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3D point clouds are a widely used representation for surfaces and object geometries. However, their visual-
ization can be challenging due to point sparsity and acquisition inaccuracies, leading to visual complexity and
ambiguity. Non-photorealistic rendering (NPR) addresses these challenges by using stylization techniques to
abstract from certain details or emphasize specific areas of a scene. Although NPR effectively reduces vi-
sual complexity, existing approaches often apply uniform styles across entire point clouds, leading to a loss
of detail or saliency in certain areas. To address this, we present a novel segment-based NPR approach for
point cloud visualization. Utilizing prior point cloud segmentation, our method applies distinct rendering
styles to different segments, enhancing scene understanding and directing the viewer’s attention. Our em-
phasis lies in integrating aesthetic and expressive elements through image-based artistic rendering, such as
watercolor or cartoon filtering. To combine the per-segment images into a consistent final image, we propose
a user-controllable depth inpainting algorithm. This algorithm estimates depth values for pixels that lacked
depth information during point cloud rendering but received coloration during image-based stylization. Our
approach supports real-time rendering of large point clouds, allowing users to interactively explore various

artistic styles.

1 INTRODUCTION

3D point clouds are unstructured sets of points in
3D space that often lack consistent density or dis-
tribution. The term “cloud” metaphorically reflects
their abstract, shapeless nature, akin to atmospheric
clouds. Point clouds can efficiently represent di-
verse 3D entities, capturing various shapes, topolo-
gies, and scales. Recent advances in remote sens-
ing technologies, particularly LiDAR (Horaud et al.,
2016) and photogrammetry (Westoby et al., 2012),
have made point cloud acquisition more accessible
and efficient. Consequently, point clouds have be-
come an integral part of spatial computational mod-
els and digital twins, serving various sectors such as
autonomous driving (Li et al., 2021) or infrastructure
management (Mirzaei et al., 2022).
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However, despite their widespread adoption, vi-
sualizing point clouds remains a challenge due to
inherent issues such as incompleteness, point spar-
sity, and inaccuracies arising from the acquisition pro-
cess. These issues often result in point cloud render-
ings that suffer from visual clutter and ambiguity (Xu
et al., 2004). Non-photorealistic rendering (NPR) of-
fers a way to address these challenges by using tech-
niques that do not aim for photorealism, but delib-
erately employ abstraction to enhance scene com-
prehension and guide the viewer’s focus to relevant
scene elements (Dollner, 2008; DeCarlo and Santella,
2002) (Figure 1). Different NPR approaches for point
clouds have been designed in the last years, using both
object-space and image-space effects (Awano et al.,
2010; Xu et al., 2004; Wagner et al., 2022). How-
ever, many of these approaches uniformly apply the
same visual style to the entire point cloud. While this
helps to reduce visual clutter, it often leads to fore-
ground objects blending into the background. Only
a few methods have adopted a segment-based ap-
proach, allowing distinct rendering styles to be ap-
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(a) Rendering of a point cloud via rasterization of point prim-
itives. The only available attribute of reflectance intensity is on edge enhancement, class-specific coloring, ambient occlu-

interpreted as a single-channel color.

(b) Example result of a NPR of the same point cloud based

sion, and a watercolor postprocessing operation.

Figure 1: Comparison of conventional point-based rendering with reflectance intensity information (a) and NPR that supports
expressive visualization of point clouds (b), e.g., by highlighting specific objects and scene parts.

plied to different parts of a point cloud, e.g., individ-
ual stylization of different semantic classes (Richter
et al., 2015; Wegen et al., 2022). Such rendering
approaches are especially suited for complex scenes,
where the same degree of abstraction may not be ap-
propriate for every object or semantic class, or where
it is necessary to highlight certain areas. While prior
works on segment-based point cloud rendering use
simple NPR techniques as a tool for focus+context
visualization, the use of image-based artistic render-
ing (IB-AR) has rarely been explored. As (Gooch
et al., 2010) note, traditional illustration and drawing
styles can effectively convey information and allow
for engaging depictions that capture and maintain the
viewer’s interest. Therefore, in the image stylization
domain, a large variety of IB-AR filters have been de-
veloped (Kyprianidis et al., 2013) that enable a wide
range of visual effects.

In this work, we introduce an approach for
segment-based stylization of point clouds, using dif-
ferent artistic styles implemented through IB-AR fil-
ters. Several challenges must be addressed to achieve
this goal. First, rendering of large point clouds as well
as subsequent artistic filtering and compositing of per-
segment images must be implemented in a real-time
manner to create an interactive experience. To this
end, we propose a pipeline approach for scene-graph-
based rendering and compositing of point cloud seg-
ments. The approach enables the interactive explo-
ration of large point clouds and allows users to exper-
iment with a variety of artistic styles.

Second, the compositing of different segments
must adhere to the depth order of points. However,
as image-based filtering can shift segment boundaries,
naive composition based on depth testing can lead to
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visual artifacts at these boundaries. To address this is-
sue, we employ a compositing method based on lay-
ered depth images and propose a depth inpainting step
to correct the segments’ depth values in areas altered
by image filtering. To summarize, our contributions
are:

1. A pipeline-based approach for segment-based
real-time NPR of point clouds that integrates a va-
riety of image-based stylization techniques.

2. A user-controllable segment compositing ap-
proach based on depth-buffer inpainting that elim-
inates artifacts at segment borders.

The remainder of this work is structured as fol-
lows: In Section 2, we review related work in the ar-
eas of point cloud segmentation, rendering, and NPR.
In Section 3, we present our approach for segment-
based real-time NPR of point clouds. Implementation
details are given in Section 4. In Section 5, we show-
case exemplary results for different application do-
mains, demonstrate the effectiveness of our segment
compositing method, and discuss limitations of our
approach. Finally, Section 6 concludes the paper and
outlines possible directions for future work.

2 BACKGROUND AND RELATED
WORK

This section provides an overview of the research ar-
eas related to our work. After providing a definition
of 3D point clouds, we present previous work on point
cloud rendering and segmentation, before we subse-
quently review related work in the area of NPR, fo-
cusing IB-AR and NPR for point clouds.
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2.1 3D Point Clouds

A 3D point cloud is a set of points in space, which is
permutation invariant. Each point is defined at least
by its 3D coordinates, but may have additional at-
tributes, such as reflectance intensity or color. In this
paper, we focus on surface point clouds, where each
point represents a discrete sample of a continuous sur-
face. Due to imperfections in the data acquisition pro-
cess, 3D point clouds are often incomplete, have an
irregular point distribution, and contain measurement
inaccuracies and noise. During data preprocessing,
some of these issues can be mitigated (e.g., by filter-
ing outliers) and additional per-point attributes, such
as surface normals, can be computed.

2.2 Point Cloud Rendering

For point cloud rendering, different approaches have
been developed. A straightforward approach is to use
point primitives supported by graphics APIs to ren-
der individual points with fixed size in screen space.
Alternatively, splatting provides a linear approxima-
tion to the underlying surface by rendering primitives
(e.g., disks) of a certain world-space size and blend-
ing overlapping regions to create the appearance of
smooth surfaces (Zwicker et al., 2001). Recently,
deep learning (DL) approaches have been proposed to
generate high-resolution renderings from low-density
point clouds (Bui et al., 2018; Aliev et al., 2020).
However, these methods often require RGB images,
are time-consuming to train, and the rendering per-
formance is not yet comparable with standard render-
ing approaches. The described rendering techniques
can be implemented with level-of-detail (LoD) data
structures to enable out-of-core rendering of massive
point clouds, enhance rendering performance, and
reduce visual clutter (Scheiblauer, 2014). For this,
point clouds are hierarchically organized in spatial
data structures (e.g., kd-trees or octrees), which are
used during rendering to select a suitable LoD, de-
pending on the virtual view position. Our approach is
compatible with any point cloud rendering technique,
provided it can generate a depth image during the ren-
dering process. For the sake of clarity in our demon-
strations, we opt for a straightforward approach using
point primitive rasterization and do not use any LoD
data structure.

2.3 Segmentation of Point Clouds

Although different subsets of a point cloud may rep-
resent distinct parts of a scene, there is no inherent
order in a point cloud that reflects this. Basic struc-
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Figure 2: Result of a deep-learning-based semantic segmen-
tation of the point cloud shown in Figure 1.

tural information can be obtained from unsupervised
segmentation algorithms that divide point clouds into
non-overlapping segments. Xie et al. provide an
overview of these methods, of which region grow-
ing, clustering, and model fitting are the most com-
mon ones (Xie et al., 2020). Further information can
be added by semantic segmentation, where each point
is assigned a semantic label (Figure 2), and instance
segmentation, where points with the same semantic
label are grouped into individual objects. This paper
does not focus on the segmentation process itself, as
our segment-based stylization approach is agnostic to
the segmentation method used. Nevertheless, we pro-
vide a brief overview of approaches below.

Semantic Segmentation: can be performed both
with unsupervised, rule-based approaches as well as
with supervised machine learning (ML) approaches.
In rule-based approaches, additional attributes are
computed for each point and subsequently used to dis-
tinguish between different semantic classes. This can
involve deriving geometric descriptors (e.g., linearity,
planarity, scattering) from the distribution of neigh-
boring points (Weinmann et al., 2015). Often, rule-
based approaches are based on a prior point cloud
segmentation with unsupervised algorithms, allowing
classification rules to be based on segment shape (Hao
et al., 2022). Supervised ML models for semantic
segmentation can be trained if annotated datasets are
available. In recent years, deep neural networks have
become popular for this task, as they often outperform
statistical ML models, such as random forests (Wein-
mann et al., 2015). A number of DL architectures
have been developed to process point clouds directly,
offering performance advantages over DL architec-
tures that are based on image- or voxel-based inter-
mediate representations (Bello et al., 2020).

Instance Segmentation: approaches often rely on
special shape characteristics of the object category to
be segmented. Many instance segmentation methods
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(a) Point rasterization result.

(b) NPR based on image-space processing.

Figure 3: Compared to simple point primitive rasterization, NPR mitigates the problem of holes due to missing points and

difficulty of perceiving object boundaries.

are based on unsupervised model fitting, region grow-
ing, or clustering algorithms, such as DBSCAN (Ester
et al., 1996). Some authors have also proposed deep
learning approaches (Wang et al., 2018; Luo et al.,
2021).

2.4 Non-Photorealistic Rendering

NPR uses visual abstraction and focus techniques to
simplify images and direct attention, creating aes-
thetically pleasing and easily understandable illus-
trations. IB-AR is a sub-area of NPR that trans-
forms an input image into an artistically stylized
rendition using image filtering techniques. A va-
riety of IB-AR techniques have been proposed that
mimic artistic painting methods, such as oil painting
(Semmo et al., 2016), watercolor (Bousseau et al.,
2006), cartoon filtering (Winnemoller et al., 2006),
stroke-based painterly rendering (Hertzmann, 1998),
and many others (Kyprianidis et al., 2013). Further,
with the advancements in DL, example-based tech-
niques such as neural style transfer (NST) (Jing et al.,
2020) have emerged, which apply an artistic style ex-
tracted from an input style image to a new content
image. In our approach, we implement the previously
named techniques as part of an image processor re-
sponsible for stylizing point cloud segments.

2.4.1 NPR of Point Clouds

The main strengths of NPR also apply to point cloud
rendering: Scene understanding is enhanced and vi-
sually appealing images can be created (Figure 3).
NPR of point clouds can be categorized into object-
space and image-space approaches. Object-space ap-
proaches control the rendering result via the selection
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of geometric primitives (e.g., points, splats, strokes,
or 3D glyphs) and their orientation (e.g., surface-
aligned or view-aligned) and scaling. Image-space
approaches postprocess the image resulting from a
prior point cloud rasterization step. In theory, any
IB-AR technique could be employed during postpro-
cessing. To date, some NST approaches have been
adapted to point clouds (Cao et al., 2020), and eye-
dome lighting has been developed as a technique
to enhance object perception in point cloud render-
ings (Ribes and Boucheny, 2011). However, generic
approaches for integrating point cloud rendering with
arbitrary IB-AR methods have rarely been investi-
gated.

The use of point cloud segmentation techniques
to stylize segments in different ways has been ex-
plored in the past, e.g., by (Richter et al., 2015)
and (Wegen et al., 2022). Both employ semantic-
class-dependent NPR to enhance recognition of ob-
jects. While their approaches are focused on specific
application domains and mostly employ object-space
techniques, we propose a more general approach to
segment-based point cloud stylization. In particular,
our approach enables per-segment stylization using
a multitude of NPR techniques, including especially
IB-AR methods (Figure 4). The segments can be de-
rived from semantic classes, object instances, point
clusters, or application-specific attributes.

2.4.2 Depth-Aware IB-AR Techniques

Typically, IB-AR approaches do not make assump-
tions about the geometry an image depicts, which of-
ten leads to a flattening effect in the output. How-
ever, for point clouds, maintaining depth perception is
important. Several image-based approaches incorpo-
rate depth information (either predicted or captured),
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(a) Direct rendering of a raw point cloud.

(b) Segment-based NPR of the same point cloud.

Figure 4: A segmentation of the point cloud enables separate processing and subsequent blending of the rendering results.

to enhance depth perception and improve separation
of foreground and background. For example, NST
was extended to incorporate depth information in the
2D (Liu et al., 2017) and 3D (Hollein et al., 2022) do-
main. (Shekhar et al., 2021) enhance cartoon styliza-
tion effects by producing salient edges around depth
discontinuities. Similar to our approach, depth-based
segment stitching has been explored in the form of
layered depth images in the context of 3D photo styl-
ization. (Bath et al., 2022) segment an image based
on predicted depth and apply different stylizations
that are then stitched together using a simple form of
depth-inpainting. (Mu et al., 2022) extract a point
cloud from a depth image and use it to condition
view-consistent style transfer features. We also use
depth-aware composition of stylized segments, but in-
stead of generating new content (as done in 3D photo
stylization), we employ depth inpainting to improve
blending between stylized point cloud segments.

3 APPROACH

In the following, we present our approach for combin-
ing IB-AR with segment-based NPR of point clouds.
Figure 5 illustrates the overall process of obtaining a
stylized image from point cloud data. Initially, each
point cloud is preprocessed, e.g., using outlier filter-
ing or computing additional point attributes. An inte-
gral part of the preprocessing is the segmentation of
the point cloud, i.e., creating segments that represent
point clusters, semantic classes, or object instances.
Subsequently, on a per-frame basis, each point cloud
segment is rendered separately, resulting in at least a
color and a depth image. A rendering pipeline P for
a single segment comprises different processing steps
in a fixed order:

1. The segment is rasterized using point primitives of
a user-defined size. The results are raster images
containing color and depth information for further
processing in subsequent pipeline steps.

2. An arbitrary number of image-based postprocess-
ing steps can be applied to the result of the raster-
ization step. Examples include smoothing, color
grading, or IB-AR filters.

3. A depth inpainting step is used to counter border
artifacts that can occur when compositing the per-
segment images.

To enable fine-grained control of the rendering
process, each processing step can be parameterized.
After all segments are rendered, the resulting per-
segment images are composited into a final image.

3.1 Countering Compositing Artifacts

Since each segment is rendered separately, the ques-
tion arises of how to combine the per-segment results
into a cohesive final image. Merely overlaying the re-
sults of each segment fails to accurately represent sce-
narios where segments are partially obscured or inter-
leaved, as is the case with the lantern pole and the tree
in Figure 1. To ensure proper visibility, depth test-
ing has to be employed. However, image-based post-
processing can modify color values at pixels where
no fragment was recorded during rasterization, e.g.,
when adding outlines. These newly colored pixels
would have no valid depth value, leading to artifacts
when compositing the rendered segments. A potential
solution could be to resolve visibility before applying
image filters: for each segment, the occluded areas are
computed and masked by setting the alpha channel
to zero before applying image-based postprocessing.
While this partially mitigates the problem, it requires
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Figure 5: Illustration of the overall rendering approach. First, the point cloud is preprocessed, e.g., using outlier filtering.
Additionally, it is segmented according to point clusters, semantic classes, or object instances. Then, each point cloud segment
is rendered separately and the results are combined into a final image. The user can interactively control the processing

pipelines for each point cloud.

the definition of a strict order of segments, implying
that one segment consistently overlaps the other in ar-
eas lacking depth data. Additionally, by introducing
transparency early in the process, IB-AR techniques
might not produce correct results or overwrite the al-
pha channel as part of their processing pipeline.

Therefore, we propose to instead use a depth in-
painting pass on the per-segment depth buffers. This
inpainting pass is guided by the differences between
the rasterized and the postprocessed color images, as
depicted in Figure 6. First, for each segment, the ras-
terized and the postprocessed images are converted to
grayscale and their difference is computed. Subse-
quently, this difference image is converted into a bi-
nary inpainting mask using a user-defined threshold,
encoding areas significantly altered by postprocess-
ing. Then, the depth values of all masked pixels are
inpainted. For this, all pixels in a circular neighbor-
hood, whose depth values do not correspond to the far
plane depth, are averaged. The size of the averaging
kernel is user-controllable. Pseudo-code for the depth
inpainting pass is provided in Section 4.

4 IMPLEMENTATION

This sections provides implementation aspects of the
proposed approach. After describing the segmenta-
tion methods we use as part of point cloud preprocess-
ing, we detail our implementation of the described
point cloud stylization approach.

4.1 Point Cloud Segmentation

As described, we perform point cloud segmentation
independently of the rendering in a preprocessing
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step. Depending on the application scenario, we em-
ployed different segmentation approaches:
Connected Component Analysis. We use the al-
gorithm implemented in the open source software
CloudCompare.! This algorithm uses an octree and
identifies connected components based on two crite-
ria: The octree level, which defines the minimum size
of the gap between two components, and the mini-
mum number of points per component, which causes
components with fewer points to be discarded.
Semantic Segmentation. We present examples that
were created using a rule-based approach, as well
as examples based on a DL approach. Specifically,
we use the rule-based approach of (Richter et al.,
2015), which segments point clouds into five dis-
joint partitions representing buildings, vegetation, ter-
rain, infrastructure, and water. For this purpose, the
point clouds are first segmented using the algorithm
of (Rabbani et al., 2006), after which the label of
each segment is determined in several rule-based clas-
sification steps. As an example of a DL method,
the pipeline of (Burmeister et al., 2023) is used. It
is based on DL architectures that can directly pro-
cess point clouds, namely KP-FCNN (Thomas et al.,
2019).

Instance Segmentation. As an example of an in-
stance segmentation task, we consider single tree de-
lineation. To segment vegetation point clouds into
individual trees, we use the marker-controlled water-
shed algorithm (Kornilov and Safonov, 2018), with
the local maxima of the canopy height serving as
markers.

Iwww.cloudcompare.org/doc/wiki/index.php/

Label_Connected_Components



Non-Photorealistic Rendering of 3D Point Clouds Using Segment-Specific Image-Space Effects

Color after Color post-
rasterization processed

Compositing

Depth after
rasterization

Color difference Inpainting mask

Depth after Other Segment Buffers
inpainting

Figure 6: A flow chart depicting our depth inpainting approach to counter compositing artifacts.

4.2 Point Cloud NPR

The proposed segment-based point cloud styliza-
tion approach was implemented using C++ and
OpenGL 4.3.

Point Rendering. We structure the point cloud to ren-
der as a tree. Each leaf node of the tree comprises a
point cloud segment S with its own rendering pipeline
P that defines the different stylization steps, as well
as their parameterization. Inner nodes of the tree rep-
resent user-defined groupings of multiple segments,
facilitating their joint manipulation. Changes made to

float computeDepth(ivec2 coords, float maskThreshold
<+ , int kernelSize){
float originalDepth = readDepthAt(coords);

4 if (colorsAreSimilar (coords, maskThreshold))
return originalDepth;

// inpaint depth based on neighbor depth

float counter = 0.0, finalDepth = 0.0;

for (each pixel in a circle around coords with
> radius kernelSize){

10 float neighborDepth = readDepthAt(pixel);

12 // skip depth values on the far plane

13 float skipFactor = 1.0 - step(1.0,
<> neighborDepth) ;
15 finalDepth += neighborDepth * skipFactor;

16 counter += skipFactor;
1 }
18 return finalDepth /counter;

19 |}

Listing 1: GLSL-inspired pseudocode of the function that
estimates the depth of a pixel in the depth inpainting pass.
The colorsAreSimilar corresponds to the calculation of the
inpainting mask (Figure 6), i.e., it retrieves the color after
rasterization and the color after postprocessing at the given
coordinates, computes their intensity difference, and thresh-
olds the result according to the maskThreshold.

inner nodes, e.g., addition of stylization steps or ad-
justment of processing parameters, are propagated to
all child nodes. However, child nodes may override
the pipeline configuration inherited from their parent.
This hierarchical structure enables intuitive and effec-
tive control of the rendering. General settings can be
applied to multiple segments by specifying them in
higher-level nodes, while still allowing for individual
parameterization at lower levels.

Image Filtering. For postprocessing after rasteri-
zation, we integrated several IB-AR effects that can
be parameterized by the user. Examples include a
cartoon effect (Winnemoller et al., 2006), a water-
color filter (Bousseau et al., 2006), an oilpaint fil-
ter (Semmo et al., 2016), image warping, and color
grading. To define the effects to be applied to
each segment, we use the description format for im-
age and video processing operations introduced by
(Diirschmid et al., 2017). This format provides a con-
sistent description of the effect parameters and their
presets and allows multiple IB-AR effects to be com-
bined in a pipeline.

Maintaining Interactivity. To facilitate interactive
navigation through the scenes during rendering, we
employ two approaches: First, the image styliza-
tion per segment is performed asynchronous to the
rest of the rendering in a separate thread. This en-
ables smooth navigation, even with computationally
intensive postprocessing pipelines. However, if the
processing times for certain segments differ signifi-
cantly, image artifacts can occur during camera move-
ment. This is due to the fact that during postprocess-
ing of a segment, the virtual viewpoint might change,
which then already influences the rendering result of
other segments. As a result, segments rendered from
slightly different view points might be combined in
the compositing stage. Second, we provide the option
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Table 1: The point clouds used in the paper.

Figures [ Reference

1,2,12 Street scene in the city of Hamburg, scanned with mobile mapping
vehicle. Provided by AllTerra Deutschland GmbH.

3 “Tottieska malmgarden, Faro Pointcloud, Decimated” (https:/skfb.

1ly/6RTvX) by HagaeusBygghantverk. Licensed under Creative Com-
mons Attribution.

“Hintze Hall, NHM London [point cloud]” (https://skfb.ly/6sXWG)
by Thomas Flynn. Licensed under Creative Commons Attribution-
NonCommercial.

7 “Stone Griffin, Downing College, Cambridge” (https://skfb.ly/OVZXx)
by Thomas Flynn. Licensed under Creative Commons Attribution.

8 From “Hessigheim 3D” dataset (Kolle et al., 2021).

10 Street scene in the city of Essen, scanned with mobile mapping vehi-
cle. Provided by the Department for Geoinformation, Surveying and
Cadastre of the City of Essen.

9,12 Forest area scanned with aerial LiDAR, obtained from OpenGeo-
DataNRW (www.opengeodata.nrw.de). Licensed under Data licence
Germany - Zero - Version 2.0

4,6,11,12

to automatically switch to lower resolution buffers
during camera movement, to maintain interactivity in
scene navigation on systems with less computational
power. If the virtual camera is not moved for 500 mil-
liseconds, high-resolution buffers are used again for
rendering.

Depth Inpainting. The implementation of the depth
inpainting pass is shown in Listing 1. Although the
generation of the difference image, the inpainting
mask, and the processed depth buffer are conceptu-
ally separate steps, we implemented them as a single
shader for performance reasons.

S RESULTS

The proposed rendering process can be customized on
different granularity levels: each point cloud segment
is rendered by an individual processing pipeline and
each pipeline step can be controlled interactively by a
set of parameters. This makes the approach capable of
producing diverse results. In the following, we show-
case example renderings for point clouds with up to
82 million points, employing different pipeline con-
figurations (see Table 1 for the point cloud sources).
Please also refer to the supplementary video.

While our prototype mainly showcases our ap-
proach’s feasibility and is not fully optimized for
performance, basic runtime and scene statistics are
shown in Table 2 for reference. All images were
rendered with a resolution of 1920 x 1080 pixels on
a machine equipped with an AMD Ryzen 7 3700-X
processor, 32GB RAM, and an NVIDIA RTX 3090
graphics card. The rendering performance of a given
scene is influenced by numerous factors, including
number of points, viewpoint, the rendering pipelines
and their parameterization, the number of point cloud
segments and depth inpainting kernel size.
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(@) (b) ©) (@) (e)

Figure 7: Different IB-AR filters applied to point cloud (a):
toon (b), posterization (c), oil painting (d,e).

Figure 8: An edge enhancement and oilpaint IB-AR filter
applied to a point cloud obtained by a UAV.

(a) Original point cloud

(b) Stylized result

Figure 9: NPR based on semantic segmentation and tree
instance segmentation.

5.1 Exemplary Results

Application of IB-AR to non-segmented point clouds
enables aesthetic and diverse rendering results, as
demonstrated in Figure 3, Figure 7, and Figure 8.
When integrated with segmentation, the approach am-
plifies the strengths of NPR, such as highlighting key
areas, resulting in engaging visualizations. In the fol-
lowing, we present a few application examples of this
approach.

NPR in Vegetation Mapping. Figure 9 shows a point
cloud of a forest area. The NPR is parameterized by
segmentation results with respect to coloring and edge
thickness to facilitate the simultaneous distinction
of semantic classes and individual trees. Figure 10
shows results for a mobile mapping point cloud. The
point cloud is segmented into five classes (low veg-
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Table 2: Rendering performance for the scenes depicted in this paper (capped at 60 FPS). Please note that for the measurements
with an additional number in brackets, an unoptimized CPU-side pencilhatching IB-AR filter is used on some of the segments.
The number in brackets reports the performance for the case that this filter is exchanged for a GPU-accelerated cartoon filter.
We further state the used segmentation methods, if applicable: SSDL = deep learning semantic segmentation, SSR = rule-
based semantic segmentation, CC = connected components analysis, ISA = algorithmic instance segmentation. Please also
refer to Section 4 for more details on the segmentation methods.

Figure 1(b) 3(b) ab) | (b)) 3 9(b) 10(d) 11 12(d) upper | 12(d) middle | 12(d) lower
Number of Points IS3M | 48M | 25M 3M S2M 12M 648M | 25M 2.5M 18.3M 12M

S i SSDL 5 CC B B SSR+ISA | SSDL CC CC SSDL SSR
FPS 53 60 60 60 73 60 2 75 (60) 12 (60) 22 (43) 12 (60)

(b) Semantic segmentation

(a) Reflectance intensity

(d) Stylized vegetation

(c) Class-based coloring

Figure 10: Application example in the area of urban vegetation mapping.

etation, tree trunks, tree branches, tree crowns, non-
vegetation) using a DL approach (Figure 10b). Then,
coloring (Figure 10c), as well as cartoon and water-
color filtering (Figure 10d) are applied to the vegeta-
tion classes, using black outlines for trees and white
outlines for low vegetation.

NPR for Urban Visualization. The point cloud
shown in Figure 1 was obtained via mobile map-
ping. Preprocessing involved the exclusion of points
assigned to the transportation category (e.g., buses,
bicycles). Vegetation elements were recolored to
green, pedestrians to red, and architectural structures
to beige. To conceal gaps within the point cloud and
augment the overall aesthetic quality, a watercolor ef-
fect was then applied to the entire image. By smooth-
ing larger surfaces (e.g., building facades) and empha-
sizing smaller objects (e.g., pedestrians), the configu-
ration of the urban landscape can be observed more
easily.

Animations via Warp Filtering. In Figure 11, we
employed a warping-based geometric transformation
to the segmented representation of a whale skele-
ton, with temporal parameterization to simulate the
motion of swimming (see the supplementary video).
Our depth inpainting approach ensures visual coher-
ence by maintaining the correct depth ordering for the
transformed image pixels

5.2 Comparison of Compositing
Methods

Figure 12 illustrates our compositing technique and
compares it to alternative approaches:

Layering without Depth Test. As demonstrated in
Figure 12b, a naive layering of per-segment results is
inadequate if segments overlap. This approach fails to
resolve occlusions correctly, leading to visual errors.
Layering with Per-Fragment Depth Tests. Incor-
porating per-fragment depth tests (Figure 12c) im-
proves the compositing of layers by ensuring that
segments obstruct each other appropriately. How-
ever, this method produces visual artifacts at segment
boundaries, especially when a cartoon filter is applied.
Boundaries may be added at pixels without depth in-
formation, resulting in a jittery appearance as the fil-
ter’s overdraw effect is not integrated seamlessly.
Our Depth Inpainting Approach. Our depth in-
painting approach (Figure 12d) addresses these short-
comings, leading to smooth outlines and, thus, a more
uniform and aesthetically pleasing representation. As
the missing depth information at segment boundaries
is effectively estimated, a cohesive and visually stable
output is ensured.

(a) Timestamp 1 (b) Timestamp 2

Figure 11: A geometric warp transformation that is param-
eterized over time is applied to one of the segments.
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(b) Layering

(d) Ours with depth inpainting

(c) Naive depth testing

Figure 12: Comparison of our approach to other compositing approaches.

5.3 Discussion

One notable advantage of using image-space filtering
methods for segment-based NPR of point clouds is
their independence from specialized data structures,
often required for organizing point clouds in object-
space approaches, as well as their generality - any im-
age filtering method can be applied without needing
adaption to point cloud geometry. However, com-
bining image-space NPR with segment-based point
cloud rendering raises the following issues:

Validity of Pixel Information. Image-based NPR ap-
proaches often assume that each pixel contains valid
data. However, when rendering sparse point clouds,
pixels may represent background values rather than
meaningful information, which can cause problems
with image-based processing steps. For example, the
sparsity of point clouds can cause edge filters to place
an excessive number of edges around single points.
To mitigate this problem, gap-filling techniques can
be used, such as increasing the point size or using
splatting. Alternatively, image-based smoothing can
be combined with our depth inpainting approach.
Handling Intersecting Segments and Edge Zones.
In segment-based point cloud rendering, dealing with
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overlapping segments and ambiguous boundary zones
is challenging and often requires manual adjustment
of the parameters used to compose the per-segment
images. However, the proposed parameters of our
depth inpainting approach allow for manual adjust-
ment and provide a degree of control over these com-
plex areas.

Depth Precision Constraints. In scenarios where
the far plane is very far away from the camera, depth
precision may be insufficient for distant parts of the
scene. This can lead to inaccuracies during depth
testing, resulting in visual artifacts when compositing
the per-segment images.

Regardless of whether object- or image-space meth-
ods are used, the following additional issues arise
with segment-based NPR of point clouds:
Inter-Frame Consistency. Achieving consistent ren-
dering results for different camera viewpoints is chal-
lenging, especially when the user can interactively
control the camera. Because camera movements can
lead to variations in the screen-space point density,
visual artifacts such as flickering and popping can oc-
cur.
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Segmentation Quality Dependence. As the render-
ing techniques and their parameters are selected based
on the preceding segmentation, the quality of the fi-
nal image is greatly influenced by the segmentation
quality. In case of erroneous segmentation, the visual
quality of the result can be significantly degraded, po-
tentially even communicating incorrect information
(e.g., in Figure 1, the lantern pole has been classified
as a pedestrian).

In summary, the successful implementation of
segment-based image-space NPR for point clouds
currently requires high-quality data and segmentation
results, as well as careful configuration of user param-
eters. If these constraints are met, it is an effective
approach to reduce noise or highlight certain objects
in point cloud renderings, as our results show.

6 CONCLUSIONS AND FUTURE
WORK

The integration of point clouds with NPR tech-
niques has significant potential for various applica-
tions. NPR of point clouds improves the clarity of
their depiction, reduces visual complexity, and en-
ables a wide range of expressive graphical represen-
tations. We demonstrated that in this context the in-
tegration of IB-AR provides a high degree of artistic
freedom and enables diverse stylization results. Fur-
ther, we have shown that point cloud segmentation
allows to enhance and combine existing NPR tech-
niques, improving object perception and enabling the
highlighting of specific objects or semantic classes.
To counter artifacts that can arise during composition
of per-segment rendering results, we proposed a depth
inpainting approach that effectively deals with com-
plex scenes comprising overlapping and intersecting
segments. As our overall approach strongly depends
on the quality of the point cloud segmentation, more
accurate segmentation techniques are required to fur-
ther enhance the stylization results in the future. The
development of foundational models through suitable
pretraining methods seems to be a promising research
direction. Further, in our current approach, the styl-
ization and depth inpainting parameters need to be
fine-tuned manually. In the future, automatic deduc-
tion of these parameters from point cloud properties
(e.g., density or segment overlap) could be investi-
gated. Overall, our work shows that point clouds are
not only useful for analysis tasks, which is perceived
as their main application in current scientific litera-
ture, but also for artistic stylization and the creation
of helpful and engaging visualizations.
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