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Abstract: In this paper, we compare several domain adaptation approaches in classifying water quality in reservoirs
using spectral data from satellite images to two optical parameters: turbidity and chlorophyll-a. This assess-
ment adds a new possibility in monitoring these water quality parameters, in addition to the traditional in-situ
investigation, which is expensive and time-consuming. The study acquired images from two data sources
characterized by different geographic regions (USA and Brazil) and verified the inference quality of the model
trained in the source domain on samples from the target domain. The experiments used two classifiers, OS-
CVM and ANN, for domain adaptation methods based on instances, features, and depth. The results suggest
domain adaptation is an efficient alternative when labeled data is scarce. Furthermore, we evaluate the need to
handle imbalanced data, a characteristic of real-world problems like the data explored here. Based on promis-
ing accuracy results, we show that applying domain adaptation techniques in databases with little data, such
as the Brazilian database, and without labeled data, is an efficient and low-cost alternative that can be useful
in monitoring reservoirs in different regions.

1 INTRODUCTION

Big public and private companies are responsible for
building large freshwater reservoirs to meet one or
more human needs, including water supply, flood con-
trol, and power generation. Regardless of its use, wa-
ter quality must be constantly monitored to ensure
safe consumption. However, monitoring water quality
in large reservoirs in situ involves many challenges,
such as high costs, travel across large areas, and dif-
ficulty accessing specific locations. Monitoring water
quality via remote sensing (RM) is a simple alterna-
tive to design and implement at a relatively low cost.
Optical water quality parameters such as turbidity and
chlorophyll can be determined by integrating machine
learning (ML) algorithms and satellite imagery (Zhu
et al., 2022; Li et al., 2022).

However, working with large volumes of labeled
data is one of the biggest challenges. Therefore, the
scientific community has sought alternatives to the
problem of scarcity of labeled data to enable and ex-
pand the use of techniques in these challenging sit-
uations (Masud, 2012), (Li et al., 2020), (Oza et al.,
2023). One of these techniques is Domain Adaptation
(DA), a concept in ML that refers to the ability to ap-

ply a trained model in a specific context to a different
context where data distributions may differ. DA can
be employed in classification tasks such as classifying
RM images (Tuia et al., 2016), (Zheng et al., 2022).

The scientific community discusses the evalua-
tion of water quality parameters in satellite images
through ML techniques (Wagle et al., 2020; Krish-
naraj and Honnasiddaiah, 2022; Tian et al., 2023),
employing temporal analysis approaches, parameter
estimation through regression and anomaly detection
methods. Other works investigated the application
of DA in RM and other applications (Elshamli et al.,
2017; Tuia et al., 2021; Luo and Ji, 2022). That said,
a significant contribution of this article is a new study
in the area, which applies DA techniques for assessing
water quality in satellite images.

The hypothesis is: if the labeled data from the
image database (USA) have different probability dis-
tributions but with the same characteristics of other
reservoirs in other regions, such as the Três Marias
reservoir, Minas Gerais, Brazil. Is it possible that they
could be used to classify water quality parameters in
such different regions? This work proposes a new
methodology for classifying water quality parameters
to answer this hypothesis. For that, two optical wa-
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ter quality parameters were chosen for the analysis:
chlorophyll-a (µg/L) and turbidity (NTU), and seven
DA techniques, MDD (Zhang et al., 2019), fMMD
(Uguroglu and Carbonell, 2011), KMM (Huang et al.,
2006), DANN (Ganin et al., 2016), WDGRL (Shen
et al., 2018), CDAN (Long et al., 2018), KLIEP
(Sugiyama et al., 2007) were tested in two classi-
fiers: One Class Support Vector Machine (OCSVM)
(Schölkopf et al., 1999) and Artificial Neural Net-
works (ANN) (Mahmon and Ya’acob, 2014).

The main contributions of this paper can be sum-
marized based on three significant aspects: (i) We
propose a new methodology to classify water qual-
ity parameters (turbidity and chlorophyll-a) in satel-
lite images, adding DA techniques. The methodol-
ogy uses two different classifiers to classify turbid-
ity and chlorophyll-a values, OCSVM and ANN, and
we will compare them to determine the methodo-
logy’s applicability; (ii) The methodology used the
American reservoir database to classify turbidity and
chlorophyll-a values through DA and then apply DA
to classify the Tres Marias data set. Promising ex-
perimental results should motivate the application of
the methodology to different reservoirs regardless of
geographic location; and, (iii) We have employed the
SMOTE method to deal with the problem of imbal-
ance between classes through the comparative anal-
ysis of the accuracy values with and without DA in
both scenarios: using data balanced by the SMOTE
method and unbalanced data.

2 BACKGROUND AND RELATED
WORK

This study used and evaluated different DA tech-
niques to solve the problem of classifying water qual-
ity parameters in reservoirs using RM image data.
This section briefly summarizes the DA notation and
its primary division.

We use Ds to denote the source domain and Dt to
denote the target domain. The samples in the set and
their corresponding labeling in Ds are given by Xs =
{xs

1, ...,x
s
ns} and Ys = {y1,y2, ...,yns} with xs

i ∈ RD and
ys

i ∈ {1,2, ...,C}, where ns is the number of labeled
samples, D is the dimensionality and C is the number
of classes. In this work, the problem of classifying
turbidity and chlorophyll-a parameters falls under un-
supervised DA, in which there is no labeling in the tar-
get domain. The target domain will have an unlabeled
database Xt = {xt

1, ...,x
t
nt} where nt is the number of

target samples (Peng et al., 2022).
Since the probability distribution between the

source domain and target domain is different, the la-

Table 1: A brief summary of the existing works on DA
methods for the Classification of Remote Sensing Data.

Author Application Method
(Zhang et al., 2022), Road segm. Deep DA

(Ji et al., 2021) Land Cover Class. Deep DA
(Liu and Qin, 2020) Land Cover Class. Feature-based

(Yan et al., 2022) Various Feature-based
(Yan et al., 2018) Scene class. Instance-based
(Liu and Li, 2014) Land Use class. Instance-based

bel space of the source domain and the label space of
the target domain are also different. The idea is to
create a new representation space with the features of
the data that belong to the source class and that, at the
same time, exist in the target class. In this way, a clas-
sifier will be trained on the labeled source data so that
it can later be safely applied to the unlabeled target
data. DA methods can be divided into traditional shal-
low methods and, more recently, deep DA methods.
Traditional methods can be based on instances, fea-
tures (both used in this work), and classifiers to mini-
mize distances between domains. Deep DA methods
use CNN, autoencoder, or adversarial to reduce the
gap between domains (Wambugu et al., 2021), (Peng
et al., 2022). Table 1 summarizes the works with the
DA methods characterized by traditional and deep DA
methods observed in RM problems.

The instance-based DA methods handle shifts be-
tween data distributions, minimizing target risk using
the source’s labeled data. In this type of adjustment,
only the marginal distributions of the source or tar-
get samples are considered to align the distribution of
the domains. In the feature-based approaches the ba-
sic idea is to transform source and target data into a
feature space, mapping so that the data distribution
is similar. In other words, the method learns a trans-
formation that extracts the representation of invariant
features across domains. Then, the method minimizes
the gap between domains in the new representation
space in an optimization procedure while preserving
the underlying structure of the original data. In this
case, adaptation is performed by the joint extraction
of features, typically based on subspace and transfor-
mation. The deep learning DA adds adaptation layers
to an original deep network architecture to perform
source-target transformation or adopts an adversarial
learning strategy to minimize cross-domain discrep-
ancy (Farahani et al., 2021), (Peng et al., 2022).

3 MATERIALS AND METHODS

Figure 1 describes the developed methodology. The
basic idea is to assign labels to the data from the struc-
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tured databases (USA and Três Marias) according to
the binary classification criteria defined for the turbid-
ity and chlorophyll-a parameters. Using Google Earth
Engine services, this labeled data is merged with the
reflectance values of the satellite image pixels (Fig-
ure 1 - 1). Next, the values are filtered to avoid neg-
ative data quality due to spectral noise, clouds, and
shadows (Figure 1 - 2). Then, the database is divided
into the source domain and target domain according
to the criteria established for each experiment (Figure
1 - 3). It is essential to mention that the target domain
does not use labeled data. So, our experiments are
classified as unsupervised, where the source domain
has labeling data and the target domain does not. An
optional step is added to handle the imbalanced data
issue (Figure 1 - 4). Subsequently, the two classifiers,
OCSVM and ANN, are trained without DA and with
the 7 DA methods (Figure 1 - 5). Finally, the result of
each experiment is compared to analyze the applica-
bility of the methodology (Figure 1 - 6).

3.1 Database

The structured database used in this research rep-
resents the dependent variables (which will be pre-
dicted/estimated). The parameters explored were tur-
bidity and chlorophyll-a: (A) In situ campaigns (Três
Marias, Brazil, shown in Figure 2a). The in situ water
sample collection points are red in Figure 2a. Wa-
ter quality parameters were sampled through in situ
campaigns carried out between 2019 and 2022, in
periods of flood and drought, distributed along the
Três Marias Reservoir—sampling objects: physical-
chemical parameters of surface water. (B) United
States of America (illustrated in Figure 2b and 2c) -
The US National Water Quality Monitoring Program
provides a long-term historical basis of physicochem-
ical parameters of water quality1.

It was necessary to define standard measurement
units for each evaluated water quality parameter: µg/l
for chlorophyll-a and NTU for turbidity.

3.2 RM Data Acquisition

Spectral data from the Sentinel-2 satellite were used
to develop the methodology. The applied data under-
went atmospheric correction (surface reflectance) and
orthorectification processes, and the spectral bands
were resampled (when necessary) to a spatial reso-
lution of 20 m. This resolution was defined because
it presented a lower level of interference/noise during
the statistical analysis of the reflectance of pixel val-
ues. In order to mitigate harmful data quality aspects

1Resource access: https://www.waterqualitydata.us/.

arising from spectral noise, clouds, and shadows, a
combination of filters, indices, and auxiliary proper-
ties of the satellite image was applied: cloud detection
masks (MSK CLDPRB and QA60); snow/ice masks
(MSK SNWPRB); pixel classification, SCL (Scene
Classification); Normalized Difference Water Index
(NDWI); Snow Detection Index, Non-Binary Snow
Index for Multi-Component Surfaces (NBSI)2.

An algorithm in Python, CaptGeo, was developed
to extract the reflectance values of pixels from the
spectral bands of satellite images. The algorithm
computes and extracts pixel values from the Google
Earth Engine cloud platform. The application re-
ceives as input data a structured file with the measure-
ments of a parameter (turbidity, chlorophyll-a) and
their respective geographic coordinates, from which
the location and reflectance value of the pixel corres-
pond to each one of the spectral bands available in
the satellite image. After processing, a structured file
with the turbidity and chlorophyll-a data and the val-
ues of the spectral bands referring to each geographic
coordinate corresponds to the data that will be used as
input in the ML models.

3.3 Experimental Results

Google Colab was used to implement the methodo-
logy, with the Python 3.6 programming language
and the Scikit-learn and Adapt libraries (de Mathe-
lin et al., 2021), (Pedregosa et al., 2011), (Bisong,
2019). The metrics considered to evaluate the results
obtained in adapting the domain were accuracy and
balanced accuracy. The neural network used has two
intermediate layers with ten neurons each. The output
layer is a sigmoid function; it will set class 0 or 1 de-
pending on the threshold. Initially, the US database
was chosen to classify turbidity and chlorophyll-a
values. For this, the database was divided into two
groups: longitudes at 96.9915° W (named here by
first division - FD, illustrated in Figure 2b) and the
second latitude at 36.9915° N (named now second di-
vision - SD, showing in Figure 2c). We obtained the
two databases, FD and SD, based on the longitude and
latitude values. In this way, testing two antagonis-
tic scenarios/environments with different biomes was
possible.

Both datasets FD and SD were divided again to
create the source domain and target domain; the two
classifiers (OCSVM and ANN) were used for training
the source domain, and the target domain was used
for testing, without using labeling data. The binary

2For a detailed explanation of the bands, the number of
pixels, and the filters used, please consult our previous work
in paper (Souza et al., 2023)
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Figure 1: Overview of the proposed Domain Adaptation pipeline.

(a) Map of reservoir data col-
lected from the Três Marias,
Brazil.

(b) USA map of reservoir data
divided by FD.

(c) USA map of reservoir data
divided by SD.

Figure 2: Brazil and USA reservoir datasets.

classification was divided based on a value defined
from a series of studies related to legal standards es-
tablished within the scope of water resources manage-
ment 3. The binary division was established as fol-
lows: i) Turbidity - Class 0, values below 25 and Class
1, values above 25 NTU; ii) Chlorophyll-1 - Class 0,
values below 11.03 and Class 1, values above 11.03
µg/L. In this work, binary classification proved to
be more accurate, according to the results discussed
in the following subsection. Furthermore, for thresh-
olds below 25 NTU, the separation of pixels becomes
more complex as the reflectance values become in-
creasingly similar; therefore, it was observed that the
band variation is sensitive to multiclass classification.

After the results of the experiments observed in
the US database, new experiments were designed for
the Brazilian database. The fundamental question to
be answered is the applicability of DA methods in
classifying water quality parameters in reservoirs with

3https://www.epa.gov/dwreginfo/drinking-water-
regulations; https://www.irishstatutebook.ie/eli/2014/si/122/

a labeled database to other reservoirs with little or no
labeled data. The experiments below seek to answer
this question, especially for geographic differences.

3.3.1 United States Subdivision

Table 2 describes the latlong division of the United
States, the sample number of Source and Target Do-
main, and the sample numbers according to the class
division for turbidity and chlorophyll-a values.

Table 34 describes the balanced accuracy values
for 25 NTU (Nephelometric Turbidity Units) and
11.03 µg/L divided by regions according to the men-
tioned above. The first classifier tested in this case
was the OCSVM without DA. Then, the same classi-
fier was used to train the database with the three dif-
ferent DA methods (KLIEP, KMM - instance-based,

4The red color in the table indicates that the classifica-
tion without DA obtained higher accuracy values than us-
ing DA (negative transfer). The green color indicates that
the classification with DA obtained a higher accuracy value
than without DA (positive transfer).
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Table 2: United States longitude and latitude divisions - turbidity and chlorophyll-a values.

Parameter Long/Lat Source Target Class 0 Class 1 NTU/µg/L
Turbidity FD 1637 225 1533 104 25
Turbidity SD 1347 515 1243 104 25
Chlorophyll-a FD 4029 465 2517 1512 11.03
Chlorophyll-a SD 2186 2308 1277 909 11.03

and fMMD - feature-based). The balanced accuracy
values described in Table 3 show that DA improved
accuracy for all experiments. We can observe that the
Kmm, and fMMD methods stand out when classify-
ing the turbidity parameter. The Kernel Mean Match-
ing - KMM method is an instance-based sample bias
correction that minimizes the maximum mean dis-
crepancy (MMD) between the source and target do-
mains. The algorithm corrects for the difference be-
tween the input source and target distributions by pre-
weighting the source instances to minimize the differ-
ence between the training/test point means in a Repro-
duction Kernel Hilbert Space (RKHS) (Huang et al.,
2006). The fMMD method is feature-based, using in-
put features to minimize the maximum mean discrep-
ancy (MMD) between the source and target data.

Table 3 also describes the classification by RNA
without DA and by RNA and four DA methods
(DANN, WDGRL, MDD, and CDAN). The high-
light of these experiments was the WDGRL method
that works on adversarial neural network architec-
tures. The discriminator approximates the Wasser-
stein distance between the encoded source and target
distributions based on WGAN (Wasserstein Adver-
sarial Generative Network) (Arjovsky et al., 2017).
For the chlorophyll-a results (Table 3 on the right),
we can highlight the values obtained by KMM with
OCSVM, DANN, and CDAN with ANN. The DANN
method aims to find a new representation of the in-
put features in which any discriminator network can-
not distinguish the source and target data. This new
representation is learned by a network of encoders
in an adversarial manner. A task network is learned
in the coded space parallel to the encoder and dis-
criminator networks. In the CDAN method, the dis-
criminator is conditioned on the prediction of the task
network for source and target data. Thus, the focus
is on the source-destination correspondence between
instances belonging to the same (de Mathelin et al.,
2021) class. For both OSCVM and ANN, the results
suggest that applying DA to classify the chlorophyll
parameter is more appropriate, thus ensuring a better
response from the classifier with unbalanced data and
without labeling in the target domain.

The table 4 describes the balanced precision val-
ues per class using the Synthetic Minority Over-
sampling (SMOTE) technique (Chawla et al., 2002).

Smote synthesizes new samples based on existing
samples; therefore, the new data generated, closer to
the real data, promotes balance in the class. The ac-
curacy values described in Table 4 show that apply-
ing DA has the highest accuracy compared to classi-
fication without DA. Only in two scenarios using the
ANN classifier can we observe the presence of neg-
ative transfer for turbidity and chlorophyll-a. Nega-
tive transfer occurs when the application of DA tech-
niques impairs classifier performance. Still, it is pos-
sible to highlight the accuracy values of the TrAd-
aBoost, KMM, and KLIEP methods in the classifica-
tion by OSCVM DANN and CDAN again for ANN.
The KLIEP method, also an instance-based method,
corrects for the difference between the input distri-
butions of the source and target domains through a
reweighting of the source instances that minimizes the
Kullback-Leibler divergence between the source and
target distributions (Wen et al., 2015).

So far, results indicate an advantage when apply-
ing DA to both classifiers to classify turbidity and
chlorophyll-a values in reservoirs, surpassing the ac-
curacy value without DA in most experiments. How-
ever, for balanced data by Smote, deep-based methods
obtained negative transfer in two scenarios. For the
rest of the experiments, it was possible to observe that
the KMM and fMMD method got promising results in
most OSCVM experiments, followed by DANN and
CDAN by ANN.

3.3.2 Três Marias Reservoir

The following experiments used the complete US
database as the source domain (without dividing it by
longitude and latitude) and, database from the Três
Marias reservoir, Minas Gerais, Brazil, was used as
the target domain. An illustration of chlorophyll-a
data in 2 dimensions is shown in Figure 3a before the
DA method application. Source data is shown in blue
(USA), and target data is shown in red (Três Marias).
Figure 3b illustrates the distribution of features after
applying the instance-based method. Figure 3c af-
ter applying the feature-based method and Figure 3d
after applying the deep-based DA method. Interest-
ingly, the distribution resulting from the deep method
is similar to that from the feature-based. This is be-
cause deep-base methods also use strategies that in-
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Table 3: Turbidity and Chlorophyll-a - USA division - Unbalanced Data - Balanced Accuracy.

Method Parameter FD SD Parameter FD SD
OCSVM

Turbidity

0.695206 0.637180

Chlorophyll-a

0.770352 0.713083
Kliep 0.676338 0.657131 0.762072 0.719558
KMM 0.752523 0.656824 0.788668 0.709516
fMMD 0.704640 0.711570 0.752960 0.695959
ANN 0.717694 0.702136 0.792831 0.809472

DANN 0.676338 0.718839 0.812211 0.830679
WDGRL 0.771391 0.715593 0.812165 0.807481

MDD 0.661090 0.657131 0.774838 0.823180
CDAN 0.654563 0.697807 0.803469 0.837994

Table 4: Turbidity and Chlorophyll-a - USA division - Balanced Data by SMOTE - Accuracy.

Method Parameter FD SD Parameter FD SD
OCSVM

Turbidity

0.831111 0.895146

Chlorophyll-a

0.752688 0.729203
Kliep 0.848889 0.916505 0.726882 0.709272
KMM 0.871111 0.904854 0.765591 0.790295
fMMD 0.822222 0.897087 0.769892 0.744367
ANN 0.826667 0.842718 0.817204 0.830589

DANN 0.848889 0.834951 0.804301 0.816724
WDGRL 0.813333 0.831068 0.800000 0.810225

MDD 0.831111 0.833010 0.804301 0.818891
CDAN 0.844444 0.819417 0.808602 0.832322

vestigate standard features with similar behavior con-
cerning the task in the source and target domains.
Then, generating a new feature representation to cor-
rect the difference between the source and target dis-
tributions. In Figure 3b, however, based on instances,
it is possible to notice the attempt to reweight the data
to correct the difference between the source and target
distributions.

Table 5 describes the balanced accuracy values
for Turbidity classification using the US source and
Três Marias target domains. We can observe in Table
5 the good results of the balanced accuracy, mainly
considering the KMM and fMMD methods. This
result was expected, as these method have already
shown promising results in the previous experiments,
as mentioned earlier. These values prove the advan-
tage of using DA to classify turbidity in different
reservoirs, even in distant geographical positions.

Table 5 also describes the balanced precision val-
ues for the classification of chlorophyll-a considering
the limit of 11.03 µg/L. This limit value was cho-
sen based on the literature information described pre-
viously. The accuracy values of the KMM, fMMD,
and WDRGL methods suggest that using DA for the
Três Marias database with little data available is better
than without DA. We also improved the classifier’s re-
sponse for the classification of chlorophyll-a. There-
fore, by analyzing all the experiments carried out, it
is possible to answer the question of the applicabil-

Table 5: Turbidity (T) and Chlorophyll-a (C) - Três Maria’s
Target - Balanced Accuracy.

Method Parameter 25 Parameter 11.03
OCSVM T 0.7312 C 0.5963
KLIEP T 0.5588 C 0.5342
KMM T 0.7325 C 0.6310
fMMD T 0.7620 C 0.6234
ANN T 0.8208 C 0.7515

DANN T 0.8488 C 0.6932
WDGRL T 0.8194 C 0.7581

MDD T 0.6149 C 0.7378
CDAN T 0.8181 C 0.6960

ity of DA in data from labeled global reservoirs to
other reservoirs without labels. In particular, we can
consider the results obtained using AD in databases
with little data promising. This is the case with the
Três Marias database, which has scarce labeling data
attesting to the model’s applicability. A simple al-
gorithm can be implemented and made available to
Brazilian reservoir managers. The idea is to create an
algorithm to classify turbidity and chlorophyll-a val-
ues, automatically choosing the one with the highest
accuracy values. This ensures that the algorithm al-
ways selects the method with the highest accuracy
values for each classification, whether turbidity or
chlorophyll-a.
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(a) Before DA. (b) Instance based. (c) Feature based. (d) Deep based.

Figure 3: Chlorophyll-a data distribution by t-SNE Analysis.

4 CONCLUSION

This study presented the performance of seven do-
main adaptation techniques (Kliep, KMM, fMMD,
DANN, WDGRL, MDD, and CDAN) in classifying
water quality in reservoirs using spectral data from
satellite images to two optical parameters: turbidity
and chlorophyll-a. We used the US database as the
target domain to classify turbidity and chlorophyll
values from the Três Marias database, which has lit-
tle and unlabeled data. The hypothesis analyzed was
whether labeled data from the image database (USA)
with different probability distributions but with the
same characteristics from other reservoirs in other re-
gions (Brazil) could be used to classify water quality
parameters in reservoirs using DA. To this end, we
use two classifiers, OSCVM and ANN, and data aug-
mentation by the SMOTE method to solve the class
imbalance problem.

We observed that in most of the DA techniques
tested, the individual performance of each one was
good enough in at least one scenario. Trad-aBoost,
KMM, and fMMD show promising and regular re-
sults for most experiments using the OCSVM classi-
fier. They were followed by CDAN, DAN, and WD-
GRL using the RNA classifier. However, the RNA
classifier presents the problem of negative transfer in
some cases. Still, our experimental results indicate
that using DA to classify turbidity and chlorophyll-a
parameters in reservoirs is a promising solution. With
this, we show that using large trained databases to
classify databases with unlabeled and sparse data with
the help of DA is possible. Monitoring water qual-
ity in large reservoirs could benefit from using remote
sensing images as an efficient and low-cost alternative
that will contribute to in situ monitoring in regions
with little data or difficulty obtaining.
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