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Abstract: This paper describes an evolutionary visualization method that performs edge bundling during the execution 
of the genetic algorithm. There are several node layout algorithms and edge bundling, however, there are no 
methods considering both algorithms simultaneously. This paper proposes an algorithm to optimize the fitness 
function of GABEB, which is genetic algorithm-based edge bundling, and Zhang’s node layout 
simultaneously. The experiments for the sample graphs show the improved result from the viewpoints of 
several evaluation criteria. 

1 INTRODUCTION 

The graph, consisting of edges representing 
connections between nodes, is used to visually 
represent various relationships among data 
represented as nodes, such as in aviation charts or 
relation diagrams (Saga 2012). However, as the scale 
and complexity of the graph increase, it becomes 
challenging for users to comprehend the relationships 
between nodes, leading to visual clutter problem. To 
address such issues, various visualization techniques 
have been proposed over time, including force-
directed graph drawing (Kamada, 1989) and 
compound graph layout (Sugiyama 1991)(Dogrusoz 
2009). 

In recent years, edge bundling has been proposed 
as a method to solve visual clutter problem. Edge 
bundling involves spatially grouping edges according 
to certain rules, reducing the visual complexity of the 
graph and making it easier to visually grasp the 
connection relationships between nodes. 

Various edge bundling techniques have been 
proposed, and their effectiveness has been 
demonstrated (Lhuillier 2017). On the other hand, in 
recent years, stochastic optimization approaches such 
as Genetic Algorithms (GA) have also been 
implemented to address these problems. The 
advantages of using such GA approaches include the 
potential for obtaining visualization results not 
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anticipated by humans and the ability to apply 
stochastic optimization methods regardless of the 
continuity of the visualization problem space.  

The studies like Ferreira et al. (Ferreira 2018) and 
Saga et al. (Saga 2020) have proposed edge bundling 
using GA, receiving certain evaluations. While 
various edge bundling techniques have been proposed, 
those that include the process of adjusting node 
positions in the edge bundling process have been 
rarely suggested. When the process of adjusting node 
positions is not included in edge bundling techniques, 
even if the method effectively bundles edges before 
application, the visualization effects of edge bundling 
may not be fully realized due to the inappropriate 
positions of nodes in the graph before the application 
of the method, especially in cases with a high number 
of edge crossings. 

Considering the aspects, Meikari et al. (Meikari 
2022) proposed an initial approach to simultaneously 
optimize node layout and edge bundling using a 
genetic algorithm. However, the solution to the 
algorithm is the position of the nodes and the 
combination of edges for bundles, and actual edge 
bundling takes place after the completion of the 
genetic algorithm. Therefore, the process of bundling 
edges and node layout can be considered separate. 

In this paper, our goal is to propose an 
evolutionary visualization method where node layout 
and edge bundling are optimized simultaneously. 
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Additionally, we aim to validate the visualization 
effects of this method by running the implemented 
program and comparing the obtained results with 
those of the methods by Meikari’s method.  

2 RELATED WORKS 

2.1 Edge Bundling 

Edge bundling is a graph visualization technique that 
involves spatially grouping edges within a graph 
according to certain rules. This bundling aims to 
reduce the visual clutter of the graph, making it easier 
to visually comprehend the connection relationships 
between nodes connected by edges. Figure 1 
illustrates an example of a graph with edge bundling. 

Originating in 1989 with the simplification of 
graph edges through spatial concentration (Newbery 
1989), edge bundling has evolved into various 
methods such as Hierarchical Edge Bundling (Holten  
2006) and others, demonstrating its effectiveness 
(Telea, 2010) (Ersoy, 2011) (Hurter, 2012) (Cui, 
2008) (Lhuillier, 2017). Another well-known method 
is Force-Directed Edge Bundling (FDEB), proposed 
by Holten et al. (Holten, 2009). FDEB employs a 
mechanical approach, modeling edges as springs that 
attract each other. It evenly allocates splitting points 
along the edges, calculates the magnitude and 
direction of forces acting on each splitting point based 
on the distance between points and the geometric 
similarity between edges, and forms smooth curves 
through iterative movements of splitting points and 
information updates. 

 
Figure 1: Edge Bundling. 

2.2 Edge Bundling Using Genetic 
Algorithm 

In recent years, probabilistic optimization approaches 
such as Genetic Algorithms (GA) have been 
implemented. The benefits of using such approaches 
include the potential to obtain visualization results not 
anticipated by humans and the ability to apply 
stochastic optimization methods regardless of 
whether the visualization problem space is 
continuous. Additionally, there is an implementation 
advantage in terms of ease. 

Evolutionary Edge Bundling (EEB), proposed by 
Ferreira et al. (Ferreira 2018), is an edge bundling 
method that utilizes genetic algorithms to determine 
bundles (sets of edges) that should be grouped 
together. Therefore, the process of bundling edges is 
not included in the genetic algorithm's process, and 
the actual bundling process uses FDEB after the 
genetic algorithm concludes. The graph is evaluated 
based on the similarity in angle and length of edges 
within bundles that should be maximized and the 
number of bundles that should be minimized. 

Evolutionary Node Layout and Edge Bundling 
(ENLEB), proposed by Meikari et al. (Meikari 2022), 
integrates EEB and node layout methods into a single 
genetic algorithm. This was the first approach aiming 
to simultaneously optimize edge bundling and node 
layout in evolutionary visualization. Therefore, it 
allows obtaining visualization effects considering 
both edge bundling and node layout. The solution 
obtained by ENLEB includes the positions of nodes 
and bundles of edges, and similar to EEB, the process 
of bundling edges using FDEB occurs after the 
genetic algorithm concludes. Hence, the processes of 
node layout and edge bundling are executed 
separately. 

Genetic Algorithm Based Edge Bundling 
(GABEB), proposed by Saga et al. (Saga 2020), is an 
edge bundling method that uses genetic algorithms by 
placing control points on edges and optimizing their 
positions. Control point movements are treated as 
genes, and genetic operations such as crossover and 
mutation are applied. The evaluation of individuals 
includes four aesthetic criteria related to edge 
bundling: Mean Edge Length Difference (MELD), 
Mean Occupation Area (MOA), Edge Density 
Distribution (EDD) proposed by Saga et al.(Saga 
2016), and Path Quality proposed by Cui et al. (Cui 
2008).  

2.2.1 Mean Edge Length Difference 

Mean Edge Length Difference (MELD) is a criterion 
to express the difference from the original edges after 
edge bundling.  A smaller change of edge lengths 
indicates superior edge bundling because of over-
bundling, whereas a large change often leads to a loss 
of the meaning of the original network. MELD is 
calculated as 𝑀𝐸𝐿𝐷 ൌ ଵ௡∑ |𝐿ᇱሺ𝑒ሻ − 𝐿ሺ𝑒ሻ|௘∈ா   (1)

where n is the number of edges, E is the edge set, and 
L(e) and L’(e) are the lengths of edge e before and 
after edge bundling, respectively. In our approach, we 
aim to minimize the MELD. 
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2.2.2 Mean of Occupation Area 

Mean of Occupation Area (MOA) indicates the 
degree among the compressed areas before and after 
edge bundling. Based on the idea that better bundling 
can compress the area occupied by the edges, MOA 
is calculated as 𝑀𝑂𝐴 = 1𝑁 อራ𝑂ሺ𝑒ሻ௘∈ா อ (2)

where N is the number of total areas, O(e) is the set of 
areas occupied by edge e based on an occupation 
degree (we use 5% of unit area), and | | indicates the 
number of elements contained by a set. Minimising 
the MOA is one of our optimization goals.  

2.2.3 Edge Density Distribution 

Edge Density Distribution (EDD) is rooted in the idea 
that a better edge bundling method can gather edges 
within a unit area and that the density per unit is high. 
EDD is calculated as 

 𝐸𝐷𝐷 = ଵ|௉|∑ ሺ𝐻ሺ𝑝ሻ − 𝐻ሻଶ௣∈௉   (3)
where P is a set of pixels, H(p) is the number of edges 
pathing pixel p, and H is the average of H(p). We aim 
to maximise the EDD.  

2.2.4 Path Quality 

Path Quality (PQ) expresses the degree of zigzag. The 
lower the PQ, the better the edge bundling. PQ is 
calculated by the summation of angle differences 
between neighbours as 

with 

∆௜= ቐ 𝐴௜ − 𝐴௜ିଵ |𝐴௜ − 𝐴௜ିଵ| − 2𝜋 2𝜋 + |𝐴௜ − 𝐴௜ିଵ|      if − 𝜋 < |𝐴௜ − 𝐴௜ିଵ| < 𝜋if |𝐴௜ − 𝐴௜ିଵ| > 𝜋if |𝐴௜ − 𝐴௜ିଵ| < −𝜋  (5)

and 𝛾௜ = ቄ0 1       if signሺ∆௜ሻ = signሺ∆௜ିଵሻif signሺ∆௜ሻ ≠ signሺ∆௜ିଵሻ (6)

, where m is the number of segments divided by 
control points+1, and Ai is the angle between the 
original edge and the segment edge. In our GA, we 
try to maximize PQ. We use the above four criteria 
separately and perform multi-objective optimization. 

3 PROPOSED METHODS 

In this paper, we address the issue present in EEB, 
where the processes of edge bundling and node layout 
were executed separately. We propose an 
evolutionary visualization method that 

simultaneously performs edge bundling and node 
layout while optimizing both using a genetic 
algorithm. To achieve this, we integrate the genetic 
algorithm-based edge bundling method GABEB and 
Zhang et al.'s node layout method (Zhang 2005) into 
a single genetic algorithm. 

The reason for using GABEB is that it operates as 
a genetic algorithm solely for manipulating control 
points on edges, without considering the impact on 
node positions. This makes it less likely to encounter 
problems when simultaneously performing node 
layout and edge bundling. In the context of our 
method aiming to perform edge bundling and node 
layout concurrently, GABEB is well-suited for 
conducting edge bundling within the genetic 
algorithm.  

Additionally, we choose Zhang et al.'s node layout 
method for two main reasons. First, it is a genetic 
algorithm-based node layout method. Second, by 
adjusting the weights of the evaluation function in 
Zhang et al.'s method, our proposed method can more 
easily reflect elements such as the number of edge 
crossings that need improvement in the graph 
evaluation, especially in the node layout part. 

3.1 The Process of Genetic Algorithm 

Figure 2 illustrates the flow of the genetic algorithm 
for this method. The genetic algorithm of this method 
repeats the process of crossover, mutation, joining, 
individual evaluation after generating the initial 
individuals, and generation update until the 
termination condition is satisfied. When a control 
point is subject to crossover or mutation, if the control 
point is bound to one of the other control points, it is 
unbound to prevent an anomaly in the information on 
the movement of the control point.  

 
Figure 2: Process of Generic Algorithm. 

 

Generate Initial Population

Evaluate population

Crossover, Mutation

Join Control Points

Update Generation

Unjoin Control Points

𝑃𝑄 = ෍൭−෍𝛾௜|∆௜|௠
௜ୀଷ ൱௘∈ா  (4)
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3.2 Chromosomes 

Figure 3 shows an image of the individual 
representation of the method. Based on GABEB, the 
individual representation incorporates the concept of 
control points in FDEB. In FDEB, edges are equally 
divided by the number of control points, and edge 
bundling is performed by moving control points 
based on calculations based on mechanical rules such 
as the distance between control points. In contrast, 
GABEB treats the amount of movement of each 
control point as a gene, which represents each 
individual. As in FDEB, the original positions of the 
control points are assumed to be equally divided by 
the number of control points. In addition to the 
information on the amount of control point movement 
for edge bundling, this method also treats the node 
position of each edge as a gene for the purpose of 
node layout.  

 
Figure 3: Genetic Representation. 

3.3 Crossover 

The crossover is performed with respect to the 
operation on the position of a node and the amount of 
movement of the control point of an edge. For the 
former, a simple crossover is performed, in which the 
position of one node is exchanged between two parent 
individuals, and an inversion, in which the position of 
a node of one parent is manipulated. For the latter 
operation on the mobility of the control point, we 
perform the blended crossover (BLX-α) (α=0.5) 
(Eshelman 1993). 

The inversion of this method is an operation to 
change the position of a node by numbering the 
collected positions of the nodes at both ends of an 
individual edge, and then inverting the numbers 
within a randomly set interval of numbers. Let S be 
the list of node positions before applying inversion, S’ 
be the list of node positions after applying inversion, 
i to j be the interval of node positions to be 
manipulated, and Posi be the collected node position 
information, the operation by inv ersion is as in 
quations (7) and (8). After the crossover is applied to 
the position of a node, the change in the position of 
the node is reflected in the entire gene. Each 

crossover is assigned an independent crossover 
probability. 

 

 (7)𝑆ʹ = ሺ𝑃𝑜𝑠1 , . . . ,𝑃𝑜𝑠௜ି1,𝑃𝑜𝑠௝ ,𝑃𝑜𝑠௝ି1, . .,  𝑃𝑜𝑠௜ା1,𝑃𝑜𝑠௜ ,𝑃𝑜𝑠௝ା1, . . . ,𝑃𝑜𝑠௡ሻ 
(8)

3.4 Mutation 

Mutation involves two genetic manipulations to 
change the position of the node as indicated by the 
node layout method of Zhang et al. and one genetic 
manipulation to change the amount of movement of 
the control point. 

The mutations shown by Zhang et al. include non-
uniform mutation, in which the shift of node position 
becomes smaller with each generation, and single-
vertex-neighbourhood mutation, in which the 
position shifts within a circular range from the 
original node position. 

Let Posnx be the X-coordinate of the nth node of 
an individual and Posnx’ be the X-coordinate of the 
node after the move, the shift of a node's position due 
to non-uniform mutation is calculated by the 
equations (9) and (10). 

 

 (9) 

 (10) 
In this case, 𝑏 is the maximum value of the X-axis of 
the set graph plotting range, and 𝑎  is its minimum 
value. 𝑘  is a value of 0 or 1 randomly determined 
each time, 𝑇 is the maximum number of generations, 
and 𝑡 is the current number of generations. For the 
sake of illustration, we have only described the 
operation on the X coordinate, but the operation on 
the Y coordinate is similar, and they are performed 
simultaneously.  

The shift of a node's position by single-vertex-
neighborhood mutation is calculated by the equations 
(11) and (12).  

 
(11)𝑟 = 𝑑௜ௗ௘௔௟ ∗ ሺ1− 𝑡/𝑇ሻ (12)

In this case, 𝜃 is randomly determined between 0 and 
2π. And dideal is calculated by ඥሺ𝑠/𝑛ሻ where s is the 
area of the drawing area. As in crossover, after the 
mutation on the node position is applied, the change 
in node position is reflected in the whole gene.  

Mutation of a control point is performed by 
assigning a new random displacement to the target 
control point that is less than the set maximum 
displacement. The mutation probability for the 
position of the node and the mutation probability for 
the displacement of the control point are assigned 
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independent mutation probabilities. When it is 
decided that a mutation on the node position is to be 
made, one mutation is made at random among the two 
mutations. 

3.5 Control Points Joining 

To alleviate the problem of insufficient edge bundling 
because control points that existed in GABEB rarely 
exist at the same coordinates, the join operation, 
which places control points that are close enough 
together at exactly the same coordinates(Saga 2023). 
The join process of the control points is performed by 
the following process (Figure 4). 

 
Figure 4: Join process of control points. 

1. Find all control points in each edge for which the 
distance between control points is less than or 
equal to the set distance (d) that admits a join, 
and for which no other control points of the edge 
containing the joined control points are joined to 
any of the control points. 

2. The pair of control points with the shortest 
distance between them is first joined. If a pair of 
control points that has been joined before has an 
edge in common, the pair is not joined. 

3. Calculate the average coordinate of each set of 
control points for which the coupling has been 
determined and assign the amount of movement 
from the reference point of the control point to 
the average coordinate as the amount of 
movement of each control point.  In such a case, 
the amount of movement before the coupling is 
stored for use when the coupling is released. 

If a control point that is subject to crossover and 
mutation in edge bundling or a control point whose 
edge contains a node that is subject to crossover and 
mutation in node layout is bound to another control 
point, the binding is unbundled. The reason for not 
performing the crossover and mutation operation 
while the control points are still joined is to prevent 
any of the joined control points from moving beyond 
an acceptable distance from the edge containing the 
control point or node position due to the crossover or 
mutation, which would cause visual confusion. 

The unjoin of the control points between two 
points is done by assigning to each control point the 
amount of movement before the coupling was 

performed. To unjoin two or more control points, 
only the control points that have been subject to 
crossover or mutation are assigned the amount of 
movement before the join, and a new join is processed 
for the remaining control points, starting from the 
position of the control points before the join. 

3.6 Fitness Function 

The fitness function f of this method (equation (13)) 
is the sum of 𝑓 , which measures the quality of edge 
bundling with reference to the individual evaluation 
index used in GABEB, and the evaluation function fZ 
shown in the node layout method by Zhang et al. 
where 𝑤G and 𝑤Z are weights for each evaluation 
function. 𝑓 = 𝑤ீ𝑓 + 𝑤௓𝑓௓ (13) 

The fitness function for edge bundling fG is the 
sum of the values for edge bundling used in GABEB: 
EDD and PQ should be maximized, but MELD and 
MOA should be minimized, so the inverse is taken for 
these two values. 𝑓 = 1𝑀𝐸𝐿𝐷 + 1𝑀𝑂𝐴 + 𝐸𝐷𝐷 + 𝑃𝑄 

(14) 

The fitness function (equation (15)) presented in 
the node layout method of Zhang et al. provides an 
aesthetic evaluation of node locations and the edges 
affected by them. Here, dij is the distance between 
nodes pi and pj , 𝐸 is the entire set of edges, and m is 
the number of edges. Also, ∠൫𝑝௝𝑝௜𝑝௞൯ is the angle 
between the edge with pj and the edge with pk that 
share node pi, degree(pi) is the degree of node pi. And 
dic is the distance between the location of the center 
of the drawing area and node pi. Finally, wi is a weight 
that the user can set to emphasize any aesthetic 
feature.  

 

(15)

Each term with these symbols of the equation (15) 
has the following meaning. The first term increases as 
the distance between nodes increases, and the second 
term increases as the distance between edges 
decreases. This prevents the distance between edges 
from becoming too large while still evaluating low 
node densities. The third term aims to unify the edge 
lengths by bringing them closer to dideal. The fourth 
and fifth terms are evaluations of the angles between 
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edges and are intended to increase the angles between 
edges and unify the angles between edges. The sixth 
term, Cross(𝑝ప𝑝ఫതതതതത,𝑝௞𝑝௟തതതതതത), is the value calculated by the 
equation (16) and is intended to reduce the number of 
edge crossings. Finally, the seventh and eighth terms 
evaluate the symmetry of the graph. 

 
(16) 

3.7 Update and Termination 

From the population that has undergone crossover 
and mutation and the population of the current 
generation, the top individuals are selected in a 
number equal to the number of individuals in the 
current generation to form the population of the next 
generation. The termination condition is the 
completion of the generation update for the set 
maximum number of generations, or when the highest 
evaluation value is not updated for 100 consecutive 
generations. 

3.8 Example 

The parameters of the genetic algorithm used to 
generate the examples are shown in Table1. The 
parameters of the weights in 𝑓௓ are set to (0.02, 10, 1, 
20, 200, 100000, 0.001, 1). The parameters are very 
different from each other in order to equalize the 
magnitude of each item's evaluation value. In 
particular, the weight of 𝑤6is large, but this is because 
the evaluation of crossing is treated low as the graph 
scale increases, and because this method places 
particular importance on the problem of edge crossing, 
which cannot be solved by edge bundling. The 
weights 𝑤ீ  for the evaluation function of GABEB 
and 𝑤௓ for the evaluation function of the node layout 
method of Zhang et al. are set to 1, respectively. 

Table 1: Parameters. 

 

The graphs of Figure 5 to Figure 7 (the left are 
examples of graphs before applied, and the graphs on 

the right are examples after applied) show that the 
effect of the parameter on the number of edge 
crossings, which was set particularly high, is applied, 
and the number of edge crossings is greatly reduced. 
This is because the parameters for the evaluation 
value that increases the distance between nodes and 
the parameter for the evaluation value that unifies the 
distance between nodes are set so large, depending on 
the scale of the graph, that the other evaluation values 
are not evaluated properly. This is because the 
parameter setting prevents other evaluation values 
from being evaluated appropriately because they 
become very large depending on the scale of the 
graph. In addition, the effect of edge bundling is not 
so apparent in Figure 5 because the number of edges 
is small and the effect of node layout is sufficient, but 
in Figure 7, dense edges are bundled together in the 
lower left corner and the effect of edge bundling is 
fully shown.  

 
Figure 5: An example applied to a graph with 10 nodes and 
20 edges. 

 
Figure 6: An example applied to a graph with 20 nodes and 
40 edges. 

 
Figure 7: An example applied to a graph with 34 nodes and 
78 edges. 

Parameters Value
Populations 100
Generations 100000
Crossover probability of Edge Bundlling 0.9
Mutation Probability of Edge Bundling 0.05
Crossover probability of node layout 0.75
Inversion probability of node layout 0.25
Mutation probability of node layout 0.25
Distance to allow coupling (d ) 10
Number of Control point 3
Length of one side of the MOA unit area 5
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4 EXPERIMENTS 

4.1 Environment  

In order to compare the visualization effects with 
ENLEB, the target graphs for the experiments were 
the same as those used in the ENLEB experiments. 
That is, randomly generated graphs G1 (10 nodes, 20 
edges) and G2 (20 nodes, 40 edges), and three graphs 
representing real world graphs G3 well-known as 
karate club (34 nodes, 78 edges) (Zachary 1977), G4 
as le miserable (62 nodes, 160 edges) (Girvan 2002), 
G5 (77 nodes, 254 edges) (Knuth 1993) is the target 
of this experiment. The criteria used for the 
measurements were the same five aesthetic 
evaluation criteria as in ENLEB. The evaluation 
criteria are shown in Table 2, and the right column of 
the table shows the desired results.  

Table 2: Evaluation criteria. 

 
 

In the experiments, the algorithm of the proposed 
method was implemented and run on a PC with an 
Intel Core i7-7500 3.4GHz CPU and 8 GB RAM. The 
parameters of the genetic algorithm and fitness 
function in the experiments are the same as those 
shown in the application example of the proposed 
method.  

4.2 Result and Discussion 

The results of the experiment are shown in Table 3. 
The first row in each graph is for ENLEB, and the 
second row is for this method. The results in Table 3 
show that the symmetry of the graphs is consistently 
improved compared to ENLEB.  

For G1 to G3, where the graph scale is smaller, 
there is an improvement in the number of edge 
crossings (C1) and the similarity of the angles of the 
edges in the bundle (C4). It can be attributed to the 
positive effect of the inversion operation, which was 
not implemented in ENLEB. On the other hand, the 
deterioration in C2 and improvement in C4 can also 
be attributed to the fact that the appropriate node 
placement results in more opportunities for the 
control points in the edges with high similarity to be 

spatially close to each other, and less opportunities for 
the control points in the edges that are not so close to 
each other. 

On the other hand, as the graph scale increased 
like G4 and G5, the number of edge crossings (C1) 
and the similarity of the angles (C3) and lengths of 
the edges (C4) in the bundles deteriorated. The 
number of bundles (C2) improved. The increase of C1 
as the graph scale increases can be attributed to the 
fact that the evaluation values other than the number 
of edge crossings increased as the number of edges 
and nodes increased, and the evaluation value for the 
number of edge crossings was treated low, resulting 
in insufficient optimization for C1. The change in C2 
through C4 can also be attributed to the fact that as 
C1 increases, control points in edges have more 
opportunities to come closer together, resulting in 
more bundling, but has also increased the chances of 
bundling edges with low similarity between edges. 

Table 3: Experimental results. 

 

Table 4: Calculation Time(s). 

 

The above results indicate that the number of edge 
crossings, the similarity of the angles of the edges in 
the bundles, and the symmetry of the graphs 
improved for small-scale graphs, but as the scale 
increased, the number of edge crossings increased, 
which had a negative impact on the visualization 
effect. Therefore, it is considered necessary to 
improve the weighting of evaluation values and the 
calculation method to deal with the phenomenon that 
evaluation values other than the number of edge 
crossings, which is the cause of the increase in the 

Desired 
outcomeCriteria

DecreaseNumber of edge crossingsC1

DecreaseNumber of bundlesC2

IncreaseAverage of similarity of edge lengths 
within a bundleC3

IncreaseAverage of the similarity of the angles of 
the edges in the bundleC4

IncreaseGraph symmetryC5

C5C4 C3 C2 C1 EdgeNode-

336.1
1414.1

0.83 
0.86 

0.87 
0.84 

10.2 
15.8 

21.0 
10.5 2010 G1 

189.5
563.3

0.83 
0.85

0.87
0.79 

19.7 
25.7 

103.1 
50.1 4020 G2 

44.9
253.2

0.80 
0.90

0.85
0.80 

31.1 
40.8 

375.3 
94.6 7834 G3 

27.2
116.9

0.83
0.77 

0.84
0.74 

65.8 
64.0 

1711.9 
2394.8 16062 G4 

42.5
112.0

0.82
0.79 

0.81
0.74 

109.2 
78.4 

4932.0 
8298.0 25477 G5 

Times(s)EdgeNode-

12.6 
2797.7 2010 G1 

48.4
3957.14020 G2 

270.4
7361.07834 G3 

1496.0
22551.6 16062 G4 

4405.1
32437.525477 G5 
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number of edge crossings, become larger as the 
number of edges and nodes increases. 

The obtained computation time (Table 4) shows 
that the computation time increased significantly 
compared to ENLEB. This is thought to be due to the 
extremely large computation time for coupling and 
uncoupling, as well as the computation time for the 
GABEB evaluation values. Therefore , it is necessary 
to improve the search algorithm using kd-tree, etc. 
and to reduce the computation time using GPGPU. 

5 CONCLUSIONS 

In this paper, to solve the problem that the processes 
of edge bundling and node layout are actually 
executed separately in ENLEB, we proposed an 
evolutionary visualization method that performs 
simultaneous optimization of edge bundling and node 
layout based on GABEB and Zhang’s algorithm. To 
examine the effectiveness, the experiment results of 
our method were compared with those of ENLEB.  
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