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Abstract: This paper investigates the integration of Artificial Intelligence (AI) and Model-Based Systems Engineering 
(MBSE) in the field of satellite system reliability. We employ Long Short-Term Memory (LSTM) networks, 
an AI technique, to predict the failure probabilities of various subsystems. These LSTM models are integrated 
into an MBSE framework, enhancing the accuracy of system-wide failure prediction and operational decision-
making. The approach involves training LSTM networks on simulated datasets representing a range of 
operational scenarios for each subsystem. The outputs from these networks are then aggregated using a 
weighted approach to determine the optimal disposal time, aiming to extend the satellite’s operational lifespan. 
The performance of the system is evaluated a simulated real mission scenario. This research highlights the 
potential of AI-MBSE integration in advancing satellite system design and maintenance strategies. 

1 INTRODUCTION 

The growing concern of space debris accentuates the 
need for precise failure prediction and effective end-
of-life management of satellites. With an increasing 
number of satellites in orbit, the likelihood of 
component failures contributing to debris is a 
significant issue. Moreover, for missions requiring 
rapid satellite replacement to avoid service disruption 
(M. A. Alandihallaj & M. R. Emami, 2022a, 2022b), 
accurately predicting satellite end-of-life is crucial. 
Therefore, precise prediction of satellite component 
failures and timely execution of end-of-life strategies 
are imperative not only for orbital sustainability but 
also for operational efficiency. 

In addressing these challenges, various studies 
(Bottone et al., 2008; Islam & Rahimi, 2020; Park et 
al., 2023) have explored advanced predictive methods 
focusing on failures in space missions. (Islam & 
Rahimi, 2020) introduced Bayesian networks for 
predicting failures in satellite systems, providing a 
robust framework for handling complex scenarios. 
Similarly, (Park et al., 2023) and (Islam & Rahimi, 

 
a  https://orcid.org/0000-0002-8526-3605 
b  https://orcid.org/0009-0009-5374-0989 
c  https://orcid.org/0000-0003-1763-6892 

2020) have contributed to this domain with system-
level prognostics for reaction wheel motors and data-
driven time series prediction methods, respectively. 
These approaches are vital in pre-empting the 
generation of space debris through component-level 
failure prediction. 

Further, (Güreş et al., 2019)and (Peng et al., 2019) 
have investigated the reliability of satellite systems. 
(Güreş et al., 2019) highlighted the integration of 
real-life failure data to enhance satellite design, 
aiming to prevent failures that may lead to debris. 
(Peng et al., 2019) adopted a comprehensive 
statistical approach to analyze the reliability of 
satellites and their subsystems, pinpointing potential 
contributors to unreliability and subsequent debris 
generation. 

Innovative lifetime prediction methods proposed 
by (Zhao et al., 2016) and residual life prediction for 
key components by (Muthusamy & Kumar, 2022) are 
pivotal in space debris mitigation. These studies 
present methodologies for predicting satellite end-of-
life with greater accuracy, facilitating timely 
decommissioning before they become hazards. 
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The inherent complexity of satellites, where 
various parameters and environmental factors 
influence component lifespan and functionality, 
presents a significant challenge in accurately 
predicting component failures. Traditional methods 
often struggle to fully anticipate the complex 
interactions and dependencies within satellite 
systems. 

Model-Based System Engineering (MBSE) has 
been recognized as an effective framework for 
managing satellite system complexity throughout 
various phases, including design (Gao et al., 2019; 
Spangelo et al., 2012), operation (Spangelo et al., 
2013), mission simulation (Kaslow et al., 2014), and 
optimization (Crane & Brownlow, 2015). MBSE, 
through detailed and integrated system models, 
enables a comprehensive understanding of 
component interactions and behaviors. This approach 
is crucial for identifying potential failure points and 
optimizing system design for enhanced reliability 
(Rakalina et al., 2021). However, the dynamic and 
time-sensitive nature of satellite operations 
necessitates advanced analytical capabilities for 
precise component failure prediction. 

One tool that surpasses parametric models in 
dealing with complex autocorrelation sequences is 
Long Short-Term Memory (LSTM) networks, which 
have shown successful results in various engineering 
fields (Ramezani et al., 2023). The integration of 
LSTM networks with MBSE offers a significant 
advancement in addressing this challenge. LSTMs 
enhance the MBSE framework with deep learning 
capabilities, enabling the processing and 
interpretation of complex time-series data from 
satellite systems (Islam & Rahimi, 2020). This 
integration improves the accuracy and timeliness of 
predicting potential component failures. LSTMs’ 
ability to analyze historical and real-time data 
facilitates the identification of failure patterns, 
leading to earlier and more precise predictions. This 
capability is vital for proactive maintenance and 
effective end-of-life planning. The continuous 
learning of LSTMs, combined with the 
comprehensive system understanding provided by 
MBSE, allows for dynamic adaptation and nuanced 
predictions, taking into account the complex 
interdependencies within the satellite system. 
Ultimately, this synergy improves decision-making, 
enabling engineers and mission planners to develop 
more effective maintenance, anomaly response, and 
disposal strategies. 

This paper explores the integration of LSTM with 
MBSE and its practical implications. Section 2 
discusses MBSE’s role in satellite system 

management. Section 3 introduces LSTM networks 
and their suitability for enhancing failure prediction 
in time-sensitive systems and outlines the 
methodology for integrating LSTM with MBSE, 
focusing on improving predictive analysis for satellite 
components. Section 4 presents a case study 
demonstrating this approach’s application and 
effectiveness. Finally, Section 5 concludes the paper, 
summarizing key findings and discussing the broader 
contributions of this research to satellite system 
management. 

The integration of LSTM with MBSE represents 
a significant contribution to satellite engineering, 
offering a novel approach to enhancing predictive 
maintenance and end-of-life strategies for satellite 
systems. This research addresses the pressing need to 
mitigate space debris risks and ensure the 
sustainability of space missions. 

2 MBSE IN MATLAB 
ENVIRONMENT 

The initial step in adopting MBSE is the selection of 
an appropriate tool for system modeling. Several 
tools are available in the market, such as SysML 
Designer (Friedenthal et al., 2014) and MagicDraw 
(Neuendorf, 2006) each with its unique capabilities 
and features. However, the integration of learning 
methods and mission simulation plays a crucial role 
in the selection process. This integration is often more 
streamlined when working within a single 
environment, as opposed to linking different tools 
like MagicDraw with simulation software such as 
Systems Tool Kit (STK) and MATLAB. 

Recognizing this need for a cohesive 
environment, MATLAB has recently expanded its 
offerings to include toolboxes that are specifically 
designed for MBSE. The ease of integrating learning 
methods and optimization algorithms in MATLAB 
makes it an ideal choice for this purpose. The 
MATLAB environment provides a unified platform 
for both system modeling and the subsequent 
application of advanced analytical methods, thereby 
simplifying the process and enhancing the efficiency 
of the overall system design and analysis. 

MATLAB®, Simulink®, System Composer™, 
and Requirements Toolbox™ collectively form an 
integrated suite that significantly enhances MBSE 
capabilities. This suite enables the creation of 
descriptive architectural models that seamlessly 
transition into detailed implementation models. The 
interconnected environment ensures consistent 
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alignment across architectural and design elements, 
enabling systems engineers to establish a digital 
thread. This thread facilitates seamless navigation 
between system requirements, architectural models, 
implementation models, and embedded software. 

Within this framework, engineers can capture and 
manage system requirements, enabling thorough 
impact and coverage analysis. System architectures 
can be optimized by capturing architecture metadata 
and interfacing directly with MATLAB analytics for 
domain-specific trade studies. Additionally, 
engineers can create model views that isolate 
components relevant to various engineering concerns, 
assisting in validating requirements through 
simulation-based testing. The framework also aids in 
translating and refining requirements into 
architectures, with components prepared for 
simulation and implementation using Model-Based 
Design in Simulink. 

System Composer™ plays a crucial role in 
specifying and analyzing architectures for model-
based systems engineering and software architecture 
modeling. It allows for the allocation of requirements 
while refining architecture models for design and 
simulation in Simulink®. Simulink Requirements 
creates a digital thread, ensuring traceability and 
highlighting potential system impacts, thereby 
facilitating comprehensive requirements coverage. 

Architecture models within this environment are 
developed through direct authoring, importing from 
other tools, or leveraging architectural elements of 
Simulink designs. These models consist of 
components and interfaces that can capture behaviors 
in various formats such as sequence diagrams, state 
charts, or Simulink models. With System Composer, 
engineers can develop architecture models and 
manage system requirements effectively, working at 
varying levels of abstraction and adding details as 
needed. Requirements Toolbox™ complements this 
by enabling the direct capture and management of 
system requirements, establishing a comprehensive 
framework for requirements traceability and impact 
analysis. 

In summary, MATLAB, Simulink, and System 
Composer provide a comprehensive toolset for 
capturing and managing system requirements, 
optimizing system architectures, and validating 
system designs. This integrated approach supports the 
spectrum of satellite system engineering activities, 
from initial requirements capture to detailed design 
and verification, ensuring accurate representation and 
alignment with stakeholder needs. 

This paper focuses on the modeling of a 
hypothetical FireSat space system, a low Earth orbit 

(LEO) spacecraft dedicated to detecting, identifying, 
and monitoring forest fires. The FireSat space system 
serves as an illustrative example in the widely 
recognized and utilized Space Mission Analysis and 
Design (SMAD) by (Wertz et al., 1999), providing a 
relevant context for our study. 

In the MATLAB environment, the modeling 
process begins with defining a set of system-level 
requirements for the FireSat mission using CubeSat 
technology (M. Alandihallaj & M. R. Emami, 2022; 
Emami & Alandihallaj, 2022). These requirements 
form the foundation for the subsequent development 
of the system architecture and data interfaces, which 
are constructed using System Composer. 

The architecture of the FireSat system (shown in 
Figure 1) is composed of several key elements: 
components, ports, and connectors. Each component 
within the architecture represents a part of the system 
that fulfills a specific function, be it a system, 
subsystem, hardware, software, or another conceptual 
entity. Components are essential in defining the 
architecture’s structure and functionality. 

Ports are nodes situated on a component or within 
the architecture, signifying points of interaction with 
the external environment. These ports enable the flow 
of information to and from other components or 
systems, playing a pivotal role in the system’s 
communicative capabilities. Connectors, represented 
as lines, establish connections between ports. They 
are crucial in describing how information is 
transferred and shared between components within 
the architecture, illustrating the system’s information 
flow, as shown in Figure 2. 

 
Figure 1: The hierarchy of the system architecture. 

 
Figure 2: The data flow of the CubeSat as the space 
segment. 
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A noteworthy aspect of the model is the inclusion 
of a failure block for each element of the satellite. 
This block is responsible for calculating the health 
status of the component based on its current state. All 
the failure models are aggregated in one failure 
prediction section, as shown in Figure 3.  

 
Figure 3: The connection of the failure prediction block 
with subsystems. 

The modeling of the failure is grounded in 
existing literature, ensuring a realistic and reliable 
representation of component behavior. For instance, 
models for reaction wheels are based on (Park et al., 
2023; Rahimi et al., 2020), control moment gyros 
(CMGs) by (Muthusamy & Kumar, 2022), attitude 
sensors by (Yuan et al., 2021), and temperature 
sensors by (Abdelkhalek et al., 2019). These models 
contribute to a comprehensive and robust simulation 
of the FireSat system, enabling detailed analysis and 
evaluation of its performance and reliability in 
various operational scenarios. 

3 METHODOLOGY 

3.1 LSTM Networks 

LSTM networks, a specialized variant of recurrent 
neural networks, were conceptualized by (Hochreiter 
& Schmidhuber, 1997) to address the shortcomings 
of traditional Recurrent Neural Networks (RNNs), 
particularly the vanishing gradient problem. The 
LSTM network is distinguished by its unique 
structure, which includes memory blocks composed 
of interconnected gates. These gates control the flow 
of information and enable the network to retain or 
discard data based on its relevance. 
The fundamental mechanism of an LSTM unit 
encompasses the interplay of the forget gate, input 
gate, and output gate. The forget gate determines 
which information is removed from the cell state, 
described by  𝑓௧ = 𝜎൫𝑤௙ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௙൯ (1)

where 𝜎 is the sigmoid function, and 𝑤௙  and 𝑏௙  are 
the weights and biases associated with the forget gate, 
and ሾℎ௧ିଵ, 𝑥௧ሿ  is the concatenation of the previous 
output and current input.  The input gate, 𝑖௧, and the 
candidate state,𝐶መ௧  , collectively decide which new 
information will be stored in the cell state, 𝐶௧. This 
process is governed by 𝑖௧ = 𝜎ሺ𝑤௜ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௜ሻ (2)𝐶መ௧ = tanhሺ𝑤஼ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏஼ሻ (3)𝐶௧ = 𝑓௧𝐶௧ିଵ + 𝑖௧𝐶መ௧ (4)

Finally, the output gate, formulated as 𝑜௧ = 𝜎ሺ𝑤௢ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௢ሻ (5)
 

along with the cell state, determines the next hidden 
state ℎ௧ = 𝑜௧ tanhሺ𝐶௧ሻ . These elements work in 
unison to update and maintain the cell state over time, 
allowing the LSTM to learn and remember 
information across long sequences. 

3.2 Application of LSTM in FireSat’s 
Subsystem Failure Prediction 

The FireSat space system’s components, such as the 
reaction wheel, are modeled using parameters like 
friction 𝐹 , lag 𝐿 , and temperature 𝑇 , which are 
functions of wheel speed 𝑆  and time 𝑡 . These 
parameters form the state of each subsystem and are 
crucial for predicting potential failures. The state of a 
subsystem at any given time, represented as 𝑆𝑆௧, is 
either directly measured through sensors or estimated 
using techniques like Kalman filters (Alandihallaj et 
al., 2023). 

Data from these subsystems is collected and 
preprocessed to form a structured dataset for LSTM 
analysis, where each data point 𝑑௧ is a vector of 𝑆𝑆௧ 
for the entire satellite. LSTM networks are 
particularly adept at learning from such time-series 
data, allowing them to recognize patterns that may 
indicate impending failures. 

In training the LSTM model, the network’s 
weights are adjusted to minimize the loss function, 
typically the Mean Squared Error (MSE), expressed 
as 𝑀𝑆𝐸 = 1𝑁 ෍ሺ𝑦ො௧ − 𝑦௧ሻଶே

௧ୀଵ  (6)

Here, 𝑦ො௧ represents the predicted output, and 𝑦௧ is 
the actual output. The LSTM learns from historical 
data to recognize the precursors of failures, thereby 
enabling predictive analysis. 

Once trained, the LSTM model can use real-time 
data to predict the failure times of subsystem 
components. It analyzes the current state of the 
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system and provides predictions about which 
components are likely to fail and when. This 
information is critical for proactive maintenance and 
planning the disposal phase of the mission. The model 
calculates the latest feasible time for initiating the 
disposal phase by estimating the operational lifespan 
of essential components. 

Integrating these predictions into the FireSat’s 
MBSE framework enhances the system’s overall 
decision-making process. The combination of 
LSTM’s predictive capabilities with MBSE’s 
comprehensive system modeling approach presents a 
robust solution for maintaining system reliability and 
efficiency. 

3.3 LSTM Architecture 

In addressing the diverse and complex nature of the 
FireSat space system, a bespoke approach is adopted, 
featuring a distinct LSTM network for each 
subsystem. This strategy is tailored to the unique 
operational characteristics and failure dynamics of 
subsystems such as the On-Board Computer (OBC), 
Thermal Control, Propulsion, Communication, 
Payload, Attitude and Orbit Control System (ADCS), 
and Power. 

Each LSTM model receives time-series data 
specific to its subsystem. This data includes 
operational parameters, sensor readings, and 
performance indicators that are characteristic of each 
subsystem. For instance, for the ADCS LSTM, inputs 
might encompass angular velocity measurements, 
torque commands, star tracker data, and relevant 
thermal and power metrics. 

Acknowledging the systemic impact of the power 
and thermal control subsystems, their operational data 
are incorporated as additional inputs in the LSTM 
models of the other subsystems. This integration is 
vital for capturing the broader operational context and 
the interdependencies within the satellite system. 

The LSTM models are designed to balance 
learning complexity and computational efficiency. A 
typical configuration for each subsystem’s LSTM 
may consist of 2-3 layers, with 50-100 neurons in 
each layer. For complex subsystems like ADCS, an 
LSTM with 3 layers of 100 neurons is used, whereas 
simpler subsystems may use a 2-layer network with 
50 neurons. 

The output from each LSTM is a probabilistic 
time series indicating the likelihood of subsystem 
failure over a forecasted time horizon. This output 
format enables dynamic risk assessment and 
proactive decision-making. The output of each 
subsystem’s LSTM at time point  

𝑃ௌ௨௕ௌ௬௦௧௘௠ሺ𝑡ሻ = ൣ𝑝௧భ 𝑝௧మ  𝑝௧య … 𝑝௧ಿ൧ (7)
where 𝑃ௌ௨௕ௌ௬௦௧௘௠ሺ𝑡ሻ  denotes the predicted failure 
probability series for a subsystem over the future with 
a certain interval time, 𝑡௜. 

A weighted aggregation method is employed to 
integrate the individual LSTM outputs into an overall 
system failure probability. This method assigns a 
weight to each subsystem’s output, reflecting its 
operational significance. The system-wide failure 
probability at each time point is computed as 

𝑃ௌ௔௧ሺ𝑡ሻ = 1𝑚 ෍ 𝜔௜௠
௜ୀଵ 𝑃ௌ௨௕ௌ௬௦௧௘௠೔ሺ𝑡ሻ (8)

where 0 ≤ 𝜔௜ ≤ 1 represents the weight 
corresponding to 𝑖th subsystem’s importance. 

The system architecture is shown in Figure 4, 
which allows for a nuanced understanding of the 
system’s overall health by accounting for both the 
individual risks of each subsystem and their collective 
influence on the satellite’s functionality. 

 

 
Figure 4: The architecture of the failure detection system. 

4 CASE STUDY 

In this case study, we employed the developed 
MATLAB model, as introduced in the previous 
chapters, to simulate various error conditions in the 
FireSat space system. This simulation aimed to 
replicate a range of real-world operational challenges 
the satellite might face over its operational lifespan of 
five years. To create a realistic training dataset for the 
LSTM networks, we introduced errors and anomalies 
across different subsystems. These included 
increased loads in the power subsystem lines, failures 
in temperature sensors and heaters in the thermal 
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control subsystem, malfunctions in the ADCS sensors 
and actuators, and issues in uplink and downlink 
communications. To add further complexity and 
mimic the intricacies of an operational satellite, we 
simulated additional scenarios like fluctuations in 
solar panel efficiency, software glitches in the OBC, 
degradation in battery performance, and failure in the 
propulsion system components. 

The LSTM networks for each subsystem were 
trained using this simulated dataset. The training 
focused on predicting the failure probability of each 
subsystem over the upcoming year at one-month 
intervals. Given the equal criticality of each 
subsystem to the mission, we assigned equal weights 
of importance in the aggregation process for system-
wide risk assessment. 

To ensure a robust training process, the dataset 
was divided into three parts: 70% of the data was used 
for training the LSTM networks, 20% for validation, 
and the remaining 10% for testing. This allocation 
was strategically chosen to maximize the learning 
potential from a substantial training set while still 
reserving enough data for a thorough validation and 
an unbiased assessment of the model’s performance. 

 
Figure 5: The training and validation loss (MSE) plot. 

During the training phase, each LSTM model was 
exposed to its respective subset of data, learning to 
identify and predict failure patterns specific to each 
subsystem of the FireSat space system. The training 
process was monitored by observing the MSE, a key 
metric indicating how well the model’s predictions 
aligned with the actual data. 

The Mean Squared Error (MSE) graph depicted in 
Figure 5 illustrates the learning progress of LSTM 
networks trained for failure prediction in the FireSat 
space system. The graph shows two curves, 
representing the MSE for the training and validation 
datasets over the course of 1000 epochs. 

At the outset of training, the validation MSE starts 
lower than the training MSE. This initial lower error 
in the validation set is expected as the validation 
process benefits from a model that has already begun 
learning from the training data. Consequently, the 
validation curve begins from a point of initial 
knowledge, which is why its MSE is lower at the start 
of the learning process. 

As training progresses, the training MSE 
consistently remains below the validation MSE. This 
trend is typical and indicates that the model is fitting 
well to the data it has seen during training. The 
training curve's decline reflects the network's growing 
proficiency in modeling the complex relationships 
within the training data. 

The validation curve, while starting lower, soon 
settles at a higher MSE value compared to the training 
curve. This behavior is indicative of the model 
encountering new patterns or complexities in the 
validation data that were not present or less prevalent 
in the training data. However, both MSE values 
decrease over time, signifying that the network is 
improving its prediction capabilities for both the 
training and validation sets. 

Towards the end of the training process, both 
curves plateau, suggesting that further training epochs 
may yield diminishing returns in terms of learning 
and model improvement. The convergence of the 
MSE values, particularly with the validation MSE 
stabilizing at a slightly higher value than the training 
MSE, signifies that the model has achieved a 
reasonable balance between fitting the training data 
and generalizing to unseen data. 

The final portion of the graph, where both MSE 
curves level off, indicates that the LSTM networks 
have reached an optimal point of training. This 
convergence suggests that the models are well-
calibrated and that the training process has been 
successful in preparing the networks for accurate 
failure prediction in the simulated FireSat mission 
scenario.  

The trained LSTM network was employed to 
predict failures in a simulated real mission scenario 
of the FireSat. This scenario is designed to test the 
LSTM system’s ability to accurately predict the 
optimal time for satellite disposal based on failure 
probabilities, extending the satellite’s operational 
lifetime beyond the initial estimate. 

The FireSat’s designed operational lifetime, based 
on average workload estimations of its components, 
was initially set to 5 years using traditional analytical 
failure models. However, in this simulated real 
mission scenario, the LSTM system was tasked with 
recalculating failure probabilities over time, focusing 

M
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on components critical to the disposal phase. The goal 
was to identify a disposal time where the probability 
of failure was less than 10%. 

To accurately calculate this failure probability, the 
LSTM considered the health and functionality of key 
components necessary for the disposal phase. These 
included the accuracy of the ADCS being better than 
10 degrees, at least 10% of the propellant in the 
propulsion system remaining, and the operational 
integrity of the OBC and command and housekeeping 
communication bands. 

Figure 6 presents a detailed visualization of the 
calculated reliability (inversely related to failure 
probability) and the failure of different components 
throughout the mission timeline. A critical 
observation from this analysis is that while some 
essential components, such as the reaction wheel-Z 
(RW-Z) and the star tracker, failed before the 
estimated disposal phase, the mission was still viable. 
The system could maintain the required control 
accuracy using alternative components like sun 
sensors and magnetorquers. 

 
Figure 6: Calculated reliability using the proposed method 
over the mission. 

As a result of the LSTM’s dynamic failure 
predictions, the disposal of the FireSat is planned for 
6.3 years into the mission. This timing coincides with 
the point at which the remaining mass of the 
propulsion system's propellant is predicted to reach 
the critical threshold of 10%. However, if the 
propellant levels were to remain above this threshold, 
the disposal operation would be deferred to 6.5 years, 
the epoch when the model anticipates the overall 
failure probability would rise above 10%. 

This case study demonstrated the LSTM 
approach’s effectiveness in extending the operational 
lifetime of the FireSat beyond its initially estimated 5 
years. By integrating the LSTM-derived predictions 

with the system model, a more accurate and dynamic 
assessment of the satellite’s health and operational 
capabilities was achieved. This integration allowed 
for an informed and strategic decision regarding the 
extension and timing of the disposal phase, thereby 
optimizing the satellite’s utility and lifespan. 

The findings from this case study underscore the 
value of employing advanced LSTM methodologies 
in conjunction with detailed system modeling. This 
approach not only enhances the accuracy of lifetime 
predictions for space missions but also illustrates the 
potential for extending operational timelines through 
informed, data-driven decision-making processes. 

4 CONCLUSIONS 

The integration of AI with MBSE, as demonstrated in 
this study, shows significant potential in enhancing 
the reliability and longevity of satellite systems. The 
LSTM-based predictive analysis, aligned with the 
structured approach of MBSE, provides a 
comprehensive method for assessing system health 
and failure risks. The case studies validate the 
effectiveness of this integrated approach, where AI 
enhances traditional system engineering practices. 
This research contributes to the field of space system 
engineering by offering a method to extend satellite 
operational life through advanced AI techniques, 
paving the way for more resilient and efficient 
satellite operations. The AI-MBSE integration 
presented here could serve as a model for future 
applications in complex system analysis and 
management. 
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