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Abstract: Human-machine interaction, especially driver posture estimation is important to the development of 
autonomous driving, which can facilitate safe and smooth driving behaviours. Besides, it also contributes to 
ergonomics research and human-machine interaction design for automated vehicles. The existing studies have 
got great achievements in body estimation, hand pose estimation, and even face feature estimation thanks to 
the rapid development of deep learning approaches and the upgrade of hardware equipment. However, most 
existing models can only process body estimation or hand estimation separately, which will impede the 
research on driver-vehicle interaction in autonomous driving. This is because the driving process is highly 
dependent on the cooperation between the body and hands behaviours. In this study, five popular deep 
learning models, including Simple Faster R-CNN, RootNet, PoseNet, Yolo v3, and graph convolutional neural 
network, are combined through a cascade method to develop an integrated model which can estimate body 
and hand simultaneously during the driving process. The coordinate transform system is proposed to connect 
models in series.  Experiment results demonstrate the proposed method can produce 2D and 3D reorganization 
of the human body and hands simultaneously with acceptable accuracy. 

1 INTRODUCTION 

Autonomous driving exhibits rapid progress in recent 
years due to its substantial application value and 
potential societal implications. Human pose 
estimation technology is crucial in autonomous 
driving, particularly with the growing possibility of 
automated vehicles navigating congested roads, 
which allows for instantaneous tracking of driver 
motion, enhancing driver requirements, and 
identifying potential safety risks. Many advanced 
functions including operation simplification, fatigue 
detection, and behaviour analysis can be developed 
based on driver gesture research. Besides, 
autonomous driving can be made to resemble human 
driving to the greatest extent possible through 
observing and recording driver behaviours. 

The advancements in photograph acquisition 
technologies and deep learning approaches have led 
to significant progress in human pose estimation 
technology, which has been implemented in many 
domains like security systems and smart payment. 
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However, for autonomous driving, most 
implementations only focus on specific body parts 
like the body or hand, which ignores the correlation 
and coordination among different human body parts 
during driving behaviour and results in limited 
progress in driver behaviour studies.  

This research aims to develop an integrated model 
to estimate hands and body simultaneously by 
deploying the proposed cascade method on 5 
mainstream computer vision models. Subsequently, 
2D and 3D skeleton diagrams have been generated 
and the accuracy of the proposed method has been 
verified. However, due to the scarcity of public 
datasets on whole-body, the performance of the 
developed model can only be evaluated by 
visualization.  

The rest of this article is organized as follows: 
Section 2 introduces the existing works in relevant 
fields. Section 3 presents the principles and pipeline 
of the proposed method. Section 4 illustrates the 
details of experiments and results while the 
conclusion and discussion are presented in Section 5. 
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2 LITERATURE REVIEW 

2.1 Human Detection 

Human detection models are designed to identify the 
presence and location of humans in images or video 
frames, it is derived from objection models, which 
have been developed for decades. Current popular 
objection models contain Region-based 
Convolutional Neural Networks (R-CNN) and You 
Only Look Once (Yolo) families.  

R-CNN family is the most popular framework for 
object detection and includes several categories like 
basic R-CNN, Fast R-CNN, and Mask R-CNN.  R-
CNN has founded the basis for the current region-
based object detection methods (Girshick et al., 2014) 
and the main idea is to select a certain number of 
regions of interest to conduct the image classification 
randomly or empirically. The limitation is that the 
region size warp process may damage the original 
information and result in unexpected errors and 
unsatisfying accuracy. To address the issue, Spatial 
Pyramid Pooling in Deep Convolutional Networks 
(SPPnet) was developed utilizing grids meshing and 
features concatenating approach (He et al., 2014), and 
Fast R-CNN employed this approach to construct the 
Region of Interest (RoI) pooling layer, which brought 
the object detection into a new era.  Besides, faster R-
CNN introducing region proposal network (RPN) 
rather than conventional selective search to produce 
region proposals (Mueller et al., 2017), which 
improves the time-efficiency and facilities the 
development of multi-scale detection. Mask R-CNN 
is a convenient and flexible general object instance 
segmentation neural network (He et al., 2017), which 
can not only realize object detection but also generate 
segmentation results for each target.  

Recently, the Yolo methodology also attracted the 
attention of researchers because of its excellent 
performance. Unlike R-CNN methods, Yolo v1 
(Redmon et al., 2016) treats the object detection task 
as a regression problem instead of region detection. 
The main difference between Yolo and R-CNN 
families is that global information can be analysed 
rather than local information from sliding windows or 
region proposals approach. This allows for the 
acquisition of highly generalized features, which 
outperform previous object detection algorithms and 
can be migrated to related fields. Though the initial 
Yolo model had some limitations, such as lower 
accuracy and speed compared to some state-of-the-art 
object detection models, which were addressed in 
subsequent versions. Yolo v2 and v3 utilized 
improved network architectures and advanced 

training techniques, such as batch normalization and 
residual connections, to enhance detection accuracy. 
At present, Yolo v3 is a well-respected algorithm 
considering both maturity and training performance 
(Gkioxari et al., 2018). The Yolo family comprises a 
range of object detection algorithms that are well-
known for their remarkable processing speed. 
Additionally, the CornerNet approach, which relies 
on key point-based object detection, has also 
demonstrated high efficiency and accuracy (Law & 
Deng, 2018). Notably, the recently proposed 
CornerNet-Lite, an improved version of CornerNet, 
has achieved both higher speed and superior 
performance compared to Yolo v3 (Hei Law, Yun 
Teng, Olga Russakovsky, 2019).  

2.2 Body Pose Estimation  

The estimation results of human body estimation 
models are always represented by the several key 
points on a specific skeleton and the methodology is 
roughly divided into three categories: 3D pose 
tracking, 2D-3D pose lifting, and pose regression 
from images. As the models selected in this project 
are all based on deep learning and neural network, the 
dissertation would focus on the last two methods, 
especially the deep learning-based methods. Pavllo et 
al.(Pavllo et al., 2019) processed the detected key 
points by a fully convolutional architecture that is 
compatible with the 2D joints detector to predict the 
coordinates effectively, while in (Ge et al., 2019) the 
3D pose estimation is treated as a regression problem 
of Euclidean Distance Matrices (EDM) to capture 
more information about pairwise correlations 
between key points.  

Pose Regression from Image can overcome the 
inherent ambiguity generated by encoding and 
decoding between 2D pose estimation and 2D to 3D 
lifting.  Mehta et al.(Mehta et al., 2020) developed an 
estimation model to evaluate the level of similarity 
between the target 3D pose and the input image. Zhou 
et al.(Zhou et al., 2016) treated a kinematic object 
model as the prior knowledge in the neural network 
to optimize the articulated object pose estimation. 

2.3 Hand Estimation  

Hand estimation has great significance in the 
development of human-computer interaction with a 
long development period. Generally, hand estimation 
can be divided into three categories: discriminative 
approach, generative approach and hybrid approach. 
The discriminative method processes the image and 
predicts the pose of the hand from the image directly, 
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while the generative method prepares a hand model 
previously and tries to match the hand model to the 
input image, and the Hybrid method is the 
combination of two approaches (Barsoum, 2016). 
Barsoum (Tompson et al., 2014) created labelled 
ground-truth data and developed the Pose Recovery 
model to estimate human hands from single-depth 
images. Oikonomidis et al.(Iasonas Oikonomidis, 
Nikolaos Kyriazis, 2011) treated the hand estimation 
as an optimization problem where the hand model 
parameters had to be determined to minimize the 
error between the preprepared models and the 
processed input image. Besides, Oikonomidis et 
al.(Oikonomidis et al., 2011) resented a similar 
method, where the discrepancy is quantified between 
the actual features and predicted features extracted 
from the observation and then minimized to the 
expected value by improving the parameters. Finally, 
the improved parameters are decoded to obtain the 3D 
hand pose. 

2.4 Dataset  

Benchmark datasets with ground truth annotations are 
critically important but the dataset establishment is 
usually difficult (Erol et al., 2007).  Some popular 
datasets related to the human body and hands are 
listed below.  

Table 1: Body datasets. 

Dataset Description 
HumanEva 
(Mehta et al., 
2018)  

4 people, 8 10  samples, Marker-
based MoCap in indoor  

Human3.6M 
(von Marcard 
et al., 2018)  

11 people, 360 10  samples, Marker-
based MoCap in indoor  

Total Capture 
(Sharp et al., 
2015)  

5 people, 190 10  samples, Marker-
based MoCap along with IMUs in indoor

MPI-INF-
3DHP 
(Barsoum, 
2016)  

8 people,130 10  samples, Marker 
less MoCap in both indoor and outdoor  

3DPW 
(Oikonomidis 
et al., 2011)  

5 people, 5 10   samples, 3D human 
poses captured with IMUs in outdoor 

Table 2: Hands datasets. 

Dataset Description 
Hand-Object 
Interaction 
(Hamer et al., 
2010)  

Hand-Object, rigid & articulated 
objects, 60 sequences, 10 objects 
shapes  

ETHZ (Ballan et 
al., 2012)

Hand-Hand/Hand-Object, rigid & 
articulated objects, 7 sequences 

Hands in Action 
(Tzionas et al., 
2016)

Hand-Hand/Hand-Object, rigid & 
articulated objects, 29 sequences with 
a large variety of interactions 

Dexter & Object 
(Sridhar et al., 
2016)

Hand-Object, rigid objects, simple 
object shape(cube), 6 sequences with 2 
actors and with 2 objects shapes

EgoDexter 
(Mueller et al., 
2017) 

Hand-Object, rigid & articulated 
objects, 4 sequences with 4 actors, 
various objects and cluttered 
background 

3 METHOD 

3.1 Overview 

To realize the estimation of the body and hand 
simultaneously by one integrated model, the 
following pipeline (Fig. 1) has been designed: At 
first, the image is processed by Fast RCNN and Yolo 
v3 models to determine the bounding boxes for the 
human body and hands, respectively. Simultaneously, 
the original image is fed into RootNet to predict the 
root depth, which represents the absolute distance 
between the human and the camera. Subsequently, 
based on the bounding boxes, the image is cropped to 
isolate the corresponding sections comprising the 
human body and hands. Then PoseNet and HandNet 
models are utilized to estimate the body and hands 
using cropped images and root depth, and then their 
outputs are decoded to obtain 2D estimation and 3D 
skeleton of the hand and body. Finally, the integrated 
results are generated utilizing the overlapping and the 
coordinate transformation approach.  

 
Figure 1: The pipeline of the proposed model. 

3.2 Bounding Box  

3.2.1 Body Bounding Box 

The body bounding box should be generated before 
the estimation to clear the object for the subsequent 
model, which can avoid the error caused by the 
difference between the size of the image and the 
human. In this research, the Simple Faster R-CNN 
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(Ren et al., 2017) model is utilized to identify the 
bounding box in the image, which contains a fully 
convolutional network for feature map generation and 
a regional proposal network for processing. The 
processed feature is fed into a box-regression layer 
and a box-classification layer, and then the original 
image is cropped based on the bounding box 
parameters to get the image of the human.  

3.2.2 Hand Bounding Box 

Yolo v1 is utilized to predict large-size objects, 
whereas Yolo v2 and Yolo v3 are better suitable for 
medium and small-size objects. So, the Yolo v3 
(Redmon & Farhadi, 2018) is utilized to predict the 
hands-bounding box, which is composed of the 
backbone and Darknet Building Block (DBL). The 
backbone contains the convolutional and residual 
network for object features extraction, while the DBL 
is composed of convolutional layers, batch 
normalization, and activation layers, which are used 
to predict the object and generate the bounding box.  

3.3 Root Depth 

The root depth estimation model is used to predict the 
camera-centred coordinate of key points of humans 
from the cropped image of people processed by the 
detection model. And the RootNet (Moon et al., 2019) 
proposed by Moon et al. has been utilized in this 
section. The network contains three modules for 
feature extraction, coordinate estimation, and depth 
estimation. The loss function is defined as follows: 𝐿 ‖𝑅 𝑅∗‖  (1)

Where R is the predicted root depth while 𝑅∗ 
represents the ground-truth root depth.  

3.4 Estimation Net  

3.4.1 PoseNet 

The input is the cropped image based on the body 
bounding box and the integral regression method 
(Sun et al., 2018) is applied. It contains the backbone 
modules for feature extraction and poses estimation 
for 3D heatmap generations. The PoseNet is trained 
by minimizing 𝐿  distance between groundtruth 
coordinates and the predicted results. The loss 
function is defined as follows: 𝐿 1𝐽 𝑃 𝑃 ∗  (2)

Where represents  𝑃  predicted coordinates and  𝑃 ∗represents the ground-truth coordinates. 

3.4.2 HandNet  

Based on the hand bounding box, the image is 
cropped to get two hand images relatively and they 
are fed into a hand estimation network to get the 3D 
and 2D results. Graph convolutional neural network 
(Ge et al., 2019) has been selected as the method. 
Firstly, the image passes through a two-stacked 
hourglass network to extract the feature maps and 2D 
heat maps, which are then processed and encoded as 
a latent feature vector by a residual network. 
Secondly, the latent feature is put into a Graph CNN 
to predict the 3D coordinates of mech vertices. 
Finally, the 3D hand pose is linearly regressed from 
the 3D hand mesh. The pose loss function is defined 
as follows: 𝐿 ∑ 𝜑 𝜑   (3) 

Where 𝜑  denotes the ground-truth 3D joint 
locations while 𝜑  is the estimated 3D joint 
locations.  

3.5 2D and 3D Integration   

The 2D or 3D skeleton diagram of the body and hands 
are generated by pose and hand estimation models 
respectively. For the 2D integration, the 2D outputs 
can be directly achieved by overlapping the 2D body 
and 2D hands results based on common joint points. 
For 3D integration, the hand coordinates system can 
be transformed into the body coordinate system 
through a linear transformation with at least three sets 
of coordinates. Two common key points, the root of 
the hand and middle finger can be utilized as the first 
two sets and the root of the index finger is chosen to 
be the third set of coordinates, which has been 
contained in the hand coordinate system. The 
information of the root of the index finger in the body 
coordinate system can be predicted by rotating the 
coordinate of the root of the middle finger by 15° 
counterclockwise or clockwise on the palm plane. 
The rotation matrix is shown in Eq. 4, where 𝑅 𝜃  
represents rotation matrix with 𝜃  rotation angle 
around axis (x,y,z).  

 
Figure 2: Transformation pipeline and hand estimation. 
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𝑅 𝜃 1 0 00 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃  

𝑅 𝜃 𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃0 1 0𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃  (4)

𝑅 𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 00 0 1  

The coordinate of the root of the index finger (𝐼) 
can be computed by Eq. 5, where 𝑅  is rotation 
transformations (x,y,z) and 𝑀  means coordinate of 
the root of the middle finger. 𝐼 𝑅 ∗ 𝑀  (5)

Then, the transformation matrix can be calculated 
by the three sets of 3D coordinates. Assume that the 
three sets of coordinates in hand and body coordinate 
systems are represented as 𝑋  ( 𝑋 𝐴, 𝐵, 𝐶; 𝑖ℎ𝑎𝑛𝑑 𝑜𝑟 𝑏𝑜𝑑𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 ). Suppose that 
all these coordinates are raw matrix, and the inverse 
matrix is as Eq. 6 while the transformed coordinates 
of the hand coordinate system can be derived by Eq. 
7, where 𝐽  represent the joint coordinates of the hand 
or body coordinate system. 

𝐼𝑛𝑣 𝑚𝑎𝑡𝑟𝑖𝑥 ∙ 𝐴   𝐵   𝐶   𝐴   𝐵  𝐶   (6)

4 EXPERIMENT  

4.1 Equipment  

An experiment platform has been utilized to simulate 
the driving process, which contains three display 
screens, two monitors, a seat, and a steering wheel 
(Fig.3). The steering wheel (Logitech G29) can 
generate realistic force feedback, making the details 
of the driver’s hand movements much more 
realistically when driving while the monitors are used 
to record the driver posture.  

 
Figure 3: Experiment environment. 

4.2 Implementation Environment 

This project was conducted mainly in Python based 
on the Ubuntu system. The following main open-
source libraries were installed in a virtual 
environment: Python3.8, OpenCV, Scikit-image, 
tqdm, fire, pprint, Pillow, Keras, Pytorch, 
torchvision, cpython, ipdb, numpy, scipy, yacs, 
Matplotlib.  

4.3 Result and Discussion  

Unlike the hand estimation and body estimation 
models which have enough datasets to evaluate their 
performance, we have not found public datasets that 
evaluate the performance of the model estimating 
hand and body simultaneously has been created.  

Hence, the integrated model utilises 1126 images 
extracted from a video collected by the Microsoft 
Kinect and the model performance is evaluated by the 
results observation of these images.  The performance 
is divided into 3 levels. Level 1, both 2D and 3D 
estimation are perfect, which means that the predicted 
2D joint locations are matched with the origin 2D 
image, and 3D output is evaluated manually as 
reasonable without considering accurate error. Level 
2, the 2D estimation is perfect but the 3D estimation 
has some problems. For example, the hand is 
squeezed into a line, the hand size is problematic, and 
the pose or gesture is unreasonable. Level 3, the 2D 
estimation and 3D estimation are both unexpected, 
which means the predicted joint points of 2D outputs 
are not fitted to the actual joint points correctly. 
Finally, 88% of results are in level 1 and level 2, 
which is acceptable accuracy and performance. The 
output of the integrated model contains estimations of 
hand, body pose, and the combination of hand and 
body pose in 2D and 3D formats. Only the 
combination of hand and body pose is shown because 
of our research focus. Some perfect visualization 
results are shown in Fig. 4 while some problematic 
results are shown in Fig. 5-7. 
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Figure 4: The visualization of results. 

In Fig. 5 the 2D outputs are perfect, where the 
joints of both hand and body are predicted exactly. 
However, the right hand of 3D outputs is squeezed 
into a line. One possible reason is that the created 
joints have an error due to the incorrect rotation 
direction and angle. Another factor is that the root of 
the hand of these two models is not matched. From 
2D outputs, it’s clear that the key points of the hand 
root failed to match, which means the same issues in 
3D outputs.  

 
Figure 5: The result with the hand squeezed into a line. 

Fig. 6 illustrates the unreasonable size of the 3D 
output, especially the human hands. The 3D outputs 
of hand parts are nearly shrunk to one point. As the 
output of the hand estimation model is correct, the 
potential problem is from the rotation transformation. 
The essential factors of this problem are similar to the 
estimated hand squeezed into a line.  

 
Figure 6: The result with the hands shrunk to one point. 

The third main problem is the incorrect 
estimation. From Fig. 7, the hand joints of 2D output 
are unacceptable and the key point representing the 
hand root is located outside of the hand in 3D outputs. 
The main factor is that the selected hand estimation 

model failed to predict the joints, which means that 
the robustness of the model is not perfect. 

 
Figure 7: The result with incorrect hand estimation. 

In conclusion, despite the high proportion of 
feasible outputs, it does exist some unexpected 
results, especially 3D output. There are three main 
reasons: 1. The robustness of the selected model is not 
perfect, which means some postures cannot be 
recognized successfully. 2. Some errors may exist in 
the coordination of hand estimation and body 
estimation. 3. The rotation transformation is not 
precise enough, especially for some complex 
gestures. 

5 CONCLUSION  

This paper proposed an integrated method based on 
five existing models to achieve the estimation of body 
and hands simultaneously and the model performance 
and potential problems are analysed based on the 
experiment. Besides, human body poses, and hand 
estimation-related techniques and models have been 
reviewed. Drive estimation is truly one of the most 
important topics in autonomous driving, and an 
important problem is that there are no publicly 
available datasets for the whole-body including 
details of hand, body pose and face, which means that 
there is no authoritative and recognized evaluation 
method to measure the performance of the integrated 
model. Despite this study having defined a simple 
evaluation standard, it is based on manual observation 
which is not strict and persuading enough. Hence, the 
public and recognized evaluation criteria are 
necessary. 

In the future, more accurate rotation 
transformation methods or other approaches should 
be developed to avoid the inconsistency between the 
key points of hand estimation and body pose 
estimation. Besides, more models should be 
integrated to create a new model to estimate the 
human body, hands, feet, face, and other parts of the 
body simultaneously. More importantly, the publicly 
available datasets catering for the whole-body 
estimation and an evaluation method should be 
created. 
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