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Abstract: In the quest to advance artificial reasoning, this article delves into the contrasting realms of Case-Based 
Reasoning (CBR) and Pattern-Based Reasoning (PBR). Drawing inspiration from human thinking behavior 
in tackling novel problems. The study centers on the chess domain, exploring the intricacies of representation, 
generalization, and reasoning processes. It illuminates the fundamental trade-off between computational 
efficiency and decision quality in (PBR) systems. This comprehensive examination provides valuable insights 
into the adaptability of reasoning systems and the role of abstract knowledge bases in enhancing performance. 

1 INTRODUCTION 

Chess, often referred to as the touchstone of artificial 
intelligence (Ensmenger, 2012), has been extensively 
examined due to its accessibility and 
comprehensibility. From the historical tale of the 
Turk (Sajo et al., 2008), through the monumental 
clash between Deep Blue and Kasparov (Campbell et 
al., 2002), to the superhuman performance of 
Alphazero (Silver et al., 2017), machine mastery of 
the game has seen significant advancements. 
However, these achievements have predominantly 
relied on resource-intensive brute-force search 
techniques (Chaslot et al., 2008), complemented by 
heuristics like Alpha-beta pruning (Sato and Ikeda, 
2016). 

Intelligence, in a general sense, can be defined as 
the capacity to take actions that enhance the 
likelihood of problem-solving (Russell & Norvig, 
2003). Given the computational speed of machines, 
this capability can be artificially replicated through 
brute-force computation, involving a systematic 
exploration of potential solutions. However, it is 
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crucial to note that explainable artificial intelligence 
(AI)extends beyond mere computational power. It 
encompasses the ability to emulate the cognitive 
processes of human thinking in machines, enabling 
them to acquire knowledge, tackle complex problems 
(Ongsulee, 2017), and provide understandable, 
interpretable, and transparent explanations for their 
decisions and actions (Keane and Kenny, 2019). This 
paper is targeted at distinguished disciplines of 
existing artificial reasoning methods. 

Since the pioneering work of Robert Shank 
(Shank,1982), case-based reasoning (CBR) has found 
its way into numerous computer applications leading 
to the development of successful CBR systems. Often 
touted for its ability to closely mimic human thought 
processes (Aamodt and Plaza, 1994), this approach 
hinges on the idea that solutions to new problems can 
be derived from the problem-solving experiences of 
similar, previously encountered issues. Likewise, 
pattern-based reasoning (PBR) involves eager 
generalization to extract patterns from a set of prior 
problems and construct a set of solutions-indicating 
rules.  
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RBR and CBR represent two complementary 
paradigms for constructing artificially intelligent 
systems (Sun, 1995). This paper delves into their 
respective applications in the context of chess, 
emphasizing their distinct knowledge representation 
techniques and approaches to case generalization. It 
engages in a discussion of the research findings and 
conclusions in this area and underlines the potential 
value in adopting a combined perspective that 
leverages the strengths of both methods. 

2 BACKGROUND AND 
PROBLEM STATEMENT 

In addressing everyday problems, our natural 
inclination is to draw upon past experiences, compare 
them with new situations, and develop customized 
solutions. In turn, this process generates fresh 
knowledge that we can later recall and apply. As 
illustrated in Figure 1 (CBR) serves as a simulation of 
this human thinking behavior when tackling new 
problems. 

 
Figure1: CBR reasoning process. 

PBR, on the other hand, relies on explicit pre-
generalization and employs a more abstract 
knowledge representation through rules. When faced 
with a new problem, it selects relevant rules that have 
premises consistent with the problem description (see 
Figure 2). In larger domains, summarizing all the 
knowledge becomes increasingly challenging, and 
exact matching is seldom achievable. Consequently, 
rule selection is based on various contextual 
adaptations. This leads to the interchangeability of the 
terms "rule" and "pattern" (Reason, 1990).  

In a fully automated environment, both CBR and 
PBR rely on a set of training examples to create 
generalizations. The key distinction between the two 
systems is that CBR generates (implicit) 
generalizations during the search and retrieval 
process by identifying similarities between base cases 
and target problems. In contrast, PBR systems make 

eager explicit generalizations by identifying shared 
characteristics with the same solution, which are then 
turned into rules applied to solve future problems. 
 

 
Figure 2: PBR process. 

The performance of an artificial reasoning approach 
relies heavily on the quality of its knowledge base. 
But can it be influenced by its generalization method? 
To address this problem, we formulate the following 
questions: 

RQ1: what are the advantages of each of the PBR 
and CBR approaches? 
RQ2: how could their shortcomings be mitigated? 
RQ3: could this lead to a new generalization 

approach? 

3 CHESS GAME: CBR VS PBR 

The fundamental challenge in knowledge-based 
approaches is to extract and present relevant 
knowledge in a usable form. In this paper, the 
surveyed research can be categorized into two 
primary directions: the first utilizes pattern-based, 
expert-level advice in the form of constraint rules, 
while the second involves creating case bases from 
expert-level gameplay. 

3.1 Representation 

From a CBR perspective, the knowledge base 
comprises games played at the expert level. In this 
view, a game can be seen as a series of distinct 
problems, each with its own solution. These problems 
involve the remaining pieces and their respective 
positions, referred to as the board position throughout 
this article. Due to the complexity of the game 
(approximately 10120 possible positions), the search 
function must be thoughtfully designed to balance 
search specificity and accuracy of selected solutions. 
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To address this challenge, various researchers 
have explored different approaches for the 
representation of chess board positions. For instance, 
(BRATKO et al., 1978) focused on studying 
endgames with pattern descriptions. Their 
representation includes a listing of the remaining 
pieces, their relative positions, and attack/defense 
relationships, along with defined goals. the 
educational system ICONCHESS (Lazzari, 1996) 
combines CBR with fuzzy logic to offer high-level 
playing advice. This system utilizes cases, drawn 
from games played by various experts and masters, 
along with their corresponding analyses, see (Figure 
3). David Sinclair (Sinclair, 1998) employed 
Principal Component Analysis to condense 56 
predictive features into 11. Another approach, as seen 
in (Ganguly et al., 2014) and, represents cases in a 
textual format, including precise piece positions and 
their potential interactions (attacks, defenses, 
counterattacks). Similarly, (Hesham et al., 2021) 
represent the board position in a simple textual 
format.  
 

 
Figure 3: Board representation for CBR systems. 

In contrast, knowledge can also be represented as 
a collection of conditional recommendations based on 
pattern extraction, suggesting potential winning 
moves. This approach is exemplified in (Kass, 1990) 
and (Kerner, 1995), where the concept of Explanation 
Models (XP) is introduced. An XP serves as a 
parametric explanation that can be adapted to 
elucidate new cases. A Multiple Explanation Model 
(MXP) comprises a collection of XPs, each 
representing a unique perspective on a given case. 
These XPs are assigned weights and assessments, 
contributing to the overall evaluation of the position.  

CHUNKER (Berliner & Campbell 1984) employs 
abstract patterns stored in predefined libraries to 
assess pawn endgame positions. This approach has 
been further explored in SUPREM (Berliner & 
Ebeling, 1984) (Berliner & Ebeling, 1990), a pattern-
based program implemented in the specialized 
machine/program HITECH. In this system, a board 
position is interpreted as a collection of patterns. 

Clamp (Cook, 2008), analyses middle-game positions 
to construct decisive piece groupings for move 
selection. Contributing to the development of piece-
move-oriented chunk libraries. 

 
Figure 4: Rule representation for PBR chess system. 

3.2 Reasoning and Generalization 

The fact that analogous problems have analogous 
solutions is a cornerstone of CBR Systems. When it 
comes to a player's perspective, similar board 
positions often lead to similar moves. This raises the 
question of which features of a board position are 
crucial for move selection and how they affect the 
search process. (Lazzari, 1996) sought out similar 
positions, including reversed similarity, by evaluating 
both syntactic similarities (such as the exact location 
of pieces) and semantic similarities related to plans 
and similar strategic objectives. In (Sinclair, 1998), 
the researcher attempted to characterize each position 
in the case base by considering structural features like 
pawn formations and material. This approach led to 
similarity measurement based on the composite 
distance between these representations. (Ganguly et 
al., 2014) encoded the remaining pieces, their 
reachable squares, and attack/defense configurations, 
adopting an approximation search process that 
considered the piece's mobility and connectivity. 
With a simplistic textual representation of the 
chessboard position, (Hesham et al., 2021) employed 
base cases to illustrate potential moves for both the 
player and their opponent. Subsequently, these moves 
were input into a search algorithm (Plaat et al, 2014) 
employing alpha-beta pruning (Sato & Ikeda, 2016) 
to determine the optimal move. 

Pattern-based systems, on the other hand, focus on 
identifying dominant patterns within a query, 
utilizing contextual adaptation mechanisms since the 
rule's condition part is expressed in a pattern-like 
form. In (Kass, 1990) and (Kerner, 1995), patterns 
with binary properties are used to extract fundamental 
explanation models from the board position, and the 
most dominant ones are selected. In CHUNKER 
Berliner & Campbell 1984), each model consists of 
instantiable properties, and each instance has a set of 
values for these properties. SUPREM (Berliner & 
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Ebeling, 1990) employs predefined pattern 
recognition in the form of rules that define temporary 
objectives for players and the necessary models to 
recognize these goals during the search process. 
Morph (Walker & Levinson, 2004), after being 
trained in various games, learns to associate chess 
piece formations with the possible winning moves. 
As for (Cook, 2008), when a query is submitted, piece 
groupings are extracted based on factors like attack, 
defense, proximity, and more. These groupings are 
then searched for in the position's legal move 
libraries, constructed through the piece's move-
oriented chunk libraries. 

3.3 Results and Insights 

The efficiency of an artificial Reasoning system 
fundamentally hinges on two critical components: 
representation and similarity metrics. In this context, 
the dynamic interaction prompts a central question: 
How significant are the characteristics used for a 
problem representation? 

Within this context, the study conducted by 
ICONCHESS, as presented in (Lazzari, 1996), places 
significant emphasis on specific factors that play a 
pivotal role in characterizing board positions. These 
factors encompass the positions and types of pieces 
and the intricate web of playing relations among 
them. The research underscores the importance of 
considering these elements when seeking to 
comprehensively define and understand the unique 
characteristics of board positions. 

The research conducted by Sinclair (Sinclair, 
1998) contributes valuable insights into this question. 
Sinclair's work reveals that the choice of similarity 
metrics plays a pivotal role in shaping the 
performance and outcomes of CBR chess systems: 

Quality vs. Quantity Trade-off: Sinclair's 
observations demonstrate a fundamental trade-off. 
When employing strict similarity metrics, the cases 
retrieved exhibit a high level of quality. However, this 
precision often comes at the cost of quantity, as the 
number of results retrieved tends to be relatively low. 

Summarization of Board Positions: Central to this 
discussion is the representation of board positions. 
The choice of which features to include, the number 
of features, and their respective weighting in the 
computational process can significantly affect the 
system's performance. 

Furthermore, (Qvarford, 2015) investigated the 
performance of an AI agent that employed CBR with 
an extensive similarity metric. The outcomes revealed 
a subpar performance, with a low win rate across 
different case bases. This underperformance can be 

largely attributed to the utilization of a 
comprehensive similarity metric, which may have led 
to an overly strict matching criterion. The study's 
findings underline the potential advantage of 
employing, among other adjustments, a more abstract 
knowledge base. This could enhance an AI agent's 
overall performance, potentially leading to more 
successful outcomes.  

However, it's worth noting that the studies 
discussed in this article exhibit substantial variations 
in terms of their training data, objectives, and the 
specific computing platforms on which they were 
implemented. This diversity makes it challenging to 
classify these papers solely based on the level of 
playing they address. A concise summary of the key 
aspects explored in these various research endeavors 
is presented in Table 1 for reference and clarity. 

The majority of pattern-based systems discussed 
in this context were conceived and implemented with 
the primary objective of mitigating the branching 
factor challenges inherent in alpha-beta search 
algorithms (Sato & Ikeda, 2016). This challenging 
task of narrowing down the search space is crucial for 
achieving computational efficiency in AI systems. 
Some noteworthy examples include (BRATKO et al., 
1978), CHUNKER Berliner & Campbell 1984), 
SUPREM (Berliner & Ebeling, 1990), (Ganguly et 
al., 2014) and (Hesham et al., 2021) which 
demonstrated high playing performances. 

For instance, Clamp (Cook, 2008) introduced an 
approach that resulted in a substantial 50% reduction 
in the number of nodes examined during the search 
process. Although this achievement was 
commendable, Clamp had a relatively modest 17% 
success rate in selecting the optimal move, illustrating 
the intricate balance between computational 
efficiency and decision quality. In essence, it 
highlights the trade-off that many pattern-based 
systems encounter. 

The case of Morph (Walker & Levinson, 2004) in 
the context of PBR systems provides valuable 
insights into the challenges and adaptability of an 
abductive approach. its noteworthy achievement was 
its ability to enhance pattern extraction efficiency 
over multiple games. However, Morph also faced 
persistent challenges when it came to understanding 
how to successfully conclude games and secure 
victory. This particular limitation highlights a key 
aspect of abductive PBR: the need for a 
comprehensive and well-structured knowledge base. 
It's not enough to identify patterns; the system must 
also know how to effectively apply these patterns to 
achieve a winning outcome. 

The adaptability of an abductive PBR approach 
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depends on several factors, including the quality and 
diversity of the training data, the sophistication of the 
pattern extraction algorithms, and the system's ability 
to derive actionable strategies from identified 
patterns. Over time, with access to more 
comprehensive and diverse data, an abductive PBR 
system may become increasingly adept at adapting to 
different gameplay scenarios and improving its 
overall performance. 

The case of CHUNKER (Berliner & Campbell 
1984) and SUPREM (Berliner & Ebeling, 1990) 
represents a perfect example of inductive (PBR). 
These systems, in contrast to purely abductive 
approaches, overcame the inherent challenges and 
exhibited the capability to play complete games at a 
master's level. Their achievement was underpinned 
by predefined pattern recognition, which essentially 
means that they were initially designed based on a 
foundation of hypothetical expert knowledge. The 
success of CHUNKER and SUPREM suggests the 

potential of a PBR approach in addressing complex 
gameplay problems and problem-solving in general. 
In the case of these systems, predefined patterns serve 
as a form of knowledge that guides their gameplay 
strategy. The study outlined in (Ganguly et al., 2014), 
hints at the tantalizing possibility of constructing a 
fully knowledge-based algorithm. This is contingent 
on the feasibility of implementing an automatic 
knowledge extraction process.  

3.4 Theoretical Model Evaluation 

The research in this area draws significantly from the 
work of Chase and Simon (Chase & Simon, 1973) 
and Gong et al. (Gong et al., 2015), who conducted 
studies focusing on the perceptual abilities of chess 
players. Their investigations aimed to gain insights 
into how players mentally perceive chess board 
positions. The key finding from their studies is that a 
 

Table 1: Knowledge-based chess systems. 

Knowledge 
representation 

Reasoning and 
generalization 

Goal Game stage Results 

Relative piece position + 
attack defense relation 
(BRATKO et al., 1978) 

Implementation of 
expert hypothesis on 

endgame 

Elicitation of pattern-
based representation 

for endgames

End game Evidence that a more 
knowledge-based approach 

is required 
Fuzzy logic using fixed 
patterns: material king 

protection, pawn 
structure (Lazzari, 1996) 

customizable weighted 
function for 

classification 

Human theory-based 
classification for 
board position 

evaluation

Middle 
game 

Proof that joining CBR and 
fuzzy logic is valuable for 
the teaching of high-level 

chess strategies 
Structural features 

representation with PCA 
(Sinclair, 1998) 

K nearest neighbors 
based similarity for 

move selection

Quality of Results 
Assessment 

Full game The need to balance 
between quality and the 

number of results
Exact piece positions + 
attack/defense relation 
(Ganguly et al., 2014) 

Piece’s mobility and 
connectivity 

approximation for 
move selection

Search time sizing Full game Low runtime overhead 

Exact piece position 
(Hesham et al., 2021) 

potential moves for 
both players and their 

opponent 

Downsizing the search 
space   

Full game  Enhanced playing 
performances (using 

minimax algorithm and 
alpha-beta pruning)

Explanation Patterns 
(Kass, 1990, Kerner, 

1995) 

Pattern instantiation chess expert system 
for game evaluation 

Full game Comprehensive board 
position evaluation 

Construction of fixed-
sized chunks based on 

attack, defense, and color 
(Cook, 2008) 

The exact 
correspondence of 

board positions chunks 

Investigating decisive 
chunk size and 

composition 

Middle 
game 

4 to 5 pieces attack 
defense chunk tend to be 
more decisive in move 

making 
Abstract predefined 
pattern Berliner & 
Campbell 1984) 

Guided pattern 
generation 

Board position 
evaluation 

Pawn 
endgame 

Evaluation of entire board 
configurations based on 

predefined abstract pattern 
libraries 

Predefined pattern 
(Berliner & Ebeling, 

1984) 

Interim goals and their 
defining pattern for 

recognition 

Pattern-based advice 
for guiding Alpha-beta 

search

Full game Playing a full game at a 
master’s level 
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player's level of expertise is closely linked to their 
chunking abilities. This chunking process involves 
players breaking down a complex board position into 
manageable and meaningful "chunks." 

These "chunks" are essentially cognitive units that 
encapsulate specific patterns and structures within the 
chessboard. Players establish these chunks based on 
various criteria, including pawn structures, color, 
attack and defense relationship, and local proximity. 
The chunking process allows players to efficiently 
process and remember complex board positions. They 
recognize recurring patterns and structures, which 
simplifies decision-making during a game. 

León-Villagrá and Jäkel (Leon-Villagra & Jakel, 
2013) have made contributions to this body of 
knowledge. Their research indicates that chess 
players do not rely on visual memory alone to think 
and remember game situations and features. Instead, 
players tend to think more abstractly, focusing on the 
underlying structures, patterns, and relationships 
between pieces. This abstract approach to thinking 
enables them to generalize their knowledge and apply 
it to a broader range of situations, ultimately 
contributing to their expertise. 

The different implementations of these cognitive 
processes serve to answer RQ1, they underline the 
adaptability of CBR systems, promote the 
applicability of PBRs, and shed light on the 
relationship between case bases and pattern base 
extraction. Case bases serve as valuable sources of 
information that can potentially lead to knowledge 
base extraction. They provide the raw material from 
which generalizations and patterns are derived, 
ultimately contributing to the development of a 
knowledge base that enables the system to reason, 
strategize, and make decisions based on past 
experiences and expertise. 

Here's how this connection works: 
Case Bases as a Source of Cases: Case bases store 

collections of specific cases, each comprising a 
problem and its corresponding solution or outcome. 
These cases represent instances of real-world 
situations, often related to a particular domain, such 
as chess. 

Generalization of Cases: In PBR, the process of 
generalization involves identifying patterns or 
commonalities among a set of cases. These patterns 
could be certain strategies, tactics, or recurring 
themes that emerge from analyzing multiple cases. 
The goal is to extract generalized rules or patterns 
from these individual cases. 

Knowledge Base Extraction: The generalized 
patterns or rules extracted from the case base can be 
viewed as a form of knowledge base. These rules 

represent the distilled wisdom and expertise 
contained within the individual cases. They offer 
guidance and strategies for addressing similar 
problems or situations in the future. In essence, the 
knowledge base is created by summarizing and 
codifying the general principles that underlie the 
cases. 

Application to New Problems: Once a knowledge 
base is constructed from the case base, it can be used 
to tackle new, previously unseen problems. When a 
new problem arises, the system can consult the 
knowledge base to identify relevant rules or patterns 
that apply to the current problem. This allows for 
informed decision-making and problem-solving. 

Most advanced neural-network-based chess 
programs (He et al, 2018), (Sabatelli et al, 2018), 
share the overarching concept of learning from data 
and applying this learning to new problems, to 
evaluate positions and calculate strategies. Yet it has 
been proven that neural networks, particularly those 
involved in deep learning, tend to forget previously 
learned information upon learning new information 
(Babakniya et al, 2023). This phenomenon, known as 
catastrophic forgetting, is a significant barrier to 
effective generalization over time. 

Psychological studies, particularly those 
conducted by Dingeman and DeGroot (Dingeman & 
DeGroot, 1965), have provided intriguing insights 
into the cognitive processes of players, highlighting 
the differences between experts and beginners. Key 
findings from these studies include: 

Real-Time Decision-Making: Regardless of their 
expertise, players are observed to make their move 
decisions in the here and now, responding directly to 
the board position before them. This implies that even 
experts do not rely solely on pre-planned sequences 
of moves, dispelling the myth that chess experts have 
every move planned far in advance. 

Contextual Analysis: To make these real-time 
move decisions, players engage in contextual 
analysis. They carefully evaluate the local situations 
on the board, identifying those that hold promise for 
their plans and moves. This emphasis on contextual 
analysis highlights the significance of a global 
contextual scan, which encompasses a broad 
assessment of the game situation. 

Capacity for Memorization: Remarkably, Simon 
and Gilmartin (Simon & Gilmartin, 1973) have found 
that expert-level players possess an impressive 
capacity for memorization. They can commit a vast 
number of different game scenarios to memory, 
ranging from 10,000 to a staggering 100,000 unique 
situations. This ability to remember and recognize 
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specific board positions further contributes to their 
expertise. 

This can answer the question of why Morph 
(Walker & Levinson, 2004) couldn't successfully 
conclude games and the need for a comprehensive 
and well-structured knowledge base, thus solving 
RQ2. Retaining the cases that were used to generate 
rule bases can indeed be considered a constraint 
imposed to address the issue of rule validity. This 
approach serves several valuable purposes: 

Rule Validation: Keeping the source cases allows 
for continuous validation and verification of the 
generated rules. By maintaining the original cases, 
reasoning systems can periodically check whether the 
rules are consistent with the actual experiences and 
expertise contained in the cases. This helps ensure 
that the rules remain valid and up to date. 

Dynamic Adaptation: Cases are real-world 
instances and, as such, they capture a dynamic and 
evolving body of knowledge. New cases are added 
over time as more experiences are gained. By 
retaining these cases, reasoning systems can adapt 
and refine the rules as new information becomes 
available, enhancing the system's adaptability and 
accuracy. 

Handling Exceptions: In complex domains like 
chess, there may be scenarios or exceptions that rules 
alone cannot adequately address. The original cases 
serve as a safety net to handle such exceptions. If a 
new problem or situation does not fit well with the 
existing rules, the system can fall back on the cases 
for guidance. 

Explanation and Transparency: Maintaining the 
source cases offers transparency in rule generation. It 
allows system users to trace back to the original cases, 
making it easier to understand how and why specific 
rules were generated. This transparency can be 
crucial in critical applications or when users need to 
trust the system's decisions. 

However, it's important to consider the trade-off 
between the advantages of retaining cases and the 
associated computational complexity. Managing a 
large number of cases can be resource-intensive. 
Therefore, Reasoning systems should strike a balance 
between retaining enough cases for validation and 
adaptability while ensuring efficient system 
performance, thus leading to a new generalization 
approach, thus treating the suggesting an answer for 
RQ3. 

 
 
 
 
 

4 CONCLUSIONS AND 
PERSPECTIVES  

In the realm of chess AI, the exploration of CBR and 
PBR uncovers the nuanced dynamics of knowledge 
representation and application. CBR mirrors human 
problem-solving behavior, but its applicability is 
challenged in the context of chess gameplay. PBR 
systems demonstrate the delicate balance between 
efficiency and decision quality, with trade-offs based 
on the choice of similarity metrics. 

Psychological studies shed light on the real-time 
decision-making capabilities of chess players, 
offering insights into the cognitive processes that 
underpin expertise. The research underscores the 
importance of problem-specific characteristics and 
adaptability in PBR systems. 

CBR systems are renowned for their scalability 
and are generally more approachable in design 
compared to rule-based systems. However, in 
practice, rule-based systems are often preferred over 
cases due to their greater applicability. Consequently, 
the challenge lies in automating the creation of rule 
bases, which can be viewed as a generalization of 
case bases. 

Retaining cases used for rule generation emerges 
as a valuable constraint to ensure rule validation, 
dynamic adaptation, handling exceptions, and system 
transparency. Striking a balance between 
computational efficiency and the advantages of 
retaining cases remains a key consideration. 

This comprehensive exploration of CBR and PBR 
in chess AI provides a deeper understanding of the 
challenges and accomplishments in building 
intelligent systems (Berramla et al, 2020) that 
navigate the complexities of chess gameplay and 
problem-solving in general. It opens doors to further 
research and development in artificial reasoning. 
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