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Abstract: We investigate the capacity of Large Language Models (LLMs) to generate evaluative expressions in a data-
driven manner. The linguistic object of investigation is the production of justified and adequate evaluative
language, such that the evaluative stance of the text is motivated by the underlying data. We use the SportSett
corpus for generating summaries of basketball games. The input data is converted into RDF triples that are
fed into GPT-4 and GPT-3.5, prompting the models to produce game summaries using evaluative adverbs and
judgemental language. We annotated the generated texts and the original summaries for their propositional
content contained in the line score and box score of each game, as well as for evaluative adverbs and their
polarity. The results show that the models struggle to correctly interpret the numerical data and coherently
assess the quality of team-wise and player-wise performances both within games and across games, often
producing contradictory evaluations and displaying the lack of global evaluative scales.

1 INTRODUCTION

Generative Large Language Models (LLMs) have
reached a quality that makes the resulting generated
texts almost indistinguishable from texts written by
human authors. This opens the door to a wide field
of abuse, for example fake news generation, pla-
giarism, sophisticated spam formulation, and further
text-based fraud schemes. There are a number of
technical solutions for detecting AI-generated text,
with varying degrees of success (Sadasivan et al.,
2023), but there is astonishingly little work with a
strong focus on linguistic characteristics of texts, and
the use of discourse-oriented features for AI-text de-
tection.

We propose to consider the use of evaluative ex-
pressions in texts for deciding whether the text has
been generated by the use of an LLM, or whether the
text is based on genuine authorship. Evaluative items
– adverbs like astonishingly, unfortunately, or adjec-
tives like fair, outstanding – express an evaluation of
some state of affair that is based on an estimation of
an expected value and the degree of divergence from
that value which is, in turn, rooted in experience or
known facts.

a https://orcid.org/0009-0005-2169-064X
b https://orcid.org/0000-0003-1103-6431

We should emphasize that using evaluative items
is not solely a proposition- and, thus, clause-related
decision, but rooted in the deployment of the over-
all discourse. Evaluative means awaken interest
in a text, making it enjoyable to read, and these
”evaluation foci” are not arbitrarily set in a text but
follow strategies for establishing coherence. The
following two examples from the SportSett Corpus,
a modified version of the RotoWire Corpus (Wise-
man et al., 2017) with NBA game summaries – the
data we are using for our research – demonstrates this:

(1) The Bucks showed superior shooting, go-
ing 46 percent from the field, while the
Knicks went only 41 percent from the floor

(2) The Grizzlies shot 50 percent from the field,
led by strong performances from Courtney
Lee and Mike Conley. Lee scored 22 points
(9 - 14 FG, 4 - 5 3Pt), while Conley led all
scorers with 24 (9 - 14 FG, 3 - 4 3Pt) and
11 assists.

In (1), the evaluative adjective superior expresses a
shooting quite clearly above an expected one, and the
adverb only expresses the contrary. As a result, the
clauses with the respective evaluative items are inter-
preted as being contrastive.

The evaluative adjective strong in example (2) ex-
presses a performance that is above the performance
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that would be expected. The subsequent sentence pro-
vides the explanation why Lee’s and Conley’s per-
formance was above the expectations by stating their
scoring.

Although the use of evaluative items is often
linked to rhetorical relations like contrast and expla-
nation (Benamara et al., 2017; Trnavac and Taboada,
2012), we do not consider this relationship in this pa-
per. Instead we analyze the distribution of evaluation
items in texts written by humans and AI-generated
texts for classifying. The results can be used for a
post-hoc investigation on the (im)practicality of es-
tablishing rhetorical relations between clauses con-
taining evaluative expressions, however.

We also do not intend to outperform existing
methods for AI-text detection by our approach.
Learning-based approaches typically use a bundle of
different features and modes for classification, but
without considering linguistic aspects of textual co-
herence in a satisfying way. The aim of this paper is
to show that integrating linguistic evidence into the
classification task – here the use of evaluative items
– results in strong hints for detecting LLM-generated
texts, if these texts are not purely descriptive, but con-
vey expressive meaning as well.

2 RELATED WORK

Several different approaches have been proposed
for AI-text detection: watermarking techniques for
generated texts in order to support their detection
(Kirchenbauer et al., 2023), perplexity-based meth-
ods (Mitchell et al., 2023), expected per-token log
probability of texts for detecting thresholds that sepa-
rate AI-generated texts from human written ones (So-
laiman et al., 2019), and combinations thereof, to
name just a few. In general, detection rates decrease
with short texts and for human written texts contain-
ing just segments generated by a LLM. In addition to
these document-oriented approaches, AI-text detec-
tion is also possible on sentence level (Wang et al.,
2023).

What these approaches have in common is their
low consideration of linguistic insights on text orga-
nization. There is a long tradition in Linguistics to
analyze texts as a linguistic unit with a multi-layered
organisation around information structural categories
and different types of meaning – propositional, ex-
pressive and evaluative (Adam, 1992; Halliday and
Hasan, 1976; Beaver et al., 2017). Since LLMs are
to a large extend black boxes w.r.t. textual organisa-
tion criteria, these insights could be used for AI-text
detection, as we demonstrate in this paper on the dis-

tribution and adequacy of expressive items.
Further related work concerns data-to-text natu-

ral language generation (NLG), the task of generating
text from tabular data, where the use of evaluative ex-
pressions is motivated by a sufficient deviation of an
observed value from an expected one. As we show
for a vehicle domain (Langner and Klabunde, 2022),
it is possible to determine at the early stage of con-
tent determination in an NLG pipeline whether some
feature combination justifies an evaluative adverb or
some other linguistic marker of evaluation by using
regression models. In general, the concept of ‘denial
of expectation’ best clarifies the intuition behind the
mechanism: Experts have certain expectations of fea-
ture values given the remaining values in a feature set.
In the basketball domain this means, if a score seems
to fall out of a series, it deviates from the experts’ ex-
pectation of what the value should be, given its con-
text. This deviation may either be positive or negative
in polarity, justifying the usage of evaluative language
with this respective polar stance.

In NLG, evaluative adverbs are more generally
attributed to affective language generation (de Rosis
and Grasso, 2000). Evaluative items are generated
in order to convey information with a specific stance
(Elhadad, 1991). These systems communicate sen-
sitive data, such as exam marks (Mahamood et al.,
2007) or user-specific content (Balloccu et al., 2020).
Large language models are used for affective lan-
guage generation (Goswamy et al., 2020; Santhanam
and Shaikh, 2019), but toxicity and fact hallucina-
tion have an immense negative influence on the output
quality (Ji et al., 2023; Dušek and Kasner, 2020; Shen
et al., 2020). GPT models are also employed in this
field (Goswamy et al., 2020).

3 DATA USED

We are using the SportSett dataset (Thomson et al.,
2020), a modified version of the RotoWire dataset
(Wiseman et al., 2017) for data-to-text generation.1

The SportSett dataset contains 6150 NBA basketball
game summaries from different years and seasons. At
the core of the tabular data is a set of different scores
that are attributed to teams or individual players for
different time spans of a game, e.g. the whole game,
one of the four main periods of a game or even a play,
which could be paraphrased as a short sequence of
turns or actions. The scores are domain-dependent
and comprise information on the points (pts) made,
rebounds (oreb/dreb/treb), turnovers (tov, also loss of

1https://github.com/nlgcat/sport sett basketball
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the ball to the other team), steals (stl), blocks (blk)
and a special feature called pm (plus minus) which
can also be negative and expresses what point differ-
ence to the opponent team was achieved while the
player was on the field. Furthermore, points are the
sum of free throws (ft), field golds (fg) and three point
(fg3) field golds, that are each further subdivided in
goals attempted (-a) and goals made (-m). Scores at-
tributed to whole teams (cumulative values of individ-
ual player scores) are listed in the line scores, scores
of individual players are listed in the box score. Both,
line score and box score, are also separately listed for
different spans of the game, e.g. periods or plays.

In this paper, we concentrate on the general
game information and scores that relate to the over-
all game only, mainly due to the context limitations
of LLMs. Adding further input data on period-wise
scores would have exceeded the context limitation of
the smaller LLM.

In order to generate game summaries from the
data, we constructed a set of RDF triples for each
of 50 randomly chosen game summaries. We
take into account the following features: The score
types, whose column names in the database are self-
explaining, are used directly as relations in the RDF
triples. Besides the score types for line score and
box score, we included home team, visiting team,
stadium name, venue, attendance and capacity.
The subject was either the game itself or the team or
player name respectively, while the assigned object is
the value from the database cell. The triples were con-
catenated in the same order for every text to be gener-
ated. The models we chose for generation are GPT-4
and its predecessor GPT-3.5-Turbo by openAI, which
are the currently largest available models for our use
case. For each of the random 50 games, both models
were instructed to generate two texts, a game sum-
mary with neutral tone and one with judgemental tone
using evaluative adverbs. The prompts are as follows:

neutr.: Translate the following box and line
scores into a neutral NBA basketball
game summary. Use non-judgemental
words.

eval.: Translate the following box and line
scores into an evaluative NBA basket-
ball game summary. Use evaluative
adverbs and judgemental language.

We did not prescribe the polarity of the evaluation,
hence the prompt did not introduce bias. In addition
to the prompts, the concatenated RDF triples were
fed into the models as well. In order to reduce the
context size of GPT-3.5 and at the same time pre-
serve comparability across text groups (GPT-4, GPT-
3.5 and the original summaries), we removed some of

the player-related triples with 0 as value, i.e. play-
ers from the bench who did not participate in the
game. The original human-written game summaries
also contain period-wise information, global informa-
tion from previous seasons, and overall player scores
from several games in a season. Since the models do
not have access to this information, they were not an-
notated in the summaries. We only compare the infor-
mation the models have access to.

We annotated the game summaries and the evalu-
ative texts from both models2 according to the pres-
ence of the score types, their association with either
a player or a team. Further, we annotated evaluative
adverbs, their polarity (positive or negative), and eval-
uations in regard to the global game quality. We sub-
divided the team and player annotations into winner
and looser.

4 APPROACH

The motivation for producing evaluative language is
grounded in the tabular data as described in the previ-
ous section.

Figure 1: Player in game counts (y), score (x) and thresh-
olds for the points score.

Let us exemplify this with expressions from the
game with id 2120, which is also included in the anno-
tated data for this paper. In this NBA game, Damian
Lillard scored 50 points on his own, which is far
above the average of 8.28 points across all database
entries in the corpus, and 11.10 with zero score per-
formances excluded. Figure (1) shows that the major-
ity of points per player in a game are below 20 points,
while only a very small number of player perfor-
mances in some game provided more than 40 points,
with a corpus-wide maximum of 70 points.

The original game summaries nearly always start
with the final score of both teams in the first sentence

2https://github.com/MMLangner/Spread and Misuse-
of evaluative language in LLMs/
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of the summary. The score of 50 points is so remark-
able that the author of the text not only decided to
name it as the first piece of information in the text,
but refers to it again later, to be seen in the excerpts
below, describing Lillard as playing on another level.
Although the author of this text does not use evalu-
ative adverbs, the statement perfectly expresses the
extraordinary status of this score. Both models, GPT-
4 and GPT-3.5, also recognized this performance as
exceptional, but GPT-3.5 seems to have the more ad-
equate realisation of this denial of expectation, since
GPT-4’s generation of the adjective solid puts the ex-
ceptional status into perspective. The position of this
adjective on the evaluative scale does not capture the
extraordinariness of the described value.

In order to determine whether or not using evalua-
tive language is legitimate, the ”amount” of deviation
that licenses its usage must be quantified. Assuming
the average performance of a player (8.28) might be
unjust, depending on talent and role of the player, the
average of each individual player is much more ade-
quate. The corpus-wide average for Damian Lillard
is 24.74, with a standard deviation of 8.81. So even
this threshold is exceeded by the 50 points score he
achieved in game 2120.

Orig. Despite 50 points from Portland ’s
Damian Lillard , the Toronto Raptors
beat the visiting Trail Blazers on Fri-
day , 117 - 115. [...] Damian Lillard
and C.J . McCollum [...] combined for
74 points on Friday , with 50 coming
from point guard Damian Lillard . Lil-
lard , who has been playing on another
level [...].

GPT-4 Damian Lillard exhibited an excep-
tional performance scoring a solid 50
points, making him undeniably the
best player for his trailblazers.

GPT-3 Damian Lillard had a sensational
game, leading his team with an incred-
ible 50 points.

Thresholds for this model cannot be arbitrarily cho-
sen, but empirical studies show that the average value
plus or minus the standard deviation as an approx-
imate threshold justifies the use of evaluative items
(Langner and Klabunde, 2023).

In Figure (1), the graph shows the distribution of
scores in the SportSett domain, where each score rep-
resents the performance of a specific player in a spe-
cific match. The global average (green solid line) lies
at about 8 points, with two stronger thresholds being
the average with standard deviation added (black dot-
ted line) or subtracted (red dashed line). The interval

between the lower and upper thresholds matches ex-
actly the majority of scores within the domain. Given
an adverb produced to express how positive Lillards
performance of 50 points is, our method is to com-
pare the score to the in-game average value and the
player-related average of the points score, which es-
tablish the weaker thresholds. For a positive evalua-
tion, the evaluated score must exceed these averages,
since a higher score of points is considered positive
and desirable. As stronger thresholds, we modify the
averages by the respective standard deviation values.
A positive polarity of the evaluative expression, given
a feature where a higher score is better, therefore en-
tails addition of the standard deviation. The evaluated
score is again compared to these stronger thresholds.
The distribution of real game data shown in Figure
(1) is skewed, implying that the lower threshold may
cause more errors, also with adverbs found in the orig-
inal summaries.

In order to assess whether we can leverage evalu-
ative language as a means to improve on AI detec-
tion methods from a linguistically motivated view-
point, we let LLMs generate evaluative language in
game summaries. On the basis of these empirically
motivated thresholds for the data the models have ac-
cess to, we automatically assess whether evaluative
language is licensed by the underlying data or not. If
the evaluative language is not licensed or even contra-
dictory, we judge this as indication that our approach
provides a good indicator for detecting AI-generated
text.

5 RESULTS

First, we analysed the vocabulary of the three text
groups: the summaries, the evaluative texts produced
by GPT-4 and the evaluative texts produced by GPT-
3.5. As null hypothesis, we assume that there is no
significant difference between groups, since we ex-
pect language models of such a size to be capable
of simulating the lexical choice the sports summary
genre demands for. Furthermore, we assume that
there is a significant difference within the group of
summaries, since human-written texts tend to be more
lexically variant, and that there is an insignificant dif-
ference within the groups of texts produced by the
LLMs, since inference based on maximizing the prob-
ability of the output word sequence (beam search)
makes the outcome lexically more deterministic than
human-formulated texts.

Methodically, we lemmatize all the tokens in the
union of all 50 annotated texts, remove stop words
and create word counts for each text and separately
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for each text group. The resulting distributions should
not be assumed to be normally distributed, which
is why we use the Mann-Whitney-U-test and the
KS-test in order to determine whether there are sig-
nificant differences between groups (assuming they
are not sampled from the same distribution) and the
Kruskal-Wallis-test for significance tests within the
text groups. Additionally, we use the Euclidean dis-
tance as a similarity measure between and within
groups in order to shed light on the distribution from
a second, more common perspective. For Euclidean
distance within groups, we calculate the distance for
each text–pair combination and average over the dis-
tance values.

The results of the significance tests show that
between groups, the texts generated by GPT-4 vary
highly significantly from both the GPT-3.5 generated
texts and the original summaries, while there is no
significant difference between GPT-3.5 texts and the
summaries (see Table 1). This is valid for both sig-
nificance tests used. Within groups, all results are
significant (Table 2), but the degree of significance
varies strongly. The least significant differences are
found in the group of GPT-4 texts, showing more ho-
mogeneity than the other one. GPT-3.5 texts vary
much stronger than the GPT-4 texts (p=3.8e-11), but
the largest significance is found in the original sum-
maries (p=2.3e-40). We relate these differences to a
higher lexical variance in the original summaries and
a much more homogeneous lexical configuration of
the GPT-4 models. Annotators also confirmed that
lexicalisation and phrasal collocation were repetitive
throughout GPT-4 and GPT-3.5 texts, whereas this
was not the case for original summaries. This might
be related to the way the GPT models are fine-tuned
to match task-specific data.

In regard to Euclidean distance, we found that
within groups, distance measures are quite equal for
all three text groups, GPT-4 amounting to an average
of 22.59, GPT-3.5 provides a value of 25.16 and the
summaries a value of 24.51. Overall this means that
the texts from GPT-3.5 as well as the original sum-
maries are slightly less homogeneous, but the differ-
ences are rather minor.

More meaningful are the distance measures be-
tween groups. Between GPT-4 and GPT-3.5, the dis-
tance value is 350.86, while the models in compari-
son to the summaries more than double this distance
with values larger than 760 (GPT-4 to summaries:
763.27; GPT3.5 to summaries: 799.62). According
to this metric, GPT-3.5 is even more dissimilar from
the original summaries than the GPT-4 output.

Both methods imply that there is a huge difference
between the top model GPT-4 and the original sum-

Table 1: Mann-Whitney-U-Test and KS-test on vocabulary
distribution between groups.

group MW-U (p) KS (p)
4 vs 3.5 5814481.5 (p=3.8e-25) 0.157 (p=3.8e-35)
3 vs s. 5197648.0 (p=0.117) 0.024 (p=0.310)
4 vs s. 5915579.5 (p=2.7e-32) 0.182 (p=1.2e-46)

Table 2: Kruskal-Wallis-test on vocabulary distribution
within groups.

group K-W (p)
within GPT4 96.763 (p=5.653e-05)

within GPT3.5 143.060 (p=3.834e-11)
within summaries 314.109 (p=2.336e-40)

maries. Euclidean distance judges GPT-3.5 closer to
GPT-4 and far away from the summaries, while sig-
nificance tests see it positioned between GPT-4 and
the summaries.

5.1 Evaluative Adverbs

We chose as thresholds for validating evaluative ex-
pressions the average of each score across all players
in a game as well as the average score for each player
globally. We assume that the addition or subtraction
of the standard deviation to or from the average are
stronger and empirically more reasonable thresholds.
We group by the models and summaries respectively,
as well as by separate score types and the polarity.

Before going into analytical details, it is impor-
tant to mention that there is a huge class imbalance in
regard to evaluative adverbs, both between groups as
much as between the score types within each group.
The most numerous group is the points score within
the GPT-4 generated texts. Overall, GPT-4 generated
156 evaluative adverbs, while GPT-3.5 only produced
6. 12 occurred in the summaries. Also adjectives are
used in all three text groups in order to express evalua-
tive stance, the sparsity in GPT-3.5 and the summaries
is hence due to our focus on evaluative adverbs. In fu-
ture research, extending the analysis to adjectives and
contrast relations will increase the amount of relevant
data.

We can state for GPT-4 that there is a signifi-
cant bias towards producing positive evaluations for
the winning team or a member of the winning team,
and negative evaluations for the defeated team and its
players, as Table (3) shows.

The class imbalance between the score types such

Table 3: Polarity bias (adverb counts) in GPT-4 texts.

reference positive negative
player winner 31 2
player loser 6 23
team winner 52 3
team loser 7 30
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as points or assists is just an inherent domain-
specific issue, showing that the scored points are the
most notable feature. Table (4) shows that player-
related evaluative adverbs are explainable by the two
weak average thresholds with about 77 and 73 per-
cent fit. The stronger thresholds causes the fit to drop
to or even below random with 50 percent and 29 per-
cent correctness only. Surprisingly, the team-related
adverbs show the opposite picture, where the evalua-
tive adverbs are captured by the weak average thresh-
olds only at random level (∼50 percent). The stronger
thresholds validate zero percent for the in-game av-
erage modified by the standard deviation and only
about 20 percent for the global team average modi-
fied by standard deviation. The match for evaluations
on team-level scores is therefore significantly worse
than for single player scores.

Due to data sparseness, we cannot identify a po-
larity bias as explained above for GPT-3.5 or the sum-
maries. With respect to the evaluative adverbs, it is
hardly possible to draw any reliable conclusions about
the GPT-3.5 outcomes, since the number of instances
is just too small, but the impression is that it is ba-
sically random whether the expressions for teams are
captured by the thresholds or not. The player-related
expressions fit better, for the weak thresholds and the
strong game-related data, but due to a lack of data, this
is not a reliable statement. GPT-3.5 completely failed
to abide by the task prescription given in the prompts.
Although it used adjectives for expressing evaluative
content, it failed to realize evaluation in the form of
adverbs. GPT-3.5 basically failed the NLG task and
hence the premise to an analysis of the occurring eval-
uative adverbs.

For the player-related evaluations given in the
original summaries in Table 5, the agreement with the
thresholds is promising with 100 percent and 81 per-
cent for the weaker thresholds and 71% and about 40
% for the stronger ones. An important point to be
mentioned here, that puts the numbers of incorrect in-
stances in perspective, is the fact that in contrast to the
LLM-generated texts, the summaries often explicitly
name the background information for using the evalu-
ative expression. For example, a player’s performance
in the previous 5 games or the present season has been
mentioned. While the authors of the summaries have
access to information permitting for further ways of
grounding the evaluation, the LLMs do not have ac-
cess to those and can only be evaluated with respect to
the given texts. Using additional information for eval-
uating the adverbs in the original summaries would
introduce bias, hence, we only use those thresholds
we also use to interpret the LLM outputs.

5.2 Content Selection

Although a thorough analysis of hallucinations and
factual correctness of the LLM output is beyond the
scope of this paper, we analysed the share of proposi-
tional factoids from the database that were present in
the LLM output and scrutinized these for correctness.
Although there is again a huge class imbalance within
the set of score types as well as between the LLMs,
their correctness level is on par with about 80% cor-
rectness each. This means that about 20 percent of
the database facts given in the LLMs’ input are incor-
rectly transferred to the output (Table 6 and Table 7).

5.3 Contradictions and Overt Faults

The annotation work drew up some erroneous for-
mulations that emphasize the dimension and momen-
tousness of the lack in reasoning that LLMs show
w.r.t. evaluative language. Examples generated by
GPT-4 are given in Table (8).

The errors shown in Table (8) not only root in
problems with basic maths as in items (1) to (3),
but also in a basic misconception of the semantics of
the score type. A good example for this is example
(2), where the LLM fails to understand that having
less turnovers is better, which is inconsistent with the
statement in (4).

Another important source of errors is represented
by (6), where GPT-4 failed to consider the informa-
tion in its input that the scoreless players did not par-
ticipate in the game, so cannot have scored at all,
which is consequently not noteworthy.

Even more numerous, but less obvious is the lack
of global evaluative scales for the scores which thus
are not mirrored in the surface realisation. Examples
(7) and (8) show that GPT-4 misses to correctly eval-
uate D’Angelo Russell’s performance of 50% field
goals made here, where his personal average is 40
percent and the player average overall only 35%.
On the other hand in (8), percentages of 43% field
goals made is judged ”commendable”. These out-
puts are related to the polarity bias already shown
by the LLMs in the distribution of adverb polarity
in regard to winning or loosing teams and players.
The winners tend to be depicted positively and the
looser negatively, indifferent to whether the evalua-
tion is grounded in the data or not.

6 CONCLUSION

The analysis of semantic distance between the text
groups and the significance tests of the word distri-
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Table 4: Adverb analysis for player-related adverbs produced by GPT-4, separately listed.

ref score pol. game avg game avg +/− std player avg player avg +/− std
player sec positive 2(1.0): 0(0.0) 1(0.5): 1(0.5) 2(1.0): 0(0.0) 0(0.0): 2(1.0)
player sec negative 0(0.0): 1(1.0) 0(0.0): 1(1.0) 0(0.0): 1(1.0) 0(0.0): 1(1.0)
player tov positive 1(0.5): 1(0.5) 0(0.0): 2(1.0) 1(0.5): 1(0.5) 0(0.0): 2(1.0)
player tov negative 3(1.0): 0(0.0) 3(1.0): 0(0.0) 3(1.0): 0(0.0) 2(0.67): 1(0.33)
player pf positive 0(0.0): 1(1.0) 0(0.0): 1(1.0) 0(0.0): 1(1.0) 0(0.0): 1(1.0)
player oreb positive 4(1.0): 0(0.0) 3(0.75): 1(0.25) 3(0.75): 1(0.25) 1(0.25): 3(0.75)
player treb positive 3(0.75): 1(0.25) 2(0.5): 2(0.5) 4(1.0): 0(0.0) 0(0.0): 4(1.0)
player blk positive 3(1.0): 0(0.0) 3(1.0): 0(0.0) 1(0.33): 2(0.67) 1(0.33): 2(0.67)
player stl positive 1(1.0): 0(0.0) 1(1.0): 0(0.0) 1(1.0): 0(0.0) 0(0.0): 1(1.0)
player ast positive 5(1.0): 0(0.0) 5(1.0): 0(0.0) 5(1.0): 0(0.0) 3(0.6): 2(0.4)
player fga negative 0(0.0): 1(1.0) 0(0.0): 1(1.0) 0(0.0): 1(1.0) 0(0.0): 1(1.0)
player fgm negative 0(0.0): 2(1.0) 0(0.0): 2(1.0) 0(0.0): 2(1.0) 0(0.0): 2(1.0)
player fg3a positive 1(1.0): 0(0.0) 1(1.0): 0(0.0) 1(1.0): 0(0.0) 0(0.0): 1(1.0)
player fg3m positive 2(1.0): 0(0.0) 2(1.0): 0(0.0) 2(1.0): 0(0.0) 2(1.0): 0(0.0)
player pts positive 28(0.9): 3(0.1) 18(0.58): 13(0.42) 26(0.84): 5(0.16) 12(0.39): 19(0.61)
player pts negative 8(0.44): 10(0.56) 1(0.06): 17(0.94) 9(0.5): 9(0.5) 2(0.11): 16(0.89)
player pm negative 5(1.0): 0(0.0) 3(0.6): 2(0.4) 5(1.0): 0(0.0) 2(0.4): 3(0.6)
player all both 66(0.77): 20(0.23) 43(0.5): 43(0.5) 63(0.73): 23(0.27) 25(0.29): 61(0.71)
team pts positive 3(0.2): 12(0.8) 0(0.0): 15(1.0) 3(0.2): 12(0.8) 1(0.07): 14(0.93)
team pts negative 0(0.0): 2(1.0) 0(0.0): 2(1.0) 0(0.0): 2(1.0) 0(0.0): 2(1.0)
team all both 21(0.47): 24(0.53) 0(0.0): 45(1.0) 23(0.51): 22(0.49) 10(0.22): 35(0.78)

Table 5: Adverbs in GPT-3.5 texts and original summaries, summed over features and polarities.

group ref feature game avg game avg +/− std player avg player avg +/− std
GPT-3.5 player all 3(1.0): 0(0.0) 3(1.0): 0(0.0) 3(1.0): 0(0.0) 1(0.33): 2(0.67)
GPT-3.5 team all 2(0.5): 2(0.5) 0(0.0): 4(1.0) 3(0.75): 1(0.25) 2(0.5): 2(0.5)

orig. player all 21(1.0): 0(0.0) 15(0.71): 6(0.29) 17(0.81): 4(0.19) 8(0.38): 13(0.62)
orig. team all 3(0.75): 1(0.25) 0(0.0): 4(1.0) 3(0.75): 1(0.25) 0(0.0): 4(1.0)

Table 6: GPT-4 content selection: correctness of named fea-
tures (in comparison to its input from the database).

feature correct (%) incorrect (%)
sec 4(0.4) 6(0.6)
tov 49(0.88) 7(0.12)
vio 0(0) 0(0)
pf 11(0.92) 1(0.08)
df 0(0) 0(0)

oreb 1(0.03) 36(0.97)
dreb 4(1.0) 0(0.0)
treb 33(0.92) 3(0.08)
blk 17(0.94) 1(0.06)
stl 13(1.0) 0(0.0)
fta 4(1.0) 0(0.0)
ast 28(0.85) 5(0.15)
ftm 6(0.86) 1(0.14)
fga 16(0.73) 6(0.27)
fgm 19(0.76) 6(0.24)
fg3a 8(0.89) 1(0.11)
fg3m 10(0.83) 2(0.17)
pts 279(0.87) 42(0.13)
pm 8(0.89) 1(0.11)
all 510(0.81) 118(0.19)

bution have shown the large gap between the human-
formulated texts on the one side, and the LLM-
generated counterparts on the other side, backing the
hypothesis that the generated texts are structurally
and lexically far more deterministic and predictable.

Table 7: GPT-3.5 content selection: correctness of named
features (in comparison to its input from the database).

feature correct (%) incorrect (%)
sec 0(0) 0(0)
tov 20(0.91) 2(0.09)
vio 2(1.0) 0(0.0)
pf 4(0.57) 3(0.43)
df 0(0) 0(0)

oreb 3(0.09) 30(0.91)
dreb 7(1.0) 0(0.0)
treb 54(0.93) 4(0.07)
blk 34(0.92) 3(0.08)
stl 42(0.98) 1(0.02)
fta 2(1.0) 0(0.0)
ast 50(0.93) 4(0.07)
ftm 1(1.0) 0(0.0)
fga 19(0.95) 1(0.05)
fgm 18(0.56) 14(0.44)
fg3a 4(0.8) 1(0.2)
fg3m 20(0.87) 3(0.13)
pts 292(0.87) 45(0.13)
pm 8(1.0) 0(0.0)
all 580(0.84) 111(0.16)

Although the word distribution within all groups is
significant, the stronger significance for the original
summaries once more underlines the more determin-
istic character of the GPT-4 and GPT-3.5 produced
texts. In regard to Euclidean distance, GPT-3.5 is even
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Table 8: Faulty examples generated by GPT-4.

1 However, their less impressive assists
(28) as compared to the Celtics’ 27 were
noteworthy.

2 The Celtics suffered from an excessive
turnover rate of 16 turnovers overall
compared to Spurs’ 18.

3 He had more turnovers than points
scored (11 points, 3 turnovers)

4 He showed superior control with only
15 turnovers compared to the Kings’ 11.

5 The Wizards demonstrated superior ball
handling only committing 11 turnovers
compared to the Pacers also with 11
(They displayed excellent ball control,
committing only 11 turnovers compared
to the Pacers’ 11).

6 Regrettably, Nets’ Isaiah Whitehead,
Jahlil Okafor, Nik Stauskas performed
poorly, with each of them failing to
make a single point.

7 D’Angelo Russell struggled with his
shooting, only making 50% of his at-
tempted field goals. (40% avg, globally
35%.)

8 Moreover, their teamwork and synchro-
nization were evident in their commend-
able 22 assists and a shooting rate of
43.75% from the field and 52.38% from
beyond the arc.

less similar to the original summaries than the GPT-
4 texts. The analysis of adverbs shows that there is
a fundamental difference between evaluations of sin-
gle players and the team performance. Our thresh-
olds capture single player descriptions from the origi-
nal texts nearly perfectly, validating that the thresh-
olds are substantially useful for modeling, whereas
data sparseness renders the results on team-addressed
evaluative expressions in the original summaries un-
reliable.

Using the thresholds to assess the adequacy of the
GPT-4 output shows the shortcomings of the LLMs
in correctly grounding the evaluations in the data. It
also shows that evaluative expressions are less ade-
quate for team scores, where the match is sometimes
lower than random, indicating structural bias, mis-
conception of evaluative markers and the semantics
of some feature names. The smaller GPT-3.5 model
could not reliably be evaluated in regard to adverbs
and their (in-)correct usage since the model simply
failed to adhere to the task, producing only a fraction
of data points needed. By a selection of failed con-
trast relations and evaluative adjectives, we further-

more give empirical evidence for the LLMs’ inability
to establish global evaluative scales and apparent is-
sues in comparing simple numerical expressions, that
permit the distinction from human-written texts. Even
the proportion of evaluative language instances ana-
lysed here already shows the strong polarity bias of
LLMs and their inability to produce coherent evalua-
tions on discourse level.

We judge these findings as indication that the va-
lidity check of evaluative expressions is a promising
linguistic means to complement existing methods for
AI-text detection.

7 FUTURE WORK

In further research, annotation of evaluative adjectives
and contrast relations is a promising measure to over-
come data sparseness and extend our approach. This
will also allow to assess validity and coherence of
global evaluative scales across more instances of eval-
uative language. Furthermore, deeper analysis of the
variance in discourse structure, which showed to be
another substantially useful predictor for telling LLM
generated texts and the original summaries apart, is
a promising means to enrich and ultimately improve
present approaches to AI detection with linguistic
knowledge.
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Dušek, O. and Kasner, Z. (2020). Evaluating semantic accu-
racy of data-to-text generation with natural language
inference. In Davis, B., Graham, Y., Kelleher, J., and
Sripada, Y., editors, Proceedings of the 13th Interna-
tional Conference on Natural Language Generation,
pages 131–137, Dublin, Ireland. Association for Com-
putational Linguistics.

Elhadad, M. (1991). Generating adjectives to express the
speaker’s argumentative intent. In Proceedings of the
Ninth National Conference on Artificial Intelligence -
Volume 1, AAAI’91, page 98–103. AAAI Press.

Goswamy, T., Singh, I., Barkati, A., and Modi, A. (2020).
Adapting a language model for controlled affective
text generation. In Scott, D., Bel, N., and Zong, C.,
editors, Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 2787–2801,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Halliday, M. and Hasan, R. (1976). Cohesion in English.
Longman, London.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. (2023). Survey
of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I.,
and Goldstein, T. (2023). A watermark for large lan-
guage models.

Langner, M. and Klabunde, R. (2022). Realizing a denial
of expectation in pipelined neural data-to-text gener-
ation. In Confalonieri, R. and Porello, D., editors,
Proceedings of the 6th Workshop on Advances in Ar-
gumentation in Artificial Intelligence 2022 co-located
with the 21st International Conference of the Italian
Association for Artificial Intelligence (AIxIA 2022),
Udine, Italy, November 28, 2022, volume 3354 of
CEUR Workshop Proceedings. CEUR-WS.org.

Langner, M. and Klabunde, R. (2023). Validating predic-
tive models of evaluative language for controllable
Data2Text generation. In Keet, C. M., Lee, H.-
Y., and Zarrieß, S., editors, Proceedings of the 16th
International Natural Language Generation Confer-
ence, pages 313–322, Prague, Czechia. Association
for Computational Linguistics.

Mahamood, S., Reiter, E., and Mellish, C. (2007). A com-
parison of hedged and non-hedged nlg texts. In Pro-
ceedings of the Eleventh European Workshop on Natu-
ral Language Generation, ENLG ’07, page 155–158,
USA. Association for Computational Linguistics.

Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D.,
and Finn, C. (2023). Detectgpt: Zero-shot machine-
generated text detection using probability curvature.
In Proceedings of the 40th International Conference
on Machine Learning, ICML’23, page 24950–24962.
JMLR.org.

Sadasivan, V. S., Kumar, A., Balasubramanian, S., Wang,
W., and Feizi, S. (2023). Can ai-generated text be re-
liably detected?

Santhanam, S. and Shaikh, S. (2019). Emotional neural lan-
guage generation grounded in situational contexts. In
Burtenshaw, B. and Manjavacas, E., editors, Proceed-
ings of the 4th Workshop on Computational Creativ-

ity in Language Generation, pages 22–27. Association
for Computational Linguistics, Tokyo, Japan.

Shen, X., Chang, E., Su, H., Niu, C., and Klakow, D.
(2020). Neural data-to-text generation via jointly
learning the segmentation and correspondence. In Ju-
rafsky, D., Chai, J., Schluter, N., and Tetreault, J.,
editors, Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7155–7165, Online. Association for Computational
Linguistics.

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-
Voss, A., Wu, J., Radford, A., Krueger, G., Kim, J. W.,
Kreps, S., McCain, M., Newhouse, A., Blazakis, J.,
McGuffie, K., and Wang, J. (2019). Release strategies
and the social impacts of language models.

Thomson, C., Reiter, E., and Sripada, S. (2020). Sport-
Sett:basketball - a robust and maintainable data-set for
natural language generation. In Sánchez, D., Hervás,
R., and Gatt, A., editors, Proceedings of the Work-
shop on Intelligent Information Processing and Nat-
ural Language Generation, pages 32–40, Santiago
de Compostela, Spain. Association for Computational
Lingustics.

Trnavac, R. and Taboada, M. (2012). The contribution of
nonveridical rhetorical relations to evaluation in dis-
course. Language Sciences, 3(34):301–318.

Wang, P., Li, L., Ren, K., Jiang, B., Zhang, D., and Qiu,
X. (2023). SeqXGPT: Sentence-level AI-generated
text detection. In Bouamor, H., Pino, J., and Bali,
K., editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 1144–1156, Singapore. Association for Compu-
tational Linguistics.

Wiseman, S., Shieber, S., and Rush, A. (2017). Challenges
in data-to-document generation. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2253–2263, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

654


