to the same governing 
equation. This concept is echoed by Wolfram in his 
book on complex systems (Wolfram & Gad-el-Hak, 
2003), where he highlights that although the 
underlying rules may differ across systems, the 
overall outcomes remain consistent. 

4.3 Detailed Model Construction 

The comprehensive system flowchart is depicted in 
Fig 2. Initially, we establish the patches area, 
synthetic population, and central hospital. 
Subsequently, the model processes input data from a 
file, which includes various parameters such as the 
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daily vaccine capacity, number of daily entries and 
exits, daily quota for PCR tests, infection probability 
for three levels of social distancing, maximum daily 
travel distance for three occupational categories, and 
mortality rates associated with different virus 
variants. 

 
Figure 2: System flow chart of the simulation process. 

Using published inbound and outbound traveler 
statistics, we introduce unconfirmed patients 
(represented as agents in category I1) and randomly 
export agents on a daily basis. Imported agents are 
also categorized based on their occupation. All 
surviving agents, with the exception of those in 
category I2, are permitted to move within specified 
distance boundaries corresponding to their respective 
occupations. 

4.3.1 Health States and Population 

We extend the SEIR categorization to encompass a 
total of eight health statuses for agents. (refer to Table 
1). Furthermore, we segment the infected state into 
two subcategories, namely I1 and I2. Upon 
identification, confirmed cases (I2) are required to 
self-quarantine at home, thereby reducing their 
potential for public transmission compared to 
unconfirmed infected agents (I1). There are 𝑁௧௢௧௔௟ 
agents in this synthetic population. Among these 
agents, populations in different states are represented 
as 𝑁ௌଵ , 𝑁ௌଶ , 𝑁ா , 𝑁ூଵ , 𝑁ூଶ , 𝑁௏ , 𝑁ோ  , 𝑁஽ , 
respectively. 

4.3.2 Susceptible 

At the onset of the simulation (t=0), all agents are 
initially set to be susceptible (S1), with no individuals 
infected with the Coronavirus. Agents' home 

positions are noted, and they are permitted to travel 
from their homes to locations within a designated 
radius denoted as 𝑟௠௔௫. Agents are allowed to venture 
out for a duration of eight hours daily, with movement 
unrestricted in direction. Upon reaching the boundary 
of the designated space, agents will rebound. 

4.3.3 Exposure 

Since the onset of imported cases spreading across the 
Tokyo on January 24, 2020, we designate this date as 
t=1. Over time, individuals who come into contact 
with asymptomatic cases (agents in state I1) have a 
chance of infection if they lack antibodies (see Fig. 
3). The probability of transitioning from the 
Susceptible state to the Exposed state (S1→E) is 
calculated as follows: 𝑃ௌଵ→ா ൌ 𝐻ሺ𝑑ௌଵ,ூଵ െ 𝑑ாሻ  (1) 

Here, 𝐻ሺ𝑥ሻrepresents the Heaviside step function, 
and 𝑑௑,௒ denotes the shortest distance between agents 
in state X and agents in state Y. The threshold 
distance, denoted as 𝑑ா, is set to 2 units of patch size, 
based on facts provided by the Ministry of Health, 
Labour, and Welfare, which states that physical 
proximity within 2 meters is considered close contact 
with a possibility of Coronavirus transmission 
(MHLW, 2023a). 

 
Figure 3: ‘Exposure’ in ABM. 

4.3.4 Infection 

Agents in state I1 have the potential to transmit 
Coronavirus to nearby agents (all surviving agents 
except for I1 and I2), exposing them to the virus 
within a specified distance. However, agents with 
antibodies above a certain threshold (in states V or R) 
cannot transition to the Exposed state (E). Exposed 
agents have a probability of developing symptoms 
and becoming infected within the subsequent 14 days. 
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The likelihood of an exposed agent (in state E) 
contracting Coronavirus relys on the distance at 
which the agent encountered another agent in state I1, 
as illustrated in Fig. 4. 

 
Figure 4: Illustration of agents’ infection pattern. 

The probability of infection (𝑃ா→ூଵ) is defined as,  

𝑃ா→ூଵ ൌ ቐ𝑃ଵூ        0 ൑ 𝑑ௌଵ,ூଵ ൑ 0.5𝑃ଶூ     0.5 ൏ 𝑑ௌଵ,ூଵ ൑ 1.0𝑃ଷூ     1.0 ൏ 𝑑ௌଵ,ூଵ ൑ 2.0  (2) 

Whenever the virus undergoes mutation, the 
probabilities of infection are adjusted based on the 
characteristics of the viruses. If exposed agents are 
fortunate enough to avoid infection, their states will 
revert back to S1 (E→S1). All agents, except the ones 
confirmed with infection (in state I2), will undergo 
PCR tests with a probability denoted as 𝑃் ൌ𝑛்/ሺ𝑁௧௢௧௔௟ െ 𝑁ூଶ െ 𝑁஽ሻ per day, where 𝑛் 
represents the data of downscaled PCR tests released 
by the Tokyo Metropolitan Government. Upon 
confirmation of infectivity through PCR tests, the I1 
state agents will be reclassified as I2 state (see Fig. 5). 
This implies that the transition probability for an 
individual can be computed as follows: 𝑃ூଵ→ூଶ ൌ ௉೅ൈே಺భே೟೚೟ೌ೗ିே಺మିேವ.   (3) 

If an agent is currently in I2 state, movement shall 
be restricted until the subsequent state transition 
occurs, either to R (recovery) or D (death). 

4.3.5 Recovery or Death 

Agents testing positive for Coronavirus (in state I2) 
immediately begin a 14-day self-quarantine. Some 
may be hospitalized if beds are available, reducing 
mortality rates compared to home isolation. If not 
confirmed within 14 days, infected agents (in state I1) 
may move freely until recovery (I1→R) or death (I1
→ D). Deceased agents are removed from the 

simulation, while recovered agents gain antibodies 
and resume movement (see Fig. 6). 

4.3.6 Vaccination  

The daily vaccine supply quota prioritizes individuals 
for their second dose within three to seven weeks, 
with subsequent doses spaced accordingly (Fig. 7). 
All surviving individuals except confirmed, are 
eligible for vaccination while quotas last. Pfizer 
vaccine efficacy, estimated at 52% for the first dose 
and 91% for the second (Polack et al., 2020), is 
modelled despite vaccine brand options. Our model 
accounts for antibody titer decay, a factor often 
overlooked in existing literature. 

 
Figure 5: ‘Infection’ in ABM. 

 
Figure 6: ‘Confirmation’ in ABM. 

4.3.7 Antibody Decline 

Antibodies are gained via vaccination or recovery, 
with natural recovery showing slower decline rates 
(Israel et al., 2022). The IgG test measures COVID-
19 antibodies, with Narasimhan et al. setting a 
positive threshold at 50 AU/mL (Narasimhan et al., 
2021), while Ebinger et al. suggest 4160 AU/mL for 
serum neutralizing activity (Ebinger et al., 2021). 
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In our model, individual antibody levels decrease 
over time based on previous studies. Once levels drop 
below a calibrated threshold, individuals transition to 
S2 status (V/R→S2). 

 
Figure 7: ‘Vaccination’ in ABM. 

As per Ariel Israel et al., recipients of the Pfizer-
BioNTech mRNA vaccine exhibit varying antibody 
levels compared to those who contracted the SARS-
CoV-2 virus (see Fig. 8). Antibody concentrations 
gained via vaccination are initially higher but decline 
at a quicker pace (Israel et al., 2022). 

 
Figure 8: ‘Antibody decline’ in ABM. 

5 VERIFICATION AND 
CALIBRATION 

5.1 Verification of Linear Scaling 

In Sec 4.1, Tokyo is downscaled into a 2km by 1km 
block, accommodating 12,528 susceptible agents and 
a hospital for 6 infected agents. We use a factor 𝜆 ൏1  to demonstrated that simulation results can be 
scaled back to the real Tokyo scale post-simulation. 
Specifically, we designed four sizes of simulation 

environments along with adjusted parameters 𝑆௅: 𝑆ெ: 𝑆ௌ: 𝑆௑ௌ ൌ 4: 1: ሺ1/4ሻ: ሺ1/16ሻ . Test results 
from simulation show that the following relation 
holds true 𝑁௅ூଶ/4 ൌ 𝑁ெூଶ ൌ 4𝑁ௌூଶ ൌ 16𝑁௑ௌூଶ , therefore 𝑁ூଶሺ𝜆𝑆, 𝜆𝑁௧௢௧௔௟;  𝑡ሻ ൌ  𝜆𝑁ூଶሺ𝑆, 𝑁௧௢௧௔௟;  𝑡ሻ.  

Moreover, the shape of the simulation area has 
trivial impact to results. Hence, we are confident to 
proceed the current model to perform simulations.  

5.2 Calibration of the Model 

To fine-tune this model, we utilize data on confirmed 
infection cases spanning from January 24, 2020, to 
May 8, 2023. Initial parameters like hospital capacity 
and population size are established within the code’s 
initialization module (See Table 6). 

Table 6: Parameters and parameter values. 

Parameters Value Parameters  Value 

Initial population 12,528 Antibody titer after 
cured 

357 AU/mL 

Hospital capacity 6 Decline rate for 
vaccinated 

0.980916 

Labor force 
participation rate 

62% Decline rate for 
cured 

0.998640 

Student rate 17% Vaccine efficacy 
threshold 

250 AU/mL 

1st dose efficacy 52% Vaccination 
fatality rate 

8.1 ൈ 10ି଺ 

2nd dose efficacy 91% Self-isolation days 14 days 

Antibody titer 2nd dose 1,629 1st/ 2nd dose 
Interval 

21~49 days 

Antibody titer 3rd dose 3,419 2nd/ 3rd dose 
Interval 

≧180 days 

Antibody titer 4th dose 3,655 3rd/4th dose 
Interval 

≧150 days 

 
Figure 9: Actual results (scaled) vs. Simulation results. 
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6 ANALYSIS AND FINDINGS 

6.1 Reproducing the Eight Waves 

Fig. 9 compares scaled actual data with simulated daily 
COVID-19 infections in Tokyo from January 24, 2020, 
to May 8, 2023. The simulation, averaged over 60 
iterations, successfully replicates the seven infection 
waves in Tokyo and predicts the highest daily 
confirmed cases in each wave, detailed in Table 7. 

Table 7: Comparison of the maximum value between post-
scaled actual results and simulation results. 

Epidemic 
waves  
in Tokyo 

Maximum daily 
confirmed cases  
(post-scaling) 

Maximum daily 
confirmed cases 
(simulation results)  

1st wave 0 (April 27, 2020) 0 (April 14, 2020) 

2nd wave 0 (August 1, 2020) 1 (August 1, 2020) 

3rd wave 2 (January 7, 2021) 1 (January 7, 2021) 

4th wave 1 (May 8, 2021) 2 (May 17, 2021) 

5th wave 5 (August 13, 2021) 4 (August 11, 2021) 

6th wave 19 (February 2, 2022) 19 (January 24, 2022) 

7th wave 36 (July 28, 2022) 33 (August 1, 2022)
8th wave 20 (December 27, 2022) 19 (December 27, 2022)

6.2 Analysis of Metrics 

Fig. 10 depicts the scatter plot alongside marginal 
density and histogram, generated using 
‘ggscatterstats’ function in the package ‘ggstatsplot’ 
(Patil, 2021). The number of observations 𝑛௣௔௜௥௦ ൌ1201 corresponds to 2020.01.24 ~ 2023.05.08.  

The graph demonstrates a significant rejection of 
the null hypothesis with 𝑝 ൌ 0.00 ൏ 0.05 . The 
rejection is support by 𝑟̂௉௘௔௥௦௢௡ ൌ 0.89, which lies in 𝐶𝐼ଽହ%ሾ0.88,0.90ሿ.  Overall, the statistical analysis 
indicates a strong agreement between the simulation 
results and actual data. 

Furthermore, Granger causality tests were 
conducted on the two datasets. The F test statistic 
yielded a value of 64.008, with a corresponding  
p-value of 𝑃𝑟ሺவிሻ ൌ 2.2 ൈ 10ିଵ଺ ൏ 0.05.  
Consequently, we reject the null hypothesis, 
suggesting that the simulation results effectively 
predict the actual outcomes. 

Examining the accuracy of the forecasts, the 
RMSE of 2.57 signifies the average absolute 
magnitude of forecast errors. Additionally, the DA of 
0.76 indicates that the forecasts correctly predicted 

the direction of the actual values approximately 76% 
of the time.  

 
Figure 10: ‘ggstatsplot’ of results comparison. 

Table 8: Evaluation metrics obtained from the calculation 
of actual and simulated results. 

Evaluation 
metrics 

Reference 
range 

Desired value Value

R-Pearson [0,1] Closer to 1 (strong positive 
linear relationship) 

0.89

R-squared [0,1] Closer to 1 (more  
variance explained) 

0.79

Root Mean 
Squared Error 
(RMSE) 

[0,+∞) Closer to 0 (minimized  
as much as possible) 

2.57

Directional 
Accuracy (DA)  

[0,1] Closer to 1 (high proportion 
of correct predictions) 

0.76

6.3 Findings  

6.3.1 The ‘Hidden’ Infections 

Fig 11 illustrates the counts of agents in E, I1, and I2 
states from January 24, 2020, to May 8, 2023. Fig 12 
shows vaccination doses administered during the 
same period. 

Observations reveal: 
1. The rise in I1 population correlates with an 

increase in E population, indicating a positive 
infection loop. Waves 1 to 4 depend on individual 
recovery and antibody production, with 
underreported cases due to insufficient testing. 

2. Coronavirus mutations lead to a convergence of E 
and I1 populations until the late 6th wave. The 4th 
dose vaccination campaign, starting on May 25, 
2022, mitigates the rise in E cases. 

3. Despite a decrease in I1 population post-7th wave, 
expanded PCR testing capacity results in reported 
cases exceeding previous waves. 
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The robust correlation observed between PCR tests 
and confirmed cases indicates that the reported cases 
represent only a fraction of actual infections. 

6.3.2 Antibody from Vaccination and Cure 

Following vaccination rollout, antibody levels surged 
rapidly across the community. By October 2021, 
effectiveness waned, but rebounded in January 2022 
with the Omicron variant and third vaccine dose 
introduction. 

Amid escalating transmission and virus 
mutations, antibody levels increased gradually. The 
timely fourth /bivalent dose introduction further 
elevated population antibody levels to record highs. 

6.3.3 Reasons Behind the Eight Waves 

We outline features of the infection trends in Tokyo 
in Table 9. Here are the factors contributing to these 
characteristics: 

1. Tokyo commenced its first vaccine dose during 
the 4th wave, later than New York and London, 
rendering it susceptible to future mutations 
(Tokyo: April 12, 2021; New York: December 14, 
2020; London: December 8, 2020). 

2. Insufficient PCR testing capacity in waves 1-5 
failed to accurately reflect infection trends. 

3. Improved PCR testing during the Omicron-
dominated 6th wave revealed historically high 
confirmed cases, despite reduced severity and 
mortality rates due to previous vaccination and 
self-recovery (Larrauri et al., 2022). 
4. BA.2.75 variant, identified in the 7th & 8th 
wave, evades most antibodies, hindering control 
efforts even with high vaccination rates (Fig 11 & 
Fig 12). Increased PCR testing primarily led to 
higher daily confirmed cases without effectively 
curbing overall infection trends.  

Table 9: Summary of the eight epidemic waves in Tokyo with key assumptions and result. 

Epidemic 
waves 

Key assumptions Key results 

Vaccination Virus mutation Government policies Daily PCR 
tests 

I1 I2 Vaccination 
antibody 

Infection antibody 

1st wave 
(2020.01~
2020.05) 

/ 1st COVID-19 case 
(2020.01.24) 

1st state of emergency 
(2020.04.07~ 2020.05.25) 

Low 
(ave. 500) 

High Low / Start to increase due to 
self-healing 

2nd wave 
(2020.05~
2020.10) 

/ / Bans entry from 159 
countries and regions 

(2020.08.28)

Low 
(ave. 3600) 

Low Low / Start to decrease due 
to antibody decline 

3rd wave 
(2020.10~
2021.03) 

/ 1st Gamma case 
(2021.01.12) 

2nd state of emergency 
(2021.01.07~2021.03.21) 

Low 
(ave. 7900) 

Low Low / Stable due to limited 
infection 

.4th wave 
(2021.03~
2021.06) 

1st dose start  
(2021.04.12) 
2nd dose start  
(2021.05.13) 

1st Delta case  
(2021.04.20) 

1st quasi state of emergency 
(2021.04.12~ 2021.04.24) 

3rd state of emergency 
(2021.04.25~ 2021.06.20)

Low  
(ave. 8600) 

Low Low Start to 
increase 

Increase due to mass 
infection 

5th wave 
(2021.06~
2021.10) 

/ 1st Delta N501S 
(2021.08.31) 

2nd quasi state of emergency 
(2021.06.21~ 2021.07.11) 

4th state of emergency 
(2021.07.12~ 2021.09.30) 

Medium 
(ave. 
11,100) 

High Low Dose 1 and 2 
effectiveness 
start to 
decrease due 
to antibody 
decline 

Continue to increase 

6th wave 
(2021.12~
2022.06) 

3th dose start  
(2021.12.01) 
4th dose start  
(2022.05.25) 

1st Omicron case 
(2021.11.30) 
1st Omicron BA.2 
(Approx.2021.12.25) 
1st Omicron XE 
(2022.04.12) 
1st Omicron BA.4 
(2022.04.22) 
1st Omicron BA.5 
(2022.04.29) 

3rd quasi state of emergency 
(2022.01.09~ 2022.03.21) 

Limited foreign travel 
groups, 

up to 20,000 daily 
(2022.06.01) 

High  
(ave. 
17,100) 

High Medium 
high 

Dose 3 and 4 
effectiveness 
start to 
increase due 
to booster 
doses 
vaccination 

Previous antibodies 
become less protective 
faced with Omicron 
strains;  
 
Infection antibodies 
targeting Omicron 
strains start to 
increase. 

7th wave 
(2022.06~
2022.09) 

Bivalent dose 
start 
(2022.09.20) 

1st Omicron BA.2.75 
(2022.07.13) 
1st Omicron XBB 
(2022.10.28) 

Allow short-term trips 
organized by travel agencies, 
up to 50,000 daily 
(2022.09.07)

High  
(ave. 
23,500) 

High High Dose 3 and 
dose 4 
become less 
protective;  
 
Bivalent dose 
effectiveness 

start to 
increase 

8th wave 
(2022.10~
2023.01) 

  Fully reopen (2022.10.11) High  
(ave. 
16,400) 

High Medium 
high 
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Figure 11: Number of agents in E, I1 and I2 states. 

 
Figure 12: 1st, 2nd, 3rd, 4th doses of vaccination. 

7 RECOMMENDATION AND 
CONCLUSION 

7.1 Recommendation 

The decline in confirmed cases in late January led to 
a decrease in testing, indicating a reduced perception 
of infection risk among the public. This trend, known 
as the "testing dilemma," illustrates that fewer 

confirmed cases may result in decreased testing rates, 
potentially leading to fewer reported cases. 

Report from The Japan News reveals a consistent 
rise in cases since April to May 2023. This surge may 
be attributed to the "testing dilemma." Moreover, 
cases continued to rise in June (Otake, 2023), with a 
significant increase in new patients reported. 

To combat recurring outbreaks, it's crucial to 
maintain vigilance and promptly mobilize healthcare 
resources, including testing capabilities and hospital 
beds. Japan's opening-up policy must be monitored 
closely alongside daily confirmed cases, mutation 
detection, and fatality rates. Although fatality rates 
have decreased, the risk of new troublesome variants 
remains. 

7.2 Conclusion 

The resurgence of COVID-19 cases in late May and 
June highlights the importance of maintaining 
vigilance and mobilizing resources. Despite the low 
rates of severe cases and deaths, PCR tests may not 
significantly reduce infections but should be 
maintained to detect potential severe variants. 

Tokyo's existing healthcare infrastructure is 
deemed satisfactory, taking into account the available 
hospital beds and anticipated low severe cases. 
However, the mobility to swiftly expand hospital bed 
capacity is imperative to manage potential outbreaks 
and imported mutated virus. High vaccination rates 
for third and fourth doses enhance immunity against 
Omicron variants, aligning closely with forecasted 
scenarios. A correlation exists between confirmed 
cases and testing levels, with fewer cases reported 
during reduced testing due to the "testing dilemma."  

Novelty of this study lies in its demonstration of 
the importance of COVID-19 infection forecasting 
concerning vaccination, virus mutation, government 
policy, and PCR testing. It pioneers in continuously 
simulating and reproducing eight epidemic waves in 
Tokyo, considering factors like Olympics, state of 
emergency declarations, and immigration policies. 
The extension of the traditional SEIR model to adapt 
to Tokyo's context, along with an agent-based 
approach, ensures high accuracy and practicality. 
This model may serve as a general framework for 
analysing epidemics in other regions, emphasizing 
the importance of local considerations for better 
simulation results.  

There are several flaws in this work. Firstly, this 
study focuses on four significant factors influencing 
epidemic trends but acknowledges that there are 
numerous other variables that may also impact these 
trends. While the theory of large-scale flow dynamics 
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is proposed to address agent movement, further 
refinement is needed to better represent real-world 
complexities. Additionally, demographic factors such 
as natural birth and death rates, as well as family 
dynamics, are not considered in this research, 
highlighting the need for future models to incorporate 
these elements. The simulation's strategy of randomly 
selecting agents for PCR tests diverges from real-
world testing practices, which could affect the 
accuracy of results and should be addressed in future 
iterations. Lastly, the complexity of immune response, 
as highlighted by Dr. Israel, poses challenges in 
accurately incorporating antibody titer data into 
simulations due to individual variations and decay 
rates, emphasizing the importance of cautious 
interpretation in future studies. 
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