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Abstract: Extracting building footprints from remotely sensed photos is crucial in conducting analyses in domains such 
as land-use analysis, transportation planning and development, environmental studies, and others. Various 
methodologies and strategies have been suggested for extracting building footprints from satellite or UAV 
images, aiming to circumvent the arduous, time-consuming, less effective, and costly process of manually 
digitizing building footprints. These proposed methodologies and strategies have demonstrated their efficacy 
in detecting and extracting features. However, they do not adequately retain the geographical information 
during the output generation process. This paper presents a pipeline that can automatically extract 
geographical information from input photos and transfer it to the output image, thereby achieving automated 
georeferencing of the output image. The pipeline utilizes the YOLOV8 model, an advanced deep-learning-
based architecture for object detection and segmentation. The detection and segmentation findings, combined 
with the acquired geographical information, are used to perform vectorization and generate vector images of 
the extracted building footprint. This suggested pipeline streamlines the process of obtaining building 
footprint data linked to geospatial information by automating the georeferencing and shapefile preparation 
phases, reducing the associated complications. This automation not only expedites the process but also 
improves the precision and uniformity of the output datasets. 

1 INTRODUCTION 

The process of urbanization has experienced 
accelerated growth in the past twenty years because 
of globalization (Ramachandra et al., 2014). 
Urbanization, a significant driver of city expansion, is 
influenced by various elements, including economic, 
social, and political influences, as well as the 
geomorphology of urban regions. These growth 
factors stimulate investment, enhance the quality of 
public and private services, and foster technological 
innovation. Urban space refers to a human-dominated 
and altered environment that has been created through 
the process of urbanization (Bharath et al., 2018). The 
built-up density rises with population growth, 
modernization, and industrialization. Therefore, to 
ensure sustainable development, it is necessary to 
implement effective planning and meticulous design. 
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Buildings are acknowledged as one of the crucial 
components of urban areas. Identifying building types 
and extracting their footprints represent essential 
information within the realm of urban-related 
research. Obtaining the building information through 
GIS and integrating machine learning and remote 
sensing has significantly enhanced this process, 
resulting in improved accuracy and reduced time 
requirements. Annotated datasets have emerged as a 
vital prerequisite for developing and evaluating new 
automated techniques for interpreting remote sensing 
data. Unmanned Aerial Vehicle (UAV) imagery is an 
excellent means for training, annotating, testing, and 
automating the interpretation and data extraction 
procedures. The automated classification of building 
types and extracting their footprints from aerial 
imagery proved significant in deep learning, 
computer vision, and remote sensing (Goldberg et al., 
2017; Ps & Aithal, 2022, Dey et al., 2024). 
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Over the past few years, there has been a 
substantial surge in the application and advancement 
of deep learning methodologies across diverse 
domains. This trend is particularly pronounced in 
remote sensing, with a noteworthy increase in the 
integration and application of deep learning 
techniques. Many tasks, including feature extraction 
and classification, are now being conducted on 
various types of remotely sensed data, such as 
satellite and aerial images. Researchers have actively 
devised and implemented segmentation algorithms to 
enhance the efficiency and precision of surface 
feature extraction. Among the notable algorithms are 
modified versions of U-Net (Prakash et al., 2022; 
Madhumita et al., 2023), VGGNet (Simonyan & 
Zisserman, 2014), GoogleNet (Szegedy et al., 2015), 
ResNet (He et al., 2016), ImageNet (Krizhevsky et 
al., 2017), and Segnet (Badrinarayanan et al., 2017), 
among others. YOLOV8 (Jocher et al., 2023), an 
iteration of the You Look Only Once architecture 
(Redmon et al., 2016), has demonstrated promising 
outcomes in object detection and instance 
segmentation. 

The investigation conducted by Khatua et al. 
(2023) delves into the noteworthy application of 
YOLOV8 within the geospatial domain, particularly 
in the classification of building rooftops. Their study 
involved categorizing building rooftops into two 
distinct classes, namely "Residential Buildings" and 
"Non-residential Buildings," which was achieved 
through the adept utilization of YOLOV8 for 
detection and segmentation. The researchers 
employed high-resolution datasets, specifically the 
open-source SpaceNet-3 Vegas dataset (satellite) and 
ISPRS Potsdam dataset (aerial), although the study 
area was outside India. Upon applying a similar 
methodology to an Indian dataset, an intriguing 
observation emerged: the model's output lacked 
geospatial information despite the input images being 
perfectly georeferenced. This necessitated an 
additional georeferencing step for the output images 
to make them suitable for subsequent geospatial 
analyses. In response to this challenge, this article 
proposes a refined approach to address the issue by 
introducing a systematic process for georeferencing 
the output images generated by the model. 

Moreover, the article advocates for an automated 
procedure to extract building footprints in vector 
format enriched with geospatial information. This 
proposed enhancement ensures that the extracted 
building footprints maintain spatial references, 
significantly augmenting their utility and 
applicability for geospatial analyses. Including the 
georeferencing process is crucial for effortlessly 

incorporating the model's results into extensive 
geospatial workflows, thereby improving the overall 
efficiency of YOLOV8-based classification of 
building rooftops across various geographical 
settings. 

2 METHODOLOGY 

The methodology employed in this study adopts the 
building classification framework outlined by Khatua 
et al. (2023). The dataset used for this investigation is 
derived from an Indian source obtained through 
Aereo Manufacturing Private LTD., in conjunction 
with the SpaceNet-3 Vegas dataset. A meticulous 
annotation process was undertaken to categorize all 
images within the specified dataset into residential 
and non-residential classes. This annotated dataset 
was then utilized for training the YOLOV8 detection 
model—the initial phase of the training process 
involved exclusively using the SpaceNet-3 dataset. 
Once the model achieved satisfactory training 
accuracy on this dataset, the Indian dataset was 
introduced as an additional component to further 
enhance the model's robustness. After the successful 
training on both datasets, the model underwent testing 
using images deliberately held out from the training 
dataset. Upon completion of the result generation 
phase, the subsequent stage in the pipeline 
encompasses georeferencing and the production of 
vector images for the segmented and categorized 
buildings. This step involves translating the spatial 
information of the identified buildings and converting 
them into vector representations, contributing to a 
more comprehensive understanding of the built 
environment. Incorporating georeferencing and 
creating vector images guarantee both spatial 
precision and visual portrayal of the recognized 
building classifications, enhancing the overall 
efficiency of the classification procedure. Figure 1 
depicts the entire methodology workflow. 

In summary, the methodology unfolds 
systematically, starting with model training for 
classification, expanding to enhance the 
generalization capability, incorporating 
georeferencing to relate predictions to real-world 
locations, and generating vector polygons that capture 
the spatial distribution of segmented features. This 
stepwise approach ensures a robust and versatile 
pipeline-building analysis in diverse geographical 
contexts. 
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2.1 Dataset 

This research utilized a diverse set of images, 
originating from various sources including aerial 
and satellite imaging. Satellite images are 
commonly available with embedded geospatial 
information and are often ortho-rectified, ensuring 
accurate geometric representation. Conversely, 
aerial images, while also typically accompanied by 
geospatial information, may lack orthorectification. 
In the specific context of this study, the dataset 
sourced from Aereo Manufacturing Private LTD., 
comprises aerial images that are not ortho-rectified; 
however, they are georeferenced. 

 
Figure 1: Methodology workflow. 

2.1.1 SpaceNet-3 Dataset 

The consortium of CosmiQ Works, Radiant 
Solutions, and NVIDIA has publicly released a 
significant satellite imagery collection annotated on 
the Amazon Web Services (AWS) platform under the 
name SpaceNet. SpaceNet partners have introduced 
public competitions to drive advancements in 
machine learning algorithms for remote sensing. This 
study utilized the SpaceNet 3 Las Vegas dataset 

(Figure 2), initially designed for road network 
extraction. Notably, the dataset includes diverse 
building images in size, shape, and architectural 
characteristics, proving advantageous for the model's 
comprehensive learning. The images are 1300x1300 
pixels with a spatial resolution of 30cm. 

2.1.2 Indian Dataset 

The dataset (Figure 2) provided by Aereo 
Manufacturing Private LTD. includes images sized at 
6000x4000 pixels, with a resolution of 3 centimetres. 
The bit depth of each image is 24, signifying the 
extent of color information encoded in each pixel. 
Furthermore, the images are structured in the RGB 
colour space. 

 
Figure 2: Example of residential and non-residential 
buildings. 

2.2 Image Preprocessing and  
Ortho-Map Generation 

Image preprocessing steps are implemented to 
generate orthorectified images (Figure 3) to enhance 
the quality and accuracy of the dataset. This crucial 
process corrects geometric distortions in the original 
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aerial images, aligning them with the Earth's surface 
and facilitating precise spatial analysis. Integrating 
georeferencing and orthorectification in the 
preprocessing phase is essential for ensuring the 
reliability and consistency of the dataset, enabling 
more accurate interpretations and analyses in 
subsequent stages of the research. The initial step in 
this process involves the creation of an ortho-mosaic 
map layer through aerial triangulation. This step is 
crucial for producing an accurately geolocated ortho 
map. The ortho-mosaic is generated using the SIFT-
SFM-MVS algorithm, distinguishing itself from 
traditional photogrammetry. The SFM-MVS 
workflow comprises three essential stages. First, it 
involves identifying and matching key points, such 
as Scale Invariant Feature Transform (SIFT) 
(Lindeberg, 2012). Second, the process entails 
performing Structure-from-Motion (SFM) 
(Schonberger & Frahm, 2016) with camera 
parameters to generate a sparse point cloud as 
output. Third, a densified point cloud is generated 
through the Multi-View-Stereo (MVS) process 
(Iglhaut et al., 2019). Firstly, the SIFT-SFM-MVS 
method offers automatic identification and matching 
of image features, even when they exhibit variations 
in scale, viewing angles, and orientations. This 
feature is mainly for small and unstable platforms. 
Secondly, the algorithm equations can be solved 
without necessitating information about the camera 
positions or ground control points, although these 
can be incorporated if available. Lastly, the 
approach allows for the automatic calibration or 
refinement of camera parameters during the 
processing. Following the generation of the ortho 
map, it is further organized into equal-sized grid-
based tiles, each measuring 960x960, for efficient 
data management. The division enhances the overall 
organization and accessibility of the geospatial data. 

2.3 Model Training and Output 
Generation 

The study utilized YOLOV8 detection model as the 
detection component, sharing a design lineage with 
YOLOV5 (Jocher et al., 2020) through their common 
creator Ultratlytics. YOLOV8 introduces the C2f 
module, which combines two convolutional modules 
to improve detection by blending high-level and 
contextual features. It is an anchor-free model with a 
separate head for independently managing detection, 
classification, and regression, enhancing its accuracy 
and efficiency. 

The process begins with amalgamating two 
distinct image datasets, followed by meticulous 

annotation for each image. These annotated datasets 
are then carefully partitioned, allocating 70% for 
training, 20% for validation, and 10% for testing. The 
significance of the validation set lies in its role as a 
metric for assessing the precision and recall of the 
model, offering insights into its performance. 
Augmented versions of each image are systematically 
generated to enhance the training accuracy. The 
applied augmentation techniques encompass vertical 
flips, horizontal flips, mirroring, and a 900 rotation. 
The validation images facilitate prediction 
comparisons at every iteration throughout the training 
phase, contributing to the model's refinement. Upon 
achieving a satisfactory level of training accuracy, the 
model is deployed to predict outcomes on the images 
within the designated test dataset. This 
comprehensive approach ensures a robust and well-
optimized model capable of generalizing to new data. 

 
Figure 3: Example of orthorectification. 
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2.4 Automated Georeferencing of the 
Model-Generated Outputs 

The developed process demonstrates its effectiveness 
in generating a detailed mask that accurately outlines 
the recognized buildings. However, a significant 
drawback in the model's output becomes evident as it 
does not include crucial geospatial information. 
Acknowledging the vital role of geospatial 
information for extracting rooftop details, endeavours 
are focused on extracting this data. The needed 
geospatial details can be found in the original input 
images. The developed process demonstrates its 
effectiveness in generating a detailed mask that 
accurately outlines the recognized buildings. 
However, a significant drawback in the model's 
output becomes evident as it does not include crucial 
geospatial information. Acknowledging the vital role 
of geospatial information for extracting rooftop 
details, endeavours are focused on extracting this 
data. The needed geospatial details can be found in 
the original input images. 

A systematic process is implemented to address 
this gap to extract georeferencing information from 
the input image. This process is executed with 
precision and efficacy by utilising an open-source 
Geospatial Data Abstract Library (GDAL) in the 
Python platform. The amalgamation of geospatial 
data is accomplished by employing the 
"georeference_image" function, as delineated in the 
following pseudo-code (Algorithm 1). This function 
serves as a crucial intermediary, transferring the 
extracted geospatial information from the input 
image to output generated by the YOLOV8 model. 
In essence, the strategic incorporation of 
georeferencing ensures that the model's outputs are 
visually accurate and possess spatial contexts 
needed for subsequent applications, such as vector 
image generation. Integrating the geospatial 
information to the output images elevates the overall 
utility of the pipeline, enabling more nuanced and 
context-aware analyses. 

2.5 Vectorization of the Identified 
Objects 

Once the segmented object coordinates transform 
into georeferenced coordinates, a crucial subsequent 
step involves connecting these newly acquired 
coordinates to create vector polygons. Figure 5 
depicts the pseudo-code of the entire vectorization 
and polygon generation process. These polygons 
serve as geometric shapes on the map and play a 
vital role in representing the spatial distribution of 

the identified features. Importantly, these polygons 
encompass geographical coordinates and store 
additional information, such as the classification or 
type of the building, as attributes associated with 
each polygon. An essential detail lies in maintaining 
the consistency of the coordinate reference system 
(CRS) throughout the process. The coordinate 
reference system is a standardized way of 
representing location on the Earth's surface. In this 
case, the CRS used for the vector polygons is 
directly transferred from the original input image. 
This careful alignment ensures no error in the spatial 
positioning of the vector polygons. In other words, 
the geographic information encoded in the vector 
polygons precisely matches that of the initial image, 
eliminating any potential misalignment issues that 
could compromise the accuracy of subsequent 
analyses or applications. 
 

Function 
georeference_image(reference_tiff_path, 
input_image_path, 
output_georeferenced_path): 
 

Data: OPEN reference_tiff_path with gdal 
geo_transform: GET geo transformation 
from dataset;  
CALCULATE corner coordinates (Upper 
Left, Upper Right, Lower Left, and Lower 
Right); 
OPEN reference_tiff_path with rasterio as 
src_ref; 
GET reference image transform from src_ref  
OPEN input_image_path with rasterio as 
src_input 
READ input data and get input transform from 
src_input 
CREATE GroundControlPoints (GCPs) for 
input image corners 
CREATE transformation from GCPs 
UPDATE output_profile with transformation 
and CRS info 
OPEN output_georeferenced_path with 
rasterio for writing 
WRITE input_data with updated profile to 
output_georeferenced_path 

end 
Algorithm 1: Georeference Image. 
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3 RESULTS AND DISCUSSION 

The methodology pipeline encompasses three key 
functionalities: building-type classification, 
georeferenced output generation, and vectorization of 
segmented features. The construction of this 
comprehensive pipeline unfolds in a stepwise manner 
to ensure its effectiveness. Initially, the YOLOV8 
model undergoes training using the SpaceNet-3 
dataset (Figure 4), focusing solely on validating the 
proper functioning of the classification process. This 
initial training phase is foundational, establishing the 
model's ability to accurately categorize building 
types. 
 

Function 
create_polygon_shapefile(output_shapefile_pa
th, coordinates, reference_crs, names): 
 

DEFINE schema as dictionary with geometry 
and      properties 
OPEN output_shapefile_path with fiona for 
writing with specified schema and reference 
CRS 
FOR EACH (coords, name) pair in 
ZIP(coordinates, names): 

          CREATE polygon from coords 
  WRITE polygon geometry and 
properties to output shapefile 

          INCREMENT index 
     RETURN output_shapefile_path 
end 

Algorithm 2: Creating vector polygons. 

Following the successful validation, the pipeline 
expands by incorporating the preprocessed Indian 
dataset (Figure 5). The YOLOV8 model undergoes a 
subsequent round of training over this merged dataset 
to enhance its generalization capabilities. This 
iterative training approach, involving different 
datasets, ensures that the model can effectively 
handle diverse scenarios and accurately classify 
building types in varied geographical contexts. 

Upon completion of the training process, the 
pipeline advances to the georeferencing stage. Here, 
geospatial information is seamlessly transferred to the 
output image, aligning it with real-world coordinates. 
This step is crucial for integrating the model's 
predictions with the broader geospatial context, 
enhancing the practical utility of the results. Finally, 
leveraging the geospatial information, the pipeline 
generates vector polygons. These polygons 
encapsulate the segmented features, providing a 
detailed spatial representation of the identified 

buildings. The vectorization process transforms 
pixel-based segmentations into geometric shapes, 
facilitating more nuanced and interpretable analyses. 
Figure 6 shows the entire output of the model 
pipeline. 

The pipeline's detection and segmentation 
components utilize the YOLOV8 detection 
framework alongside the Segment Anything (SAM) 
model. Performance evaluation involves comparing 
this approach to other instance segmentation 
frameworks, including YOLOV8-seg and YOLOV5-
seg. Notably, the YOLOV8-seg model outperforms 
its counterparts by achieving a higher mean average 
precision (mAP) at a 50% intersection over union 
(IoU) benchmark (Table 1). With 200 training epochs 
conducted on 800 images of 960x960 resolution, 
YOLOV8-seg notably completed training in the 
shortest time, clocking in at 0.45 hours. The 
integration of YOLOV8 for detection and SAM for 
segmentation has shown to be comparably effective 
to the standalone YOLOV8-seg model. 

It's noteworthy that the implementation of this 
integrated technique entails a higher time investment 
compared to the alternative methods mentioned. In 
terms of detection efficiency, the study's showcased 
model outshines its counterparts by delivering 
quicker inference times. Specifically, the YOLOV8-
seg model achieves an average processing time of 
around 400ms for a 960x960 image, encompassing 
pre-processing, inference, and post-processing 
phases. This contrasts with the YOLOV5's slightly 
longer processing time of 415 milliseconds, while the 
model proposed here marks a significant 
improvement with just 198 milliseconds needed 
(Table 1). In practical scenarios, such time 
differences might seem negligible for single-image 
analysis. However, this time efficiency becomes 
critically important when processing multiple images, 
highlighting the model's advantage in more 
demanding applications. 

Table 1: Performance metrics values for different models. 

Model Precision Recall mAP Avg. 
inference 
time (ms)

YOLOV8-seg 0.944 0.892 0.945 400 

YOLOV5-seg 0.932 0.844 0.91 415 

Proposed 
pipeline 

0.929 0.838 0.899 198 
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Figure 4: Examples of outputs of the pipeline for SpaceNet-
3 dataset. 

 
Figure 5: Examples of outputs of the pipeline for Indian 
dataset. 

 
Figure 6: Example of entire pipeline outputs. 

4 CONCLUSIONS 

The research leveraged a pre-trained module that 
Khatua et al. (2023) introduced to extract distinctive 
building features from high-resolution remote-
sensing images. Through comprehensive training and 
performance evaluation, the model produced output 
images or prediction maps that aligned with the input 
images' size, shape, coordinates, and datum. This 
consistent alignment facilitates subsequent spatial 
analyses, enhancing the interpretability of the results. 

In the present scenario, it is noted that the 
YOLOV8-seg model outperforms other models in 
segmentation tasks. Yet, when considering inference 
speed, YOOV8+SAM leads the pack. The success of 
SAM in creating inferences is dependent on the 
detection capabilities of YOLOV8. This implies that 
SAM’s ability to generate quick inferences is closely 
linked to how well YOLOV8 can detect objects. 

The segmentation output from the pipeline 
conspicuously highlights the accurate extraction of 
most buildings, complete with relevant categorical 
information utilizing high-resolution remotely sensed 
images. This study effectively showcases the 
application of deep learning techniques to gain 
valuable insights into complex urban conditions. 
Furthermore, the demonstrated process is versatile, 
offering the potential for the application across 
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various deep learning model outputs to extract 
geospatially relevant information.  
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