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Abstract: Successful imaging of electrical activity in newborn infants is highly dependent on accurate and/or adequate
representation of head representation from structural point of view. Namely, the electrical activity and the
corresponding electroencephalography (EEG) measurements are dependant on electrical properties of brain
and skull tissue i.e. corresponding conductivities and geometry of the skull and brain. Automated procedure
for geometry/structural analysis are sparse even for adults and almost non-existent for neonates and newborn
infants. In this paper we propose to develop automatic procedures for analyzing skull geometry and poten-
tially other shapes/sizes that are relevant for electrical imaging of the cortex activity. To this purpose we
propose to estimate the thickness of the skull using magnetic resonance (MR) images as a preliminary step in
obtaining/estimating relevant structural parameters. Since the number of MR images is rather limited due to
the age of the patients we develop a semi-supervised machine learning algorithm in which certain number of
MR slices is used for training. We demonstrate applicability of our preliminary results using real MR images
obtained from the University Children’s Hospital, University of Belgrade, Serbia.

1 INTRODUCTION

Neonatal convulsions are one of the most common
emergency neurological events in the early period af-
ter birth with the frequency of 1.5 to 3 in 1000 live
births (Volpe, 2001). Consequently, neonatal inten-
sive care units (NICU) continuously monitor electri-
cal activity of preterm infants for both short-term and
long-term interventions and/or treatments (Shellhaas
and Clancy, 2007) The corresponding analysis of the
electrical activity is usually based on so called inverse
techniques and models that perform imaging of the
cortical electrical activity (Asadzadeh et al., 2020).
Most of the existing solutions utilize combination of
EEG (excellent temporal resolution and poor spatial
resolution) as a source of electrical activity informa-
tion and magnetic resonance imaging (MRI, excel-
lent spatial resolution and poor temporal resolution)
as a source of geometry information and combine
them in so called inverse models that are then used
in order to estimate the unknown parameters (usu-
ally some type of constrained spatial source models
such as distributed dipoles). In infants, however, ac-
curately describing the anatomy of the head remains

a challenge due to the complexity of the infant skull
from the electromagnetic point of view. The impor-
tance of adequate representation of the skull in com-
putational models has been recently demonstrated in
(Antonakakis et al., 2020).

To this purpose in this paper we propose to es-
timate the thickness of the skull, as one of relevant
parameters, using MR images and machine learning
edge detection algorithms. We combine multiple edge
detection algorithms using blind information fusion
techniques that represents extension of our previous
results (Liu et al., 2011). Although computed tomog-
raphy (CT) is a much better candidate for automatic
analysis of the skull thickness (Benson et al., 2022),
(Lillie et al., 2016) due to the fact that in MR images
skull tissue appears with pixels with lower intensity
(dark regions) the radiation levels are often not ac-
ceptable in neonates and newborn infants. Although
MR imaging is a feasible alternative even that tech-
nique is rarely done resulting in relatively small num-
ber of available images. Due to the limited size of the
available data points for training we utilize the hybrid
approach: a) we select certain number of volumet-
ric slices for training and calculate the information
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fusion weights based on the anomalies we calculate
from the training data set, b) we validate the proposed
algorithms using the training data set and c) we eval-
uate the performance of the proposed algorithm on
the remaining volumetric slices not previously used.
Although the data points correspond to the same pa-
tients (i.e. similar geometry of the skull) our aim in
this paper is only to show the proof of concept and
further investigation of the performance is left for fu-
ture work. The proposed algorithm consists of several
stages: a) using superpixels (Achanta et al., 2002) al-
gorithm we extract regions that are potential candi-
dates for boundary region, b) within the boundary re-
gion we utilize several edge detection algorithms and
evaluate anomalies (probabilities of errors) for two
classes problem (inner and outer boundary) by utiliz-
ing semi-automatic selection of boundaries (manually
labeled using edge detection algorithms), and c) we
run the proposed algorithm using the anomalies from
b) and performing information fusion on the volumet-
ric slices not used for training.

In Section 2 we present mathematical and signal
processing models as well as stages describing the
proposed algorithm. In Section 3 we illustrate nu-
merical results using a real data set obtained from
the neonatal volumetric data of a neonatal subject. In
Section 4 we discuss conclusions and outline direc-
tions for future work.

2 SIGNAL PROCESSING

We use realistic geometry of the 9 months old infant
obtained at The University Children Hospital, Uni-
versity of Belgrade, Serbia. MRI images consisted
of 110 axial MR slices with 256x256 size and field
of view of 240 mm. The sample of volumetric slice
produced in Slicer using DiCom folder is illustrated
in Figure 1. The algorithm operates in the following
way:

• Select volumetric slice for training, example illus-
trated in Figure 2

• Apply superpixel algorithms, output examples il-
lustrated in Figures 3 and 4

• Apply three different edge detection algorithms:
Sobel, Canny, Pickwitt, and log sample output of
the algorithms illustrated in Figure 5

• Perform fusion using the local decisions and
weighting coefficients calculated so that the prob-
ability of misclassification of the training set is
minimized

• Perform outer boundary classification followed by
inner boundary classification

Figure 1: MRI of Infant Head.

Figure 2: Sample volumetric slice.

Figure 3: Initial Superpixel boundaries of the training slice.

In Figure 6. we illustrate the schematic of the
proposed algorithm. The first step is identifica-
tion/classification of the outer boundary points con-
sisting of two hypothesis/classes

• H0 not an outer boundary point

• H1 outer boundary point

The global decision is then made by extending our
previously reported results on optimally distributed
detection of multiple hypothesis (Liu et al., 2011).
Using a centre of pixel mass after the thresholding
the distance for each of the edge points is calculated
and for angle ∆Θ = 1/256 (min angular resolution of
256x256 image) we calculate maximum distance of
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Figure 4: Superpixel clustering of the training slice.
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Figure 6: Information Fusion Scheme.

the non zero points. Note that edge algorithms pro-
duce pixels with intensity 0 and 1 and thus for a given
angle we find the pixel along the radial line that has
the largest possible distance thus producing Rmax(Θ).
Therefore the j-th detector decision function is given
by

ui j =

{
1

√
(Cx − x(i))2 +(Cy − y(i))2

0 elsewhere

The global decision is made in the following way:
let ui j be local decision for each of the edge detector
algorithms, the global decision is made as

û j =

{
1 ∑

4
i=1 wi j ∗ui j > 0

0 elsewhere

Figure 7: Outer and inner boundaries for a sample slice.

Figure 8: Skull thickness segment.

The weight coefficients are calculated using para-
metric model of Gaussian distribution mixture based
on the distance between point (x( j),y( j) and centre
of the volumetric slice and calculating them so that
the overall probability of error for both boundaries is
minimized. Once the outer boundary is identified, the
outer boundary points S1 points are removed and the
algorithm is repeated in a same way so that the new set
of outer boundary points is obtained and these points
are then labeled as inner boundary points S2. The dis-
tance between the two sets is calculated using sliding
window polynomial approximation (splines) and cal-
culating perpendicular distances to estimate the thick-
ness of the skull at that point.

3 NUMERICAL RESULTS

To illustrate the applicability of the proposed tech-
nique we perform preliminary performance evalua-
tion on an MRI scan of the neonatal patient admitted
to Children’s Hospital, University of Belgrade, Ser-
bia. The scan was obtained using 1.5 Tesla Siemens
MR scanner resulting in 94 volumetric slices with
resolutions (256x256 to 406x448). In this study we
utilize 30 volumetric slices obtained using MRI rage
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Figure 9: Histogram of skull thickness.

sequence in sagittal plane. For illustration purposes
the output for one slice is illustrated in Figure 7 with
clearly indicated outer and inner boundaries. The re-
sulting mask for all the slices is illustrated in Figure 8
using Gaussian distribution as a thickness model and
illustrating the region corresponding to three standard
deviations for the actual slices. This mask was ob-
tained using shift one approach in which 29 slices are
used for training and 1 slice for evaluation. In this
way we were able to determine boundaries in all the
slices using the remaining 29 slices for training. In
this way, our evaluation is performed blindly i.e. the
evaluation part of the data set is never used for the
training.

4 CONCLUSIONS

We proposed computational framework for calculat-
ing the skull thickness in the neonates using MR
imaging that can potentially be used for improving the
performance of the source imaging/localization algo-
rithms for estimating electrical activity of the neonatal
brain. Understanding electrical activity of the brain in
infants is rather important as it can potentially predate
the onset of certain pathological conditions. Since
the relationship between the cortical activity and EEG
signal measured on the skull depends significantly on
the thickness of the skull we believe that the afore-
mentioned techniques can improve such performance.
We were able to demonstrate the ability to calcu-
late the thickness of the skull and the actual valida-
tion of the results and comparison to geometry mea-
surements obtained using in-vitro studies as well as
Brain Suite tool (Shattuck DW, 2002) is left for future
work.
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