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Abstract: With the increasing prevalence of artificial systems in society, it is imperative to ensure transparency in ma-
chine decision processes. To better elucidate their decisions, artificial systems must possess an awareness of
the information they handle. This includes the understanding of information flow, integration and impact on
the final outcome. A specific facet of awareness, termed access-consciousness, denotes the ability of informa-
tion to be utilised in reasoning and the rational control of action (and speech). This study proposes a method
for measuring access to information within a system by examining the communication dynamics among its
components, specifically focusing on connectivity. To achieve this, we initially delineate the various types of
connectivity in the brain and then propose their translation to artificial systems. Structural connections are
highlighted as mechanisms enabling one component to access information from another. Additionally, we
explore functional connectivity, which gauges the extent to which information from one component is utilised
by another. Finally, operational connectivity is introduced to describe how information propagates from one
component to the entire system. This framework aims to contribute to a clearer understanding of information
access in both biological and artificial systems.

1 INTRODUCTION

One of the objectives of Artificial Intelligence (AI) re-
search is to create systems that can adapt their actions
to the human user. In parallel, many efforts are spent
to make the machine’s decision process more under-
standable and transparent to instil confidence and fa-
cilitate interactions. This is reflected by the numerous
works about human-centred AI, AI alignment or ex-
plainable AI in the scientific community (Koster et al.,
2022). At the same time, public attention invested this
field after the recent achievements of large language
models (Min et al., 2023).

Explainability in humans is related to being
”aware of something”. But what does awareness
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mean? It is true that both awareness and con-
sciousness have been mongrel terms that encom-
pass multiple phenomena (or at least multiple parts
of the same phenomenon), but when referring to
AI and explainability, we can narrow their defini-
tion. Following the famous distinction made by
Ned Block between phenomenal-consciousness and
access-consciousness (Block, 1995), in this work we
will only focus on the latter. According to Block’s
definition, information is access-conscious if it can be
used for reasoning, and it is poised for rational control
of action and of speech (Block, 1995). It is then only
related to the content of the information and who is
able to use it (Chalmers, 1997, ”easy problem”), in
contrast to phenomenal consciousness, which is re-
lated to subjective experience (Chalmers, 1997, ”hard
problem”).

Access-consciousness, whether in humans or arti-
ficial systems, requires the acquisition of external in-
formation, internal processing, and the transmission
of this processed information to the system’s actua-
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tors. These actuators then generate an output, such as
an action or decision, which is external to the system.
Therefore, it is essential to comprehend how informa-
tion flows within the system’s components and how
access to information occurs. This study specifically
examines the information propagation in both biolog-
ical and artificial systems, making comparisons be-
tween the brain and AI models.

For both domains we assume any system is made
of components that receive, process and send infor-
mation to others. If information can travel from one
component to another, a link is established between
them. Thus, such a system can be represented as
a graph, whose structural connectivity traces where
information can flow between its nodes. No partic-
ular restrictions are imposed to the possible topol-
ogy of connections. For example, a sender node
could provide information to several others and a re-
ceiver nodes could get signals from many sources. In
general, structures such as loops, trees, disconnected
components are acceptable, and it is possible that the
system’s structural connectivity can change over time.

While one component can send information to an-
other, if there is a structural connection, it is possible
that no information is provided or that the informa-
tion is redundant with respect to the signals from other
sources. Thus, we define the functional connectivity
of the system the ensemble of links where the flow of
information is useful, in the sense that it is (function-
ally) used by the receiver and integrated in its output.

Of note, a flow of information presuppose a
stream of data that are continuously passed between
components. Yet, it is possible to restrict the notion
of connectivity further to the path of components ac-
tivation triggered by a single datum as it is elaborated
by the system. The ensemble of these paths, over sev-
eral data, defines the operational connectivity.

In the following, we delve into these three con-
cepts of connectivity (structural, functional and op-
erational) and, based on those, we review possible
measure for access of information, tracing parallel be-
tween neurological and AI systems.

2 STRUCTURAL
CONNECTIVITY

In the study of the brain, structural connectivity
refers to the anatomical connections between brain re-
gions. They are composed mainly of myelinated ax-
ons, allowing for fast information transmission. De-
pending on the level of observation, we can study
single-neuron connections (microscale), cortical col-
umn connections (mesoscale), or the fiber tracts con-

necting brain regions (macroscale) (Sporns et al.,
2005; Sporns, 2011; Kennedy et al., 2016). We will
focus in the macroscale studies as they align more
closely to the artificial domain.

The set of structural connections forms the con-
nectome, which is a mathematical model of the phys-
ical links between brain regions. The brain is thus
considered a network in which each of the regions
becomes a node, and the edges are fiber tracts that
connect them. This network has a non-random archi-
tecture in terms of a scale-free topology (Chung et al.,
2017), high modularity (Sporns and Betzel, 2016) and
efficiency (Latora and Marchiori, 2001), small world-
ness (Sporns and Zwi, 2004), and a rich club orga-
nization (Van Den Heuvel and Sporns, 2011). These
network properties are explained in economic terms
because they offer a trade-off between metabolic cost
and integration of information (Bullmore and Sporns,
2012; Bassett and Bullmore, 2017).

Structural connections only refer to the possibil-
ity of communication between brain regions but say
nothing about how much they communicate. It can be
said that structure enables function and determines the
possible interactions occurring in a system. Thus, the
presence of a structural connection enables access to
the raw information provided by one processing unit.

From a computational perspective, the structural
connectivity in a network system indicates which
components sends the information to which others.
This concept differs from notion of causality as for-
mally defined in mathematical statistics (Pearl, 2009),
which targets cause-effect relations between compo-
nents using counterfactual interventions. In general
is is not possible to perform interventions, so causal
relations are notably difficult to infer in a data driven
way and requires specific techniques. One example
of such techniques is the measure of causal flow that
can be constructed using information theory by modi-
fying the mutual information statistic (Ay and Polani,
2008). Yet, a cause-effect relation might not occur
between two components even if they exchange infor-
mation, e.g. such information could be ignored. In AI
systems, however, structural connectivity is usually
defined and available by design. For example, struc-
tural links can be fixed and defined during implemen-
tation, or component interactions can be regulated
only by a predefined policy. This is the biggest ad-
vantage over biological systems like the brain, where
the mapping of the entire connectome is an open chal-
lenge (Sporns, 2013).
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3 FUNCTIONAL CONNECTIVITY

If structural connectivity refers to the physical con-
nections of different nodes, functional connectivity
reflects the statistical dependence between their out-
puts. In the brain, it reflects the level of synchro-
nization over remote regions and have a relationship
with co-activation during specific behavior (Biswal
et al., 1995; Friston, 2011). Functional connectivity
describes how much information is shared by two re-
gions (integration) and, together with the directional-
ity of the information flow, the level of factual access
(contrasting to the possible access which is enabled
by structural connectivity).

Mimicking the models on structural connectivity,
a connectome can be created using functional connec-
tivity to study the functional network’s topology. The
functional network also exhibits a complex architec-
ture characterised mainly by a power law distribution
of connections, high efficiency, a high clustering coef-
ficient and, thus, small-worldness (White et al., 1986;
Watts and Strogatz, 1998; Salvador et al., 2005; Va-
lencia et al., 2008). This architecture enables the seg-
regation of structures which become specialized for
specific information processing while ensuring their
integration in the whole system. The brain can then be
divided into functional networks, which are defined
as group of highly connected regions which are re-
lated to specific cognitive processes (Yeo et al., 2011;
Glasser et al., 2016).

Interestingly, there are differences between the
structural and functional networks, highlighting the
difference between possible access and factual ac-
cess. Multiple brain models have attempted to study
the relation between the two, but the more successful
ones are functional connectivity models that are con-
strained by anatomical connections, such as the Hopf
brain model (Deco et al., 2021). The neuroimaging
results reveal that a functional organization of statisti-
cal relationships can arise from the structural connec-
tions within the system. Importantly, this functional
organization serves as a more effective indicator of
how extensively each component accesses informa-
tion from other components.

In AI systems, functional connections are traced
by the signals, flowing from the sender to the receiv-
ing components, whose information is actually inte-
grated by the receivers. The extend of “useful” in-
formation can measured by comparing the distribu-
tions of components’ input and output using informa-
tion theoretic statistics such as the Conditional Mu-
tual Information, shortened in CMI (Wyner, 1978).
This statistic enables to account for the information
the receiver component (X) get from the sender (Y )

that is redundant with the signal already coming from
another source (Z) (Ay and Polani, 2008). Formally,
CMI is defined as

I(X ;Y |Z) =
= H(X ,Z)+H(Y,Z)−H(Z)−H(X ,Y,Z)

(1)

where H(X) is the entropy (usually Shannon’s) of the
random variable X (Shannon, 1948).

As the entropy is well defined for any distribution,
this measure is applicable without imposing particu-
lar restriction to the variables X , Y , Z, and therefore
on the system design. In general, CMI can be formu-
lated for variables that can be discrete (ordinal or cat-
egorical) or continuous, as long as their density can
be suitably estimated. It is applicable to time series
(Schreiber, 2000, see Transfer Entropy) and to multi-
variate variables, although the estimation of their den-
sity becomes harder as the dimensions increase, due
to the curse of dimensionality (Runge et al., 2012).

3.1 Simulations

To better understand what functional connectivity is,
in this section we simulate an AI system where the
structural connectivity is fixed and the strength of
functional connectivity (the CMI) can be controlled.
The simulation was developed to show the benefits
of AI systems that are aware of moral values (Steels,
2024; Montes et al., 2022; Abbo and Belpaeme, 2023;
Roselli et al., 2023), as part of a research project
on information dynamics in social media (Gravino
et al., 2022) and moral values (Brugnoli et al., 2024;
Marcos-Vidal et al., 2024). In this work, we con-
sider a simple recommender algorithm (Gravino et al.,
2019; Marzo et al., 2023) that evaluates if a set of
items (e.g., posts from Twitter/X) are fit for given
users.

This system consists of four components: a
text preprocessing component, a topic detection
model (Lavrenko et al., 2002), a moral-topic simi-
larity scorer, and a detector of value dyads from the
Moral Foundations Theory (Graham et al., 2013): Au-
thority/Subversion, Care/Harm, Fairness/Cheating,
Loyalty/Betrayal, Purity/Degradation and No values.
Upon receiving a tweet, the system preprocesses and
passes it to the topic detection module, which returns
a vector it ∈ Rp such that it j is the probability that
the tweet t is about topic j and ∑ j it j = 1; the prepro-
cessed text is also passed to values-detector, which
returns a vector im ∈ Rq such that im j is the probabil-
ity that the tweet m mainly expresses the moral dyad j
and ∑ j im j = 1. Then it and im are passed to the simi-
larity scorer that calculates a score r ∈ [0,1] following
the formula

λSC(D(im,hm),um)+(1−λ)SC(D(it ,ht),ut) , (2)
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where:

• SC is the cosine similarity, to measure the affin-
ity, between the user and the item, on morals and
topics;

• D(v,h), with v ∈ Rk for any k > 0, is the sample
from a Dirichlet distribution with parameters αi =
1+ vik/(h+ 10−10) for i = 1, ...,k, enabling the
introduction of noise to the input components that
is modulated in magnitude by h ≥ 0;

• The values ht ≥ 0 and hm ≥ 0 modulate the magni-
tude of the noise that artificially perturbs the input
variables it and im, respectively;

• λ ∈ [0,1] interpolates between topic (small λ) and
moral (large λ) similarities.

In summary, a tweet enters the system which out-
puts a recommendation score based on the user-post
similarities of moral and topics vectors. The parame-
ters λ, um, ut , hm, ht must be initialised upon deploy-
ment. The architecture is sketched in Figure 1.

MFT Values 
Detection

None

C2

Moral-topic 
Similarity

Parameters

C1

Topic 
Detection 

Model

Scores threshold

C0

Text 
preprocessing

Tasks

C0

Percepts

Twitter post

Figure 1: The architecture for the analysis of the CMI.

In this architecture, the CMI lets us quantify
how much information the similarity scorer integrates
from the value detector, discounting the information
already provided by the topic detector. Thus, the CMI
is calculated from the outputs of these three compo-
nents.For notation, we define that from the j-th tweet
(0 ≤ j ≤ J), the three components respectively pro-
duce the observations of i j

t , i j
m and r j of the random

variables Z, X , Y . Since J can be very large (171,067
tweets in the present analysis), we set a batch size of
1000 for the number of observations on which the
CMI is calculated, for a total of B = 171 batches.
So, for each batch b, to obtain the CMI, it suffices
to calculate the entropies in (2) from the variables’
densities that are estimated via Kernel Density Esti-
mation (KDE) with Gaussian kernel and bandwidth
from Scott’s method (Scott, 2015). Of note, if the
distributions were discrete, one could replace the es-
timation of the density function with the estimator of

the probability mass function by its empirical coun-
terpart.

To understand what the CMI is sensitive to, we
set the parameters ht = 0 and ut = (1,2,2,2,1,1,2,
2,1,1,2,1,1,2,1,1,2,2,1,1,2,2,2,2,2,1)/40 by as-
signing weight 1 or 2 uniformly at random to every
topic and then renormalising. The empirical distribu-
tions of the CMI are thus generated on B batches from
the architecture simulations with:

• λ ∈ {0,0.1,0.2,0.5,0.7,1}, to weight the input
from the moral component;

• hm ∈ {0,0.01,1,10,1010}, to perturb the input
from the moral component;

• um ∈ {(1,1,1,1,1,1)/6,(1,2,2,1,1,2)/9,
(1,0,0,0,0,0)}, to simulate a user with uniform,
balanced and extreme moral preferences;

The analysis of Figure 2 shows that the CMI be-
tween the value detector and the similarity scorer,
conditioned on the topic detector, decreases with λ

and becomes null when λ = 0. This transition reflects
the reduction of new information, from the moral
component, integrated in the moral-topic similarity.
The plot also show that the information transfer gets
corrupted as the output from the moral component
becomes noisier with increasing hm.These expected
trends hold true irrespective of the user’s moral pref-
erences um, with the case λ = 1 dominating the oth-
ers for every fixed noise level. Interestingly, when the
noise is low, the CMI distribution is quite different be-
tween users. CMI increases from uniform to balanced
and then to extreme profiles, suggesting that the sim-
ilarity scorer adapts its behaviour to the users’. This
evidence could be the result of the distribution of Y
becoming less variable and, therefore, less entropic
as the user’s moral profile becomes more extreme.

In practice, with this measure, we can rank dif-
ferent systems to select the architecture specifica-
tions with stronger functional connectivity for se-
lected components. Another application of the mea-
sure is to support design decisions in the presence of
tradeoffs between performances and functional con-
nectivity. For example, the similarity scorer compo-
nent always provides the highest integration of the
moral detection component when λ = 1, at the cost
of totally ignoring the input from the topic detec-
tion model, which is quite unreasonable. However,
comparing the CMI across different values of λ, it
becomes apparent that values of λ = 0.7 or λ = 0.5
do not degrade considerably the amount of integrated
information, indicating these as acceptable design
choices.
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Figure 2: Comparison of integration measure from the simulations of different architectures. Each boxplot summarises the
distribution of CMI between the value detector and the similarity scorer conditioned on the topic detector from 171 batches
of observations, with boxes covering the interquartile range and containing a full line for the median and whiskers at the 5th
and 95th percentiles. Boxes are grouped in triplets, colour-coded by userm choice as in the legend, and horizontally located
depending on the parameters λ (within panels) and hm (between panels) chosen for their simulation. Dashed horizontal lines
are placed at the level of the medians of each user’s boxplot with λ = 1 and coloured as the related box.

4 OPERATIONAL
CONNECTIVITY

As a system processes an input, a series of compo-
nents get activated, generating a path in the network.
The ensemble of these paths is the target of the oper-
ational connectivity analysis, an approach commonly
employed to study the brain (Casali et al., 2013). The
brain’s activity can be sampled using techniques such
as functional magnetic resonance imaging or elec-
troencephalogram, and data from these trials are often
used to infer the structural connectivity and the func-
tional connectivity of the brain (Bullmore and Sporns,
2009).

By investigating the chain reactions of neuronal
activity, also called neuronal avalanches, a study
found that their size and lifetime follow a power law
distribution, whose scale-free property is a trait of
scalable, self-organising systems (Beggs and Plenz,
2003). The same authors proposed that the power law
structure emerges from the avalanches behaving like a
branching process (Harris et al., 1963). This is a prob-
abilistic process to model the reproduction of, for ex-
ample, the activity of a neuron that triggers a stochas-
tic number of neighbouring neurons. In particular, the
branching coefficient, optimal for the observed dy-
namic, showed that the process is at a critical state,
meaning that the amount of information transmitted
by an avalanche is maintained high while preventing
the catastrophic activation of the entire system (occur-
ring at the supercritical state).

High scalability and stable information transmis-
sion are desirable properties for AI systems that
evolve over time. The analysis of operational con-
nectivity, as in (Beggs and Plenz, 2003), provides
ways to assess where and how single datapoints per-
colate through the system. In particular, the coeffi-
cients from branching process theory and power law
distributions enable us to measure how scalable the
data transmission process is. However, this analysis is
only sensible for those AI systems whose components
may turn on and off over time with no predictable or
preprogrammed schedule. Trivially, a convolutional
feed-forward deep neural network activates all its lay-
ers of components irrespective of the input.

As different inputs can be processed similarly by
the system, their sequences of activation might share
the same common patterns. For example, an input
generating a long path that touches several regions
of the system is indicative of an expensive process,
which becomes outstanding if the path observed is
particularly unusual compared to the previous others.
Also, a path that gets stuck into an infinite loop bounc-
ing between the same set of components might flag an
internal clash that calls for a mechanism to solve the
conflict.

We contend that investigating the operational con-
nectivity by measuring avalanches and patterns of ac-
tivity can contribute to understanding both the system
and the salience of its inputs.
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5 CONCLUSIONS

We have analysed access of information, a hallmark
of awareness, from both neurological and compu-
tational perspectives. For systems whose compo-
nents form a network structure, three distinct types
of connectivity were identified: structural, defin-
ing where information can flow; functional, defining
where novel information flows; operational, traced by
the series of components activation triggered by a sin-
gle input. Finally, we reviewed some measures for ac-
cess of information defined from the information flow
on the different types of connectivity. In particular we
focused on the quantification of functional connectiv-
ity via Conditional Mutual Information, and showed
with simulations the utility of this metric to evaluate
access of information in AI systems.

By focusing on information access, we did not ex-
amine other aspects of awareness. When information
is internalised, for example, the content of informa-
tion is also elaborated, integrating the processes of
several components. Providing rigorous quantifica-
tion for all these aspects might benefit the develop-
ment of aware AI systems. Meanwhile, the synthesis
of neurological and computational perspectives will
contribute to a broader understanding of awareness in
both biological and artificial systems.
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