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Abstract: Remote rehabilitation of stroke patients reinforces in-person rehabilitation and enhances the regaining of 
neuromotor capabilities. However, monitoring stroke patients’ rehabilitation from different locations and on 
a large scale requires a low latency and scalable approach. A real-time visual analytics framework for 
monitoring in-home rehabilitation of stroke patients based on fog computing is proposed. The objective of 
this paper is to evaluate the performance of the proposed framework in terms of latency and scalability. 
OpenTelemetry was used for the evaluation of the proposed framework. OpenTelemetry was chosen over 
simulation tools for its real-time observability features providing accurate comprehension of the distributed 
system behaviors in real-world implementation. Five scenarios were setup by progressively escalating the 
volume of data flow and the number of packets. These scenarios enabled a thorough examination of the 
framework's ability to handle higher workloads and scalability. The results of end-to-end latency of the 
proposed system were compared to the Cloud-only implementation. Compared to Cloud-only 
implementation, the findings of the evaluation showed that the latency of the proposed system was 
significantly low. Reflecting the scalability feature, the capacities of handling workload by the proposed 
system in terms of latency, throughput, processing, and resource utilization were stable across the first four 
configurations. However, the limitations noticed in the fifth configuration put in evidence the constraints of 
the experimental setup used in this research. Moreover, the scalability and efficiency of the system can be 
further enhanced in a distributed deployment in real-world conditions.  

1 INTRODUCTION 

The recent research in brain stroke focuses on in-
home rehabilitation interventions that are having the 
most positive impact on functional, motor, and 
cognitive recovery outcomes of the patient’s health. 
Remote patient monitoring (RPM) of in-home 
rehabilitation helps in reaching unassisted patients in 
different geographical locations and enhances 
patient-therapist communication  (De Farias et al., 
2020). In addition, RPM allows users to interact with 
therapy systems online and speeds up data 
transmission between different health stakeholders 
which improves the quality of healthcare and helps 
approach the in-home patients.  

In all stroke rehabilitation systems, it is important 
to perform accurate assessments of physical recovery. 
The collected data from patients must be processed 
and presented to the therapist in a meaningful and 
useful way, especially for unsupervised systems. 

Furthermore, real-time information feedback 
provided by rehabilitation systems enables the 
therapists to take necessary and immediate actions. In 
order to provide the support to therapists in 
monitoring patients, the information must be 
visualized with simple illustrations. Real-time data 
analytics and visualization have the potential to 
perform as an informative decision-support tool for 
the therapists. According the literature investigations, 
few monitoring systems implemented data analytics 
but they did not include real-time data processing. 
Hence, real-time visual analytics is an important 
opportunity for the development of innovative 
rehabilitation systems. 

The potential of RPM systems makes it play a 
crucial role in in-home neuromotor rehabilitation of 
brain stroke patients. However, the spatiotemporal 
nature of physical rehabilitation data and its massive 
volume make it challenging to maintain the real-time 
aspect of monitoring systems. The minimum latency 
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is a crucial requirement that ensures the patient’s 
safety and the accuracy of information transmission. 
The continuous increasing number of the stroke 
patients with different disabilities and the limited 
access to professional rehabilitation therapists 
imposes the necessity of monitoring multiple patients 
by each therapist. To fulfil these requirements, RPM 
systems need to be versatile and highly scalable.  

The RPM systems are witnessing a proliferation 
of advanced technologies. Fog computing is a 
trending paradigm in healthcare systems for its 
scalability and low latency. However, existing RPM 
systems based on fog computing which have proved 
the ability to handle increasing workload and provide 
low latency were evaluated using simulation tools. 
While these tools, such as iFogSim (Gupta et al., 
2017) are providing efficient modelling and 
simulating fog computing environments, they may 
fall short in providing real-time observability. In 
addition, their primary applicability is limited to 
experimental scenarios instead of real deployment 
conditions. On the other hand, as a relatively new 
paradigm, OpenTelemetry (OTel) (Documentation | 
OpenTelemetry, n.d.) is a unified opensource 
framework for generating, collecting, and 
transmitting telemetry data. OTel stands out for its 
real-time observability features providing more 
authentic operational insights.  

In this paper, the performance of a proposed 
visual analytics framework for monitoring stroke 
neuromotor rehabilitation was evaluated using OTel. 
Based on fog architecture, this new framework 
approach was evaluated in terms of latency and 
scalability and compared with Cloud-only 
implementation. To the best of our knowledge, there 
is no research previous to the work presented in this 
paper that used OTel for evaluating the performance 
of fog-based RPM systems. 

2 RELATED WORK 

Fog paradigm provides computational resources 
closer to the data sources, such as IoT devices and 
their gateways. Challenges arise in monitoring the 
performance of the orchestrated services of this 
distributed  infrastructure (Bonomi et al., 2012).   

Mahmud et al.(Mahmud et al., 2018) presented an 
evaluation of performance of Fog-based IoT-
Healthcare solutions through simulation studies using 
iFogSim (Gupta et al., 2017) in terms of  service 
delivery, cost, energy usage and latency. They setup 
scenarios through simulations using the iFogSim 
simulator and the obtained results were analyzed in 

relation to distributed computing, reduction of latency 
and power consumption.  

Similarly, Asghar et al. (Asghar et al., 2021) used 
iFogSim toolkit to validate the effectiveness of their 
fog based approach for health monitoring systems. 
They conducted five simulation scenarios for 
evaluating the latency and network usage of their 
approach while comparing it with Cloud-only 
implementation. Das et al. (Das et al., 2022) 
performed simulations using iFogSim to evaluate 
their approach about enabling green healthcare 
services using integrated iot-edge-fog-cloud 
computing environments. They used simulation-
based analysis and real-time data analysis in Google 
cloud platform (GCP). They evaluated the metrics of 
stability, accuracy, latency, and energy consumption. 

Saidi et al. (Saidi et al., 2020) analyzed the 
performance of their proposed Fog to Cloud 
computing solution in terms of latency and energy 
consumption using FogWorkflowSim  simulator (Liu 
et al., 2019).  

The existing approaches for evaluating the 
performance of fog-based solutions for healthcare 
monitoring are limited to the use of simulations 
toolkits such as iFogSim. Recently, the advancement 
of observability solutions such as OTel is growing. 
However, their applications in performance 
evaluation of healthcare monitoring solutions are still 
limited and not yet explored.  

3 BACKGROUND 

In-home neuromotor rehabilitation aims to regain 
neuromotor functionalities of patients and enhance 
the coordination of their body limbs after the stroke. 
The technology advancement opened opportunities 
for patients to practice rehabilitation exercises at 
home (Fig.1). These practices include activities of 
daily living, gait training, range of motion 
improvement, balance and strength exercises. The 
data collected from the stroke patient during 
rehabilitation is of multiple types. However, most of 
this data has spatiotemporal nature that makes it 
challenging in terms of processing and real-time 
visualization.  

For monitoring in-home neuromotor 
rehabilitation of stroke patients, a visual analytics 
framework based on fog computing was proposed 
(Fig.2).  The architecture of the proposed framework 
is based on a different approach from traditional fog-
based architectures. The requirement for real-time 
visualization with minimal latency is crucial for 
patient safety and the accuracy of information 
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displayed in the user interface. Thus, the streaming of 
the IoT data was split between real-time streaming 
and batch streaming. The real-time stream flows 
directly to the monitoring layer where the therapist 
dashboard is included without going through the 
Cloud. The batch stream is forwarded to the Cloud for 
storage and for complex data analysis such as the 
optimization of the medical information using deep 
learning algorithms. In addition, the proposed 
framework is integrally based on software 
microservices. Therefore, this allows the portability 
and versatility for different choices of devices and 
server capacities in real-world implementations.  

For dynamic data visualization at the therapist 
dashboard, the implemented framework includes 
MQTT brokers at the Edge layer to facilitate the 
channeling of spatiotemporal data collected from 
motion sensors placed on patients' different joints 
during the rehabilitation exercises. The fog layer 
includes Apache Kafka for data ingestion and a 
streaming engine for real-time processing of patient 
data and its mapping with target data. The monitoring 
layer receives and displays advanced dynamic graphs 
using a dash server. 

However, this new approach must be evaluated in 
terms of performance including latency, scalability, 
and resource usage. The objective of the performance 
evaluation of the proposed framework is to answer 
the following questions: 

RQ1- Does the new approach of connecting the 
fog layer directly to the monitoring layer for real-time 
visualization provide a better latency than Cloud-only 
approach?   

RQ2- By using the minimum of computing 
capacities, what are the limits of the framework 
latency, scalability, and resource utilization? 

Answering these questions represents an 
important contribution to the optimization and real-
world application of the proposed visual analytics 
framework.  

Most of the existing works about the evaluation 
of the performance of fog-based systems used 
simulation tools notably iFogSim. While iFogSim is 
efficient for modelling and simulating fog computing 
environments, it may fall short in providing real-time 
observability. In addition, its main applicability is 
limited to experimental scenarios instead of real 
deployment conditions. On the other hand, as a 
relatively new paradigm, OTel stands out for its real-
time observability features providing more authentic 
operational insights. It facilitates the collection of 
telemetry data and offers a standardized approach for 
different programming languages. The OTel 
instrumentation capabilities provide a detailed 

evaluation of multiple components of distributed 
systems, ensuring a holistic view of performance 
metrics, traces, and logs.  

 
Figure 1: The architecture of Visual Analytics framework. 

The preference for OTel over iFogSim in the 
evaluation of the proposed framework stems from the 
requirement for accurate comprehension of the 
system behaviours in real world implementations. 

4 METHODS 

4.1 Instrumentation with OTel 
(Testbed) 

The implementation of holistic observability within 
the proposed framework implied the integration of 
OTel software development kits (SDKs) into the 
system codebase. This was accomplished by 
instrumenting the main components of the proposed 
fog-based architecture for capturing distributed 
traces, logs, and metrics. As shown in Fig.3, Tempo 
is a designated backend known for its scalability and 
cost-effective storage, it was used as a collector of the 
instrumentation traces from the codebase. While Loki 
was configured to aggregate and store logs, 
Prometheus was integrated to systematically provide 
metrics originating from Tempo traces. cAdvisor  
(Tolaram, 2023) was selected to acquire resource 
usage metrics on the container level within the 
Docker environment. This orchestrated integration 
required proficient visualization using Grafana for a 
comprehensive perspective on the behaviour of the 
evaluated visual analytics framework. 
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Figure 2: The structure of the testbed using OpenTelemetry instrumentation. 

The instrumentation points are strategically placed to 
capture critical traces of the data flow within the 
system. These instrumentation points and their 
functionalities are detailed as the followings: 

 IMU at Edge layer: This instrumentation 
point is used to evaluate the data acquisition 
from IMU sensors to the gateways. 

 MQTT at Edge layer: The instrumentation 
encompassed both publishing and 
subscribing functionalities. MQTT 
publishing is used to write spatiotemporal 
data in MQTT broker while MQTT 
subscription is used to connect the data 
stream with the fog layer. 

 Kafka at Fog layer: Kafka is deployed to 
facilitate efficient and scalable exchange of 
data streams. The instrumentation of Kafka 
includes Kafka producer and Kafka 
consumer. The functionality of Kafka 
producer is to transmit data acquired from 
the Edge layer to the Kafka Broker. On the 
receiving end, the Kafka consumer is 
employed to ingest the incoming data into 
the processing unit within the fog layer. 

 Processing Engine at Fog layer: The 
instrumentation within the processing node 
includes preprocessing, mapping, and 
postprocessing to capture relevant metrics. 

The Dash server at the monitoring layer displays data 
using callbacks with a predefined time interval. For 
displaying graphs that the human eye can comfortably 
perceive in real-time the common rate is ranging from 
16 to 24 frames per second, which will imply a 
minimum callback interval of 41.7 ms. For this 

reason, the latency in the dash server was not included 
in the evaluation of the framework. 

4.2 Key Performance Indicators (KPIs) 

In order to evaluate the efficiency of the proposed 
framework and to offer valuable information about its 
different aspects, the following KPIs were defined: 

 End-to-end latency: this metric is used to 
measure the time taken for a sensor’s data 
packet to flow through the entire Edge and 
Fog layers. OTel enables tracking the 
duration of each span in instrumentation 
points detailed above, 

 Processing time: reflects the duration taken 
by the execution of data processing in the 
processing engine of the evaluated system, 

 CPU usage: indicates the percentage of the 
capacity of the CPU being consumed by the 
FastAPI application including the different 
code components of the framework. 
Monitoring CPU usage is important for the 
determination of computing resource 
requirements, 

 Memory usage: Tracking memory usage 
reveals how much RAM is consumed by the 
system application. This metric helps for 
efficient memory management and the 
estimation of the required configurations for 
the optimization of the system performance, 

 Throughput: quantifies the rate in bytes at 
which the system handles the stream of 
medical spatiotemporal data. It helps to 
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evaluate the efficiency of the system in 
handling increased workloads. 

4.3 Experimental Setup 

For implementing the designed evaluation testbed, a 
dockerized deployment was used due to the 
microservice nature of the distributed framework 
(Fig. 4). Docker Desktop v20.10.21 was used on a 
Mac operating system machine (Core i7 processor 
with12GB of RAM, with 2.9 GHz frequency). Using 
Pycharm v11.0.13 and Python 3, the different 
containers were running within the same Docker 
Engine. Docker containers encapsulated each element 
of the evaluation structure including the evaluated 
system application based on FastAPI. The following 
tools were used for testbed containers:  
- HiveMQ broker v.4.21 for MQTT protocol, 
- Zookeeper and Kafka v7.0.1,  
- Prometheus v2.45.0,  
- Loki v2.8.3, 
- cAdvisor v0.48.0 
-Tempo v2.1.1 

The deployment using Docker Compose ensures 
the interconnection between the different containers 
reflecting real-world implementation. The gRPC 
(Google Remote Procedure Call) was used to export 
collected traces using tempo as a collector. The 
manual instrumentation was selected over the auto 
instrumentation due to the limitation of the available 
libraries for the components of the evaluated system.  

 
Figure 3: Docker deployment. 

The proposed framework was mainly designed to 
monitor remote neuromotor rehabilitation of post-
stroke patients. For this reason a dataset of stroke 
rehabilitation of the upper limb including 
spatiotemporal data of shoulder, elbow, and wrist 
during activities of daily living was used in the 

different test scenarios (Schwarz et al., 2020). Data 
were acquired using IMU sensors placed on the 
patient's upper limb as shown in Fig.5 (Averta et al., 
2021). 

To simulate real-world conditions, the data were 
looped and continuously ingested into the visual 
analytics system.  

 
Figure 4: Motion sensors attached to the patient’s body for 
data capture. 

The recommended minimum duration of a stroke 
rehabilitation session is one hour (Clark et al., 2017). 
For assessing the capabilities of the proposed 
framework in monitoring stroke rehabilitation 
sessions in real world conditions, five distinct 
configuration scenarios were set up for a duration of 
one hour each.  During these scenarios, a single fog 
node was used to comprehensively understand the 
limitations and capacities of each node. The results 
will reflect the requirements for scalability in terms 
of the number of fog nodes in each use case. By 
progressively increasing the volume of data flow and 
number of packets, these scenarios enable a thorough 
examination of the framework's ability to handle 
higher workloads. The configurations used for the 
evaluation of the framework are shown in Table 1. 
The packet size used for the different scenarios is 232 
bytes representing the size of a single spatiotemporal 
message. For real deployment conditions, the number 
of data streams is a multiplication of 3 which 
represents the number of sensors used to capture data 
from the patient’s upper limb.  

5 RESULTS 

The results of the evaluation of the performance of 
the proposed framework were displayed in a Grafana 
dashboard.  Different graphs representing the defined 
KPIs were generated using PromQL (Prometheus 
Query Language) and TraceQL queries.  
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Figure 5: The node graph of the tracing propagation across instrumented points. 

Table 1: Scenario Configurations (packet=232 bytes). 

Configuration Number of 
IoT streams 

Number of 
packets/second 

Config 1 9 600 
Config 2 18 1200 
Config 3 27 1800 
Config 4 36 2400 
Config 5 45 3000 

For a primary overview of the instrumentation, 
figure 6 shows the node graph of the trace 
propagation throughout the instrumented points 
including parent span, MQTT publish/Subscribe 
spans, Kafka Producer/Consumer spans and 
processing spans. These traces were taken after 
ingesting 3 spatiotemporal data packets (collected 
from the movements of shoulder, elbow and wrist) 
into the system in a single packet for each data type. 
The upcoming results represent the measurements 
made during the execution of the testing scenarios 
described in the previous section. 

5.1 Latency and Processing Time 

The end-to-end latency of the proposed system is the 
total time spans of the instrumented points of the 
codebase. It represents the time taken by a data packet 
to travel across the system nodes. For a baseline 
comparison, cloud-only implementation was 
evaluated in terms of latency in which the flow of data 
is transmitted to the Cloud instead of the fog node. 
The End-to-End latency of the proposed system (Ls), 
and End-to-End latency of Cloud-only (Lc) are 
respectively defined as the following: 

Ls = Lget_IMU +LMQTT_Publish +LMQTT_Subscribe +LKafka_Producer  

+LKafka_Consume Lc = Lget_IMU +LMQTT_Publish +LMQTT_Subscribe +LWrite_Cloud 
Where: 
Lget_IMU: Time to acquire IMU sensor data 
LMQTT_Publish: Time to publish data in MQTT broker 

LKafka_Producer: Time to send data to Kafka topic 

LKafka_Consume: Time to consume data from Kafka topic 

LWrite_Cloud: Time to write data in Cloud storage 

Figure 7 shows the End-to-End latency 
comparison between the proposed system and cloud-
only implementation for the five configurations. It is 
noticed from the results that the latency in the 
proposed system across all configurations is 
significantly lower than in the cloud-only 
implementation. For further investigations, the 
proposed system latency was recorded for a duration 
of one hour to evaluate the capacities of handling 
increasing workload with a low latency (Fig. 8). 
PromQL function histogram_ quantile was 
used by quantifying the 95th percentile latency across 
various spans within the tracing service for in-depth 
understanding. The resulting End-to-End latency and 
per span latency were visualized in the graphs 
displayed in Fig.8, they provide a detailed distribution 
of latency values across the system. Each span of each 
data packet is represented by a different colour to 
illustrate the different trends. This diagnostic 
approach provided a detailed perception of the 
performance of the system in terms of latency under 
different workload conditions. It is noticed that for the 
configurations 1 to 4, the latency remained 
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significantly low (less than 170 ms) and slightly 
increased with the workload. However, in Config 5, 
the latency starts scaling higher (up to 2 s). 

 
Figure 6: End-to-End latency comparison between the 
proposed system and cloud-only implementation. 

Using the PromQL query 
traces_spanmetrics_latency_bucket the 

processing time taken by each data packet was 
visualized in Grafana (Fig.8). Similar to the latency 
evaluation, the processing time remained reasonably 
stable (the average is less than 500 ms) for the four 
the configurations 1, 2, 3 and 4. However, the 
processing of data packets starts to slow down in the 
configuration 5 (1.5 s in average).  

5.2 Throughput and Resource 
Utilization 

The rate at which the data is successfully ingested 
through the framework is commonly used throughput 
in the performance evaluation of distributed systems.    
In this research work presented in this paper, the 
chosen throughput is the amount of data bytes 
handled per second. Across the five configurations, 
the throughput of the evaluated system was calculated 
using the PromQL query 
traces_spanmetrics_size_total. The 
results of the observations across the different 
scenarios are shown in Fig.9 in which different 
colours represent different data packets handled. The 
resource utilization metrics including CPU usage and 
memory usage were calculated using the following 
  

 
Figure 7: The End-to-end latencies, Per span latencies and processing time across the five configurations.  
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cAdvisor metrics: 
container_cpu_usage_seconds_total and 
container_memory_usage_bytes. The 
graphs displayed in Fig.9 show the percentage of the 
usage of CPU and Memory. Throughout the five 
scenarios, the CPU usage remained under 25%, while 
the memory usage did not exceed 24 MiB, which 
reflects a stability in the usage of resources by the 
system application. Table 2 Summarizes the 
diagnostics values of the system performance metrics 
across the five configurations. The included values 
are samples of the instrumented spans latencies and 
other metrics. 

6 DISCUSSION 

The performance evaluation of the proposed fog 
based visual analytics framework was carried out 
using OTel observability and performance metrics. 
The evaluation procedure provided deep 
understanding of the system’s behaviour and 
capacity for handling different workloads. The 

analysis of the latency results across different 
configurations showed a significant trend of reduced 
latency in the proposed system compared to the 
cloud-only implementation. This confirms that the 
proposed system operates with a low latency despite 
the increase of the workload. It was also noticed that 
the latency in the configuration 5 was relatively 
increased but it remained limited compared to the 
implementation based on cloud. The individual 
latency per span showed that the time in the data 
flow tends to evenly be consumed by the different 
spans. The processing time is overall reasonable 
despite the nature of the computing infrastructure 
used for the evaluation. This indicated that the edge 
and fog nodes requirements in term of 
implementation devices are similar. The throughput 
was consistently maintained across the four 
configurations, but it has relatively decreased in 
configuration 5. This showed that the system’s 
handling capacity decreased in the workload of the 
configuration 5. The results of CPU and memory 
usages highlighted the system's efficiency across all 
the defined configurations. 

 

 
Figure 8: The Throughput, CPU and Memory usages across the five configurations.  

Table 2: The metrics values across the five configurations. 
Config get_IMU 

ms 
MQTT_Publish 

ms  
MQTT_Subscribe 

ms 
Kafka_Producer 

ms 
Kafka_Consume 

ms 
Processing 

ms 
Throughput 

KiB/s 
CPU 

% 
Memory 

MiB 
Config 1 1.90 2.75 1.90 3.07 1.93 154 9.12 13.4 7.44
Config 2 1.91 7.08 1.91 6.78 1.95 168 18.5 16.4 15.6
Config 3 1.93 14.5 1.94 14.5 1.98 226 18.1 17.7 15.9 
Config 4 6.74 30.6 7.19 29.4 3.68 251 17.8 20.8 23.3
Config 5 30.8 57.1 61.2 90.4 59.3 289 9.8 24.1 23.9
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The findings stemming from the analysis of the 
results was useful for the formulation of the following 
answers to the research questions set in this research: 

RQA1: The direct data streaming from the fog layer 
to the monitoring layer without crossing the Cloud 
has significantly reduced the system latency 
compared to the Cloud-only approach. This 
perspective is evident across various configurations, 
showcasing the system's adaptability for real-time 
visualization. 

RQA2: With minimal computing capacities on a 
macOS laptop and being accommodated with the 
whole OTel evaluation structure, the proposed 
framework showed stable performance in latency, 
processing, and resource utilization across the 
configurations 1, 2, 3 and 4. Thus, a capacity for 
workload scalability. The minor limitations noticed in 
the configuration 5 highlighted the experimental 
setup constraint caused by using a single machine for 
the whole system deployment. Furthermore, the 
scalability and efficiency of the system can be further 
enhanced in a distributed deployment in real-world 
conditions. Previous approaches did not address 
performance measurement using OpenTelemetry. 
The framework developed in this research showed 
lower latency despite the increase in streams. This 
was confirmed by the significant difference in the 
obtained latency compared to the results recorded by 
(Asghar et al., 2021b) for analogous configurations: 
452 ms and 1082 ms vs 9.94 ms and 16.5 ms.  

It is also worth of mentioning that the proposed 
framework was evaluated by conducting an 
experiment design including a System Usability Scale  
(SUS). The experiment provided qualitative and 
quantitative data from a group of rehabilitation 
experts and showed a good usability of the proposed 
visual analytics framework. However, the details of 
this study can be included in this paper due to the 
limitation of space. 

7 CONCLUSIONS 

The main objective of this paper is to evaluate the 
performance of visual analytics RPM framework 
dedicated to neuromotor rehabilitation of stroke 
survivors. The proposed framework is based on fog-
computing with new approach of splitting the data 
stream into real-time and batch. The real-time stream 
skips the Cloud layer and flows directly to the 
monitoring layer, where the therapist interface for 
data visualization was included. This approach was 
evaluated in terms of latency and scalability. 

Common evaluation techniques of fog-based systems 
use simulation tools such as iFogSim. However, in 
this paper the evaluation was performed using 
observability and instrumentation through OTel. This 
unified opensource framework helps in generating, 
collecting, and transmitting telemetry data. Five 
configurations were used by escalating the workload 
for the evaluation of the proposed framework and for 
obtaining deep insight into the behaviour of its 
different components. The defined KPis for 
evaluation were End-to-End latency, throughput, 
processing time and resource utilization. The findings 
suggested that the latency of the proposed system was 
significantly low when compared to cloud-only 
implementation. The scalability of the system was 
reflected by its capacity of handling the increased 
workload across different configuration scenarios.  
Nevertheless, the minor limitations noticed in the 
fifth configuration highlighted the experimental 
setup's constraints imposed by using a single machine 
for the whole system deployment. In future work, the 
scalability and efficiency of the system will be further 
enhanced by the implementation of a distributed 
deployment in real-world conditions.  
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