Localized Surface Plasmon Resonance on Optical Fiber Surface for Chemical Sensing

Amin Moslemi1, Lucia Sansone2a, Flavio Esposito1b, Stefania Campopiano1c, Michele Giordano2d and Agostino Iadicicco1e

1Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
2Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, IPCB-CNR, 80055 Portici, Italy

Keywords: Fiber Optic Sensors, Localized Surface Plasmon Resonance, Gold Nanoparticles, Chemical Sensing.

Abstract: This study describes the basic principles of a fiber optic probe that exploits the localized surface plasmon resonance (LSPR) effect achieved by depositing gold nanoparticles (AuNPs) onto the fiber optic transducer. The idea is to read the absorbance spectra of AuNPs and its dependence on the environmental parameter, i.e. the surrounding refractive index, using optical fiber. Basically, we selected a thin optical fiber to encourage the presence of evanescent waves in the surrounding medium; furthermore, the fiber surface has been functionalized allowing the grafting of AuNPs while a silver mirror on the fiber tip allows readout for reflection configuration. The reflected spectra show absorbance characteristics related to single and aggregated AuNPs. In this article, the peaks absorbance, i.e. the depths of the reflected signal, were studied as a function of the surrounding refractive index for application in chemical sensing.

1 INTRODUCTION

The widespread adoption of optical fiber chemical and biological sensors is notable, offering significant potential to eventually supplant conventional and unwieldy sensing devices. Their compact size, flexibility, and resistance to electromagnetic interference make them promising candidates for future applications, facilitating remote measurements. These sensors find utility across diverse domains, including temperature, pressure, and refractive index (RI) monitoring, along with the quantification of biomarkers and chemical compounds (Choudhary et al., 2023; Esposito et al., 2021; Hernandez-Romano et al., 2015; Lu et al., 2022; Soares et al., 2021a).

Various optical detection techniques exist, necessitating diverse fiber geometries, materials, and equipment for implementation. Plasmonic approaches, such as surface plasmon resonance (SPR), stand out for their swift, label-free, and real-time sensitivity. In this mechanism, an interplay and energy exchange transpire between photons from incident light and electrons on a metal surface, resulting in their collective oscillation. SPR manifests at the interface between a dielectric and a metal nanofilm, leading to the propagation of surface plasmon polaritons (Esfahani Monfared, 2020; Mayer & Hafner, 2011; Sansone et al., 2021).

Gold nanoparticles (AuNPs) are favored for chemical and biosensor applications due to their distinct features, including excellent compatibility, intense light scattering/absorption, high surface area to volume ratios, selective interoperability through electrostatic interaction, stable structure, and non-toxicity (Huong et al., 2021; Jain et al., 2006; Saha et al., 2012; Zeng et al., 2011). Additionally, AuNPs are employed for the excitation of a unique phenomenon known as localized surface plasmon resonance (LSPR), extensively explored in recent sensing platforms due to its significant advantages (Chau et al., 2006; Do et al., 2020; Guerreiro et al., 2014).
LSPR offers a compact, label-free, highly sensitive, and stable biosensing approach for detecting biological molecules (Wang et al., 2017; Willets & Van Duyne, 2007). This phenomenon in metallic nanostructures is associated with the resonance of free-electron waves in metal. Incident light can resonate with the oscillations of surface electrons at an excitation frequency, leading to the collective oscillation of surface plasmons, referred to as an LSPR mode (Unser et al., 2015).

In this paper, a fiber optic sensor is introduced for monitoring changes in the concentration of chemicals in a solution by measuring the refractive index. The proposed sensor is based on the deposition of gold nanoparticles around the fiber. The novelty in this study lies in utilizing both single and aggregated nanoparticle spectra to sense the surrounding refractive index area, supported by numerical results.

2 NUMERICAL RESULTS

In the numerical analysis, the Finite Element Method (FEM) is employed to simulate the interaction of light with AuNPs. At the core of this simulation lies either a single or an aggregate of nanoparticles, with a diameter of 50 nm for the single NP. Surrounding this central element is a 200 nm thick dielectric layer, and beyond that, another 200 nm dielectric layer acts as a Perfectly Match Layer (PML), as reported in Figure 1(a) whereas the zoom on the AuNP is highlighted in Figure 1(b).

The purpose of the PML is to establish an infinite dielectric environment around the gold structure. This configuration ensures that incident light is not reflected toward the gold structure, consequently minimizing the impact on the absorption band. The incoming light is planar in the z-direction, ranging from -z to +z, and polarized in the x-direction. The power of the illumination is maintained at 1 W/m².

Utilizing the FEM, the heat losses for each wavelength in VIS range are computed and subsequently plotted. This enables the plot of heat losses curve versus wavelength, i.e., the absorption spectrum. The red line in Figure 2 plots the absorption spectrum of a single 50 nm AuNP in water. According to (Lei et al., 2023; Litti & Meneghetti, 2019), 50 nm AuNP exhibits an absorption maximum at around $\lambda = 535$ nm. Interestingly, increase in AuNP size are manifested in slight redshift of the AuNPs absorption band. In the initial phase, the absorption spectrum of a single nanoparticle is investigated across various surrounding refractive indices (SRI) to determine sensitivity, as shown in Figure 2.

Alterating the refractive index of the surrounding medium induces a redshift in the absorption band peak. By tracking the resonance wavelength of this peak, as reported in Figure 3, the sensitivity of the system can be computed. This sensitivity value is determined to be around 200 nm/RIU (Refractive Index Unit, RIU).
The aim of the subsequent phase of the numerical simulation is the investigation of the effect of the aggregations. A full understanding demands various aggregation states to be explored. However, here, groups of 3 nanoparticles, each with a 50 nm diameter, are aggregated as reported in Figure 4, just as an example. The absorption band for each structure is then calculated. In a unique approach, each structure undergoes a 90° rotation around the x, y, and z axes during stimulation. Following this rotation, the superposition of all absorption spectra is computed. This step is essential, mirroring real-world scenarios where aggregated nanoparticles exhibit rotational dynamics.

The resulting output spectrum is a superposition of numerous structures, incorporating different numbers of nanoparticles and incident angles. In Figure 5, the spectra of 3 nanoparticle group under various incident light angles are depicted, along with their superposition. The superposition spectrum exhibits two mean resonance wavelengths at 560 nm and 678 nm, respectively. Although this analysis is not sufficient to investigate the state of all aggregations, we can retrieve that single AuNPs show an absorption peak around 520 nm whereas AuNPs aggregations, due to the larger size, show an absorption peak at a higher wavelength (Litti & Meneghetti, 2019).

3 MATERIALS AND METHODS

3.1 Chemicals

Tetrachloroauric acid (HAuCl₄·3H₂O, 99%) and trisodium citrate (99%) were purchased from Merck Life Science (Milano, Italy), along with distilled water. Piranha solution (mixture of H₂SO₄ and H₂O₂ 7:3 v/v). (3-Aminopropyl)triethoxysilane (APTES) in acetone (5% w/w).

3.2 AuNPs Preparation and Characterization

A solution containing 2.2 mM sodium citrate in distilled water (150 mL) was heated using a heating mantle in a 250 mL three-necked round-bottomed flask for 15 minutes under vigorous stirring. A condenser was employed to prevent solvent evaporation. Once boiling started, 1 mL of HAuCl₄ (25 mM) was injected. The solution colour transitioned from yellow to bluish-grey and then to a soft pink within 10 minutes. Immediately following the synthesis of the Au seeds and within the same reaction vessel, the reaction was cooled until the solution temperature reached 90 °C. Subsequently, 1
mL of a H\textsubscript{2}AuCl\textsubscript{4} solution (25 mM) was injected. After 30 minutes, the reaction was concluded. This process was repeated twice. Subsequently, the sample was diluted by extracting 55 mL of the solution and adding 53 mL of MQ water and 2 mL of 60 mM sodium citrate. This resulting solution served as the seed solution, and the process was reiterated five times (Figure 6).

To examine the morphology of AuNPs, transmission electron microscopy (TEM) experiments were carried out using a TEM FEI Tecnai G12 Spirit Twin equipped with a LaB\textsubscript{6} emission source (120 kV) and coupled with a CCD camera Fei Eagle 4K (Japan). For TEM specimen preparation, a drop of the diluted AuNPs suspension was deposited onto a carbon-coated copper grid. Subsequently, the sample was air-dried and loaded into the electron microscope chamber.

The mean size and distribution of the nanoparticles were determined through dynamic light scattering (DLS) analysis. The measurements were conducted at 25 °C using a Malvern DLS instrument (model Zetasizer Nano ZS90, Malvern Instruments Ltd., Worcestershire, UK), featuring a He-Ne laser source at 632.8 nm and a detector set at a scattering angle of 90°. Low-volume quartz batch cuvettes (model ZEN2112, Malvern Instruments Ltd., Worcestershire, UK) served as the sample cells.

UV-Vis absorption spectra of AuNPs were obtained using an Agilent Cary 60 UV/Vis spectrophotometer, employing quartz cuvettes. To prevent absorption saturation, dispersion samples were appropriately diluted in deionized water at a ratio of 1:8 v/v.

The two AuNPs water solutions were diluted at a ratio of 1:10 v/v, and their size and polydispersity index (PDI) were assessed through DLS analysis. The presence of a single peak was observed for the AuNPs solutions, corresponding to a size of 50.4 ± 5 nm (PDI = 0.019). Additionally, the low values of PDI indicate the high quality and monodisperses of the AuNPs water solution. Figure 7 displays the visible (VIS) spectrum of AuNPs, revealing a plasmon resonance band at 535 nm. The narrow shape of the band suggests a high uniformity in particle sizes. According to (Bastús et al., 2011), the size of AuNPs is approximately 50 nm.

3.3 Optical Transducer

The functioning principle of this sensor is grounded in the response of 50 nm gold nanoparticles to chemicals, probed by a fibre optics transducer, as schematically reported in Figure 8.

The transducer incorporates a multimode fiber (MMF) with core/cladding size of 105/125 µm spliced with a short piece (less than 5 cm) of coating free glass thin fiber with diameter of 80 µm.

To design a simple probe and capture the reflection spectrum, the second end of the thin fiber is sharply cut and mirrored to enhance reflection power. Due to the fiber size mismatching, light in thin fiber exhibits evanescent waves interacting with surrounding medium.

Subsequently, nanoparticles are deposited around the thin fiber, revealing an attenuation band in the reflected spectrum of the device. Such attenuation band is located at those wavelengths for which the light is absorbed by the presence of nanoparticle, as illustrated in the simulation section. This spectrum changes in response to variations in the environment, influencing the electrical and optical properties of nanoparticles. Here, these changes are monitored to sense alterations in the surrounding area.
3.4 Experimental Setup

The optoelectronic readout experimental arrangement is shown in Figure 9 and comprises a broadband light source (Avantes AvaLight-HAL-S-Mini). The light is conveyed to the transducer using one branch of a multimode fiber coupler, and the resulting reflection spectrum is directed to a spectrometer (Ocean Optic HR2000+) via the second channel of the coupler.

4 FABRICATION OF THE FIBER PROBE

The multimode fiber with 105/125 µm core/cladding diameter (FG105LCA Thorlabs) was fused with a 5 cm length of 80 µm thin fiber (SM1500(4.2/80) Fibercore). A microscope picture of the fibers is reported in Figure 10(a) and Figure 10(b), before and after the splicing, respectively. The free end of the multimode fiber was linked to the coupler. Then the second end of the thin fiber was sharply cleaved and mirrored using Tollen’s reaction.

Following, the mirrored fiber was immersed in APTES (5% w/w) for two hours, washed with acetone, and allowed to air-dry overnight (Soares et al., 2021b; Sypabekova et al., 2022).

Subsequently, the fiber was immersed in the solution containing gold nanoparticles (50 nm, 1 mM) for 2.5 hours and left to dry overnight. Figure 12
illustrates the spectrum of the transducer after depositing gold nanoparticles, taken in the air using the mirrored fiber (red line of Figure 11) as reference. Here, two minima are well visible; based on the numerical section, we retrieve that the left one is related to single AuNPs whereas the wide attenuation peak at higher wavelength can be attributed to AuNPs aggregations.

Figure 12: Reflection spectrum of the transducer in air after depositing nanoparticles.

5 SENSING RESULTS

The sensor sensitivity was assessed through experimentation with the surrounding refractive index. In this evaluation, various solutions were prepared by blending deionized water and glycerine in different proportions. The precise refractive index of each solution was then determined using an Abbe refractometer.

Subsequently, the sensing area was fully immersed in each solution. The spectrum was recorded, and the fiber was extracted, sequentially immersed in deionized water to rinse off glycerine residues, air-dried briefly, and the process was repeated for subsequent solutions.

As one can observe in Figure 13, both the first and second peaks exhibited a redshift with an increase in the refractive index, which agrees well with numerical simulations.

For tracing the resonance wavelength of the minima, a second-order polynomial was fitted to each one, and then the minimum of each polynomial was traced. Figure 14 illustrates the shift of each minimum. The sensitivity of the first and second peaks was found to be around 90 nm/RIU and 450 nm/RIU, respectively. It is noteworthy that the sensitivity of the second peak surpasses that of the first peak by more than fourfold.

Figure 13: Reflection spectrum of the transducer in different surrounding area refractive indices.

Figure 14: Resonance wavelength shift data and linear fit for the (a) first and (b) second minima, respectively.
6 CONCLUSIONS

In conclusion, this paper conducted simulations on various configurations of nanoparticle aggregation, calculating absorption bands for each scenario. Subsequently, a novel fiber optics probe was designed and fabricated, relying on the deposition of nanoparticles on the thin fiber surface. The key innovation lies in exploring the sensitivity of the first and second peaks, corresponding to single and aggregated nanoparticles, respectively. The sensitivity to the surrounding refractive index was found to be 90 nm/RIU for the first peak and 4 times higher, at 450 nm/RIU, for the second peak. This sensor holds promise for applications in sensing chemical concentrations based on changes in the surrounding refractive index around nanoparticles.

REFERENCES

Immunosensing Based on Optical Fiber Technology: Recent Advances. *Biosensors*, 11(9), 305. https://doi.org/10.3390/bios11090305

