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Abstract: The paper discusses one of the possible neuromorphic methods for processing relatively large volumes of 

streaming data. The method is mainly motivated by the known mechanisms of sensory perception of living 

systems, in particular, methods of visual perception. In this regard, the main provisions of the method are 

discussed in the context of problems of encoding/recovering images on the periphery of the visual system. 

The proposed method is focused on representing input data in the form of a stream of discrete events (counts), 

like the firing events of retinal neurons. For these purposes, a special representation of data streams is used in 

the form of a controlled size samples of counts (sampling representations). Based on the specifics of the 

sampling representation, the generative data model is naturally formalized in the form of a system of 

components distributed over the field of view. These components are equipped with some “neuromorphic” 

structure, which model a system of receptive fields, embodying universal principles (including lateral 

inhibition) of the neural network of the brain. The mechanism of lateral inhibition is implemented in the model 

in the form of an antagonistic structure of the RF centre / surround. Issues of image decoding are considered 

in the context of restoring spatial contrasts, which partly emulates the work of the so-called simple / complex 

cells of the primary visual cortex. It is shown that the model of coupled ON-OFF decoding allows for the 

restoration of sharp image details in the form of emphasizing edges.  

1 INTRODUCTION 

Digital technologies are represented today in almost 

all spheres of human activity. The use of digital data 

on the platform of modern computer technologies 

provides unique opportunities for using existing 

knowledge, generalizing knowledge in the form of 

generative models, synthesizing, and implementing 

optimal methods for processing and analyzing data, 

including digital images data. 

With the advent of powerful and cheap computer 

technologies at the turn of the 20th–21st centuries, it 

turned out to be possible to significantly expand the 

arsenal of data models used, guided not so much by 

the issues of approximating them with classical 

statistical schemes, but by the specific features of the 

data themselves. New possibilities for aggregation in 

computer storage/servers of large volumes of data 

also contributed to the diversification of models. This 

trend has resulted in revolutionary advances in 
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machine learning and a few deep learning approaches 

based on artificial neural networks (Nguyen, 2019). 

Unfortunately, the heyday of current artificial 

neural networks does not promise to be long. The 

problem is that existing neural network applications 

are implemented on computers with von Neumann 

computing architecture. Since they store program and 

data blocks in shared memory space, this implies a 

continuous, intensive exchange of information 

between the memory and the processor. Considering 

that the next generation of computer technology will 

be focused on performing ~1018 flops, they, with all 

their incredible power, will consume 20~30 

megawatts of power if they continue to be based on 

the traditional architecture. Neither Moore's doubling 

law, nor Dennard's scaling law, which until recently 

ensured an increase in the productivity of computer 

technology, will be able to overcome the difficulties 

associated with fundamentally physical (thermo- 

dynamic) limitations. 
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One of the promising ways to solve this problem 

seems to be the transition to the use of neuromorphic 

computing systems based on the principles of the 

human brain (Christensen, (2022). Their most 

attractive features are the principles of biological 

neural networks, such as highly parallel information 

processing, processing procedures embedded directly 

in data blocks, scalability, event-driven calculations, 

etc. It is expected that a new generation of computers 

based on these principles (sometimes called third-

generation neural – spiking networks) can be 

effectively used both for storing extremely large 

volumes of data and for processing it in an acceptable 

time and at the same time with much less energy 

consumption. In addition to energy efficiency, 

neuromorphic systems are ideal for implementing 

machine learning approaches and have enormous 

potential for computing beyond the von Neumann 

paradigm. These advantages will give them priority 

in most information technologies. 

Considering this, we have recently made attempts 

to initiate the research on the development of new 

methods for working with data streams based on the 

principles of neuromorphic computing (Antsiperov, 

2022). The proposed work presents some of the 

results of the efforts undertaken. Namely, below we 

discuss the possibilities of processing relatively large 

volumes of streaming data using neuromorphic 

methods in the problem of image encoding / 

restoration. The proposed methods are focused on 

representing input data in the form of a stream of 

discrete events (counts), like the firing events of 

retinal neurons. For its adequate statistical 

description, a special representation was developed in 

the form of sample of counts (sampling 

representation). The probabilistic nature of the 

representation naturally leads to a generative model 

of the streaming data encoder, which can be 

formalized as a parametric model of a set (mixture) of 

components. We discovered that within the proposed 

generative model the search for optimal encoding can 

be reformulated as a statistical maximum likelihood 

problem. We solved this ML problem under the 

assumption that a set of components has a receptive 

field (RF) structure that embody universal principles 

(including lateral inhibition) of a biological neural 

network. Issues of image decoding are considered in 

the context of restoring spatial contrasts, which also 

partly emulates the work of the so-called simple / 

complex cells of the primary visual cortex. It is shown 

that the coupled ON-OFF decoding model allows for 

the restoration of sharp image details in the form of 

edge-directed interpolation.  

The main content of the work is grouped in the 

following three sections. Section 2 contains a brief 

overview of neurophysiological data on the structure 

of RFs and methods for it modelling. Section 3 is 

related to the substantiation of the statistical 

description of the RF functions for processing the 

input stream of samples. And in the last section the 

results of the numerical procedure for image 

restoration (decoding) are discussed based on the 

results of encoding the input stream by the RF system. 

The conclusion briefly summarizes the results and 

outlines avenues for further research.  

2 RETINAL RECEPTIVE FIELDS 

AS STRUCTURAL UNITS OF 

EDGE ENCODING 

As mentioned above, the proposed encoding method 

deals with equipping the image forming area with 

some fixed “neuromorphic” structure. It is believed 

that this structure is initially given and does not 

depend, among other things, on the radiation intensity 

focused by the lens of the eye on the retina, or by the 

optics of the video camera on the CMOS-matrix. 

Essentially, the structure mentioned is simple enough. 

Namely, it models the structure of the receptors 

(outer) layer of the human (or higher vertebrates) 

retina, known as the receptive field (RF) system. 

The general concept of RFs as structural units of 

sensory neuronal systems of living organisms has 

been known for a long time. As for the periphery of 

the visual system, the beginning of systematic 

research and analysis of the RF features is usually 

associated with the work of Kuffler (Kuffler,1953) in 

the early 50s. According to the tradition, that 

followed Kuffler, receptive fields are understood as 

small areas of the retina containing tens to hundreds 

of input receptors (cones/rods), whose stimulation 

leads to the activation of certain output neurons 

(RGCs - retinal ganglion cells). It is important to note 

that along the path of data propagation from receptors 

to the RGC, visual information undergoes several 

transformations and modifications carried out by 

intermediate neurons (horizontal, bipolar and 

amacrine cells) of the retina. As a result, in addition 

to the spatial structure, the RFs also has a certain 

functional arsenal. It is associated with the division of 

the RF surface into two parts: a central region that 

receives data directly from the retinal receptors, 

which is called the RF-centre, and a peripheral region 

concentric to the centre, which receives data through 

horizontal cells and is called the RF-surround. It is 
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usually believed that the ratio of the centre size to the 

size of the RF is on average ~ 1:1.6 (Marr, 1980). 

Note that the size of the RFs can vary significantly 

depending on the location of the RF relative to the 

centre part of the retina (fovea) – from fractions of 

degrees of visual angle to several degrees (angle of 10 

on the retina ~ 0.3 mm, on the external screen at the 

best distance vision (at 60 cm) 10 ~ 1 cm) (Bear, 

2007). 

Kuffler (Kuffler,1953) also found that the types of 

RFs that differ in their response to illumination 

contrast are closely related to the functional structure. 

ON-type fields are activated (depolarized) when a 

small spot of light is projected onto their centre. 

Conversely, OFF-type fields are activated when their 

centre is slightly darkened. It should be stressed that 

the reactions of both types of cells are cancelled with 

simultaneous stimulation of the centre and the 

surround (Bear, 2007). Due to this the centre / 

surround of the RF constitutes an antagonistic pair 

(structure). One consequence of this is that most 

retinal RGCs respond weakly to slow (on the RF 

scale) illuminance changes across the entire retina, 

but respond markedly to sharp illuminance contrasts 

within a surface of individual RF. 

Let us formalize the presented neurobiological 

facts in the form of a simple model, which will reflect 

the main RF functionality and at the same time find 

out what the minimum set of assumptions is required 

for this. Let us denote by 𝛺 the flat image forming 

region with coordinates �⃗� = (𝑥1, 𝑥2). Let the image 

correspond to the recorded radiation intensity 𝐼(�⃗�) on 

𝛺. As a RF, we consider the region 𝛥 ⊂ 𝛺 of the area 

𝜎, consisting of the centre 𝛥𝑐 ⊂ 𝛥 of the area 𝜎𝑐 and 

the concentric surround 𝛥𝑠 ⊂ 𝛥 of the area 𝜎𝑠, so that 

𝛥𝑐 ∪ 𝛥𝑠 = 𝛥 , 𝛥𝑐 ∩ 𝛥𝑠 = ∅ , →  𝜎𝑐 + 𝜎𝑠 = 𝜎 . Thus, 

regions 𝛥𝑐  and 𝛥𝑠  represent a partition of RF 𝛥, as 

shown in Figure 1 (A).  

 

Figure 1: Schematic representation of the single typical RF 

and the corresponding RF system. (A) RF with centre / 

surround structure, (B) homogeneous RF system with 

typical RFs at the nodes of squared grid covering image 𝛺. 

Let us introduce the values of the average 

intensities 𝐼,̅ 𝐼�̅� , 𝐼�̅�  corresponding, respectively, to 

the RF, to its centre and to its surround: 

𝐼 ̅ =
1

𝜎
∬ 𝐼(�⃗�)𝑑𝑠

𝛥
,

𝐼�̅� =
1

𝜎𝑐
∬ 𝐼(�⃗�)𝑑𝑠

𝛥𝑐
,    𝐼�̅� =

1

𝜎𝑠
∬ 𝐼(�⃗�)𝑑𝑠

𝛥𝑠
 .

     (1) 

Let us choose a point in the RF region, for 

example, coinciding with its centre of gravity �⃗�𝛥 =

∬ �⃗�𝑑𝑠∆
→

𝜎⁄ , and expand the intensity 𝐼(�⃗�)  at this 

point into the Taylor series up to powers (�⃗� − �⃗�𝛥) of 

the second order inclusive (𝑇 is transpose sign):  

𝐼(�⃗�) ≈ 𝐼(�⃗�𝛥) + [∇⃗⃗⃗𝑇𝐼(�⃗�𝛥)](�⃗� − �⃗�𝛥) +

+
1

2
(�⃗� − �⃗�𝛥)

𝑇
[∇⃗⃗⃗∇⃗⃗⃗𝑇𝐼(�⃗�𝛥)](�⃗� − �⃗�𝛥)

 . (2) 

Substituting approximation (2) into equation (1) 

for 𝐼,̅ we obtain (iff �⃗�𝛥 is the centre of gravity of 𝛥): 

𝐼 ̅ ≈ 𝐼(�⃗�𝛥) +
1

2
𝑆𝑝(�⃗⃗��⃗⃗�𝑇𝐼(�⃗�𝛥) × �̂�𝛥) , (3) 

where 𝑆𝑝(… ) is the trace of a matrix and  

�̂�𝛥 =
1

𝜎
∬ (�⃗� − �⃗�𝛥)(�⃗� − �⃗�𝛥)

𝑇
𝑑𝑠

𝛥
  (4) 

is the matrix of the 𝛥’s second moments of inertia. 

Note that �̂�𝛥  (4) is determined only by the 

geometric shape of the region 𝛥 and does not depend 

on its position (the center of gravity �⃗�𝛥 depends).  

The same reasoning can also be repeated in 

relation to 𝐼�̅�, which will take a form like (3), where 

instead of �⃗�𝛥, �̂�𝛥 there will be the values �⃗�𝑐, �̂�𝑐: 

�⃗�𝑐 =
1

𝜎𝑐
∬ �⃗�𝑑𝑠

𝛥𝑐
,

�̂�𝑐 =
1

𝜎𝑐
∬ (�⃗� − �⃗�𝑐)(�⃗� − �⃗�𝑐)

𝑇
𝑑𝑠

𝛥𝑐
.
    (5) 

If the RF 𝛥 and its centre 𝛥𝑐  are located so that 

their centres of gravity coincide �⃗�𝑐 = �⃗�𝛥 , then an 

important consequence follows from the obtained 

relations:  

𝛿𝐼�̅� = 𝐼̅ − 𝐼�̅� =
1

2
𝑆𝑝(∇⃗⃗⃗∇⃗⃗⃗𝑇𝐼(�⃗�𝛥) × [�̂�𝛥 − �̂�𝑐]) .   (6) 

A similar relation can be obtained for the difference 

𝛿𝐼�̅� = 𝐼̅ − 𝐼�̅�, however, it is easier to obtain it from the 

relationship 𝜎𝑐𝛿𝐼�̅� + 𝜎𝑠𝛿𝐼�̅� = 0, followed from (1). 

For the convenience of further reasoning, it is 

worth choosing a coordinate system with the origin at 

the common centre of gravity �⃗�𝑐 = �⃗�𝛥 = 0⃗⃗. In this 

case, if the centre region 𝛥𝑐 is similar to the RF region 

𝛥 , then with a homogeneous linear transformation 

�⃗� → 𝑘�⃗�  with some 𝑘 > 1 , the region 𝛥𝑐  will be 
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mapped into 𝛥  and, accordingly, �̂�𝑐 → 𝑘2�̂�𝑐 = �̂�𝛥 . 

Relationship (6) in this case takes the form: 

𝛿𝐼�̅� = 𝐼̅ − 𝐼�̅� =
𝑘2−1

2𝑘2 𝑆𝑝(∇⃗⃗⃗∇⃗⃗⃗𝑇𝐼(0⃗⃗) × �̂�𝛥) .   (7) 

As follows from definition (4), the matrix �̂�𝛥  is 

symmetric and positive definite; therefore, there is an 

orthogonal coordinate system (of normalized 

eigenvectors) in which �̂�𝛥  is diagonal, and the 

elements on the diagonal are positive and add up to 

the total moment of inertia 𝑍 = ∬ �⃗�2 𝑑𝑠 𝜎⁄
𝛥

. If, 

moreover, the moments are equal (= 𝑍 2⁄ ), then �̂�𝛥 is 

a multiple of the identity matrix and (7) takes the 

following final form:  

𝛿𝐼�̅� = 𝐼̅ − 𝐼�̅� =
(𝑘2−1)𝑍

4𝑘2 𝑆𝑝 (∇⃗⃗⃗∇⃗⃗⃗𝑇𝐼(0⃗⃗)) =

=
(𝑘2−1)𝑍

4𝑘2 ∆𝐼(0⃗⃗)
,   (8) 

where ∆ is the Laplace operator (Laplacian).  

The right-hand side of (8) can be viewed as the 

output at coordinates origin �⃗� = 0⃗⃗ of applied to the 

intensity 𝐼(�⃗�)  Laplacian filter. This immediately 

suggests an analogy between the RF function, which 

calculates the intensity defect 𝛿𝐼�̅� = 𝐼̅ − 𝐼�̅�  and the 

Marr operator (Marr, 1980), which serves to detect 

edges in digital images (second order in derivatives 

edge detector). Marr proposed to characterize lines of 

sharp changes in intensity (edges) by the condition 

∆𝐼(�⃗�) = 0 , i.e. as lines where the Laplacian of 

intensity intersects zero lavel (zero-crossings). The 

motivation for this choice is as follows. Let us assume 

that the zero-crossing line passes through the origin 

�⃗� = 0⃗⃗ and in the vicinity of the origin the intensity 

behaves as a step function (Haralick, 1984): 

𝐼(�⃗�) ≈ 𝐼(0⃗⃗) + �⃗�𝑇�⃗� + 𝑆(�⃗⃗�𝑇�⃗�) ,   (9) 

where 𝐼(0⃗⃗) is the intensity at the origin, �⃗� is some 

vector associated with the large-scale illumination 

gradient, �⃗⃗� is a vector associated with the normal to 

the step, and 𝑆(… ) is a monotonic function of one 

variable like the smoothed Heaviside step function. It 

immediately follows from (9) that in the vicinity of 

the step ∆𝐼(�⃗�) = 𝑆′′(�⃗⃗�𝑇�⃗�)�⃗⃗�2. If we require that at the 

points of the line �⃗⃗�𝑇�⃗� = 0 the step intensity gradient 

𝑆′(0)�⃗⃗�  be maximum, then it is necessary that 

𝑆′′(0) = 0, which is equivalent to Marr condition. 

Thus, the edges of the step type intensity are 

determined by zero-crossings of the Laplacian filter 

𝑦 = ∆𝐼(�⃗�).  

In connection with the above reasoning, we note 

the following circumstance. In fact, from the step 

model of local intensity (9) not only the Marr 

condition ∆𝐼(�⃗�) = 0 follows, but also the equality to 

zero of the matrix ∇⃗⃗⃗∇⃗⃗⃗𝑇𝐼(0⃗⃗) = 𝑆′′(0)�⃗⃗��⃗⃗�𝑇 , whose 

trace is the Laplacian. In this case, the necessary 

condition for the intensity jumps on the RF in the 

form 𝛿𝐼�̅� = 0 will follow directly from (6) without 

additional assumptions leading to (7) or (8). Thus, for 

the necessity of the condition 𝛿𝐼�̅� = 0 with a stepwise 

change in 𝐼(�⃗�), it is quite sufficient that the location 

of the RF 𝛥 and its centre 𝛥𝑐 ensures the equality of 

their centres of gravity �⃗�𝑐 = �⃗�𝛥  (equal to 0⃗⃗  in a 

special coordinate system). As a result, replacing the 

Marr condition ∆𝐼(�⃗�) = 0 with the derived condition 

𝛿𝐼�̅�(�⃗�𝑖) = 0, we arrive at a more direct approach to 

detecting edges in the form of zero-crossings. 

It is interesting to note that the defect 𝛿𝐼�̅� = 𝐼̅ − 𝐼�̅� 

can also be considered as the output of a piecewise 

constant filter with a compact support in the form of 

a RF region 𝛥. Two filter levels are positive constant 

1 𝜎⁄  at the surround and negative − 𝜎𝑠 𝜎𝑐𝜎⁄  at the 

centre of the RF, so that the filter has zero-DC 

response. Such a filter (up to sign) was previously 

proposed under the name COSO (center-on-

surround-off) in (Allebach, 1996). However, in this 

work COSO filter was proposed as an approximation 

of the Marr’s Laplacian-of-Gaussian (LoG) filter to 

save computation, but not for fundamental reasons. 

Although the approach described above seems 

attractive, until the method of its implementation has 

not been determined, it has only conceptual 

significance. In fact, it is the features of the computer 

implementation that determine the originality of the 

approach. Let us therefore consider some aspects of a 

possible computer implementation of the approach 

proposed. 

 

 

Figure 2: Marr's method for edge detection. The set of ON-

fields is marked with a “+” sign, the set of OFF-fields with 

a “–” sign. Segments connecting the centres of the nearest 

ON- and OFF-fields are marked with a dotted line. Zero-

points found by interpolation on these segments form a 

broken line – zero-crossing approximation (edge). 
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The first aspect is that, unlike the COSO filter 

(Allebach, 1996), we cannot generate values of 𝛿𝐼�̅� at 

arbitrary points �⃗�  of the image 𝛺 , but only at 

locations {�⃗�𝑖}  of a fixed discrete RF system {𝛥𝑖} . 

Therefore, the search for a solution to the nonlinear 

equation 𝛿𝐼�̅� = 0  using standard, usually iterative, 

methods encounter problems. Indeed, at some 

iteration, the calculated approximation to the solution 

may not coincide with one of the RF centres �⃗�𝑖 , 

which, due to the lack of data at such a point, will not 

allow the search to continue. To solve this problem, 

Marr proposed a method that models the work of 

simple cells (neurons) located in the lateral geniculate 

nucleus (Marr, 1980). The main idea of Marr is as 

follows.  

Let's consider a set of receptive fields with a 

noticeable positive defect 𝛿𝐼�̅� > 0 and call them ON-

fields. Similarly, we call the set of fields that have a 

negative defect 𝛿𝐼�̅� < 0  OFF-fields, see Figure 2. 

Since these two sets do not intersect, they are 

separated by some imaginary boundary. Any two 

adjacent ON- and OFF-fields lying on both sides of 

this boundary have defects of different signs, 

therefore somewhere on the segment connecting them 

there must exist a point �⃗�  at which 𝛿𝐼�̅�(�⃗�) = 0, as 

shown in Figure 2. The position of this point can be 

interpolated in any suitable way (for example, linear), 

if the positions �⃗�𝑘  and �⃗�𝑙  of these fields and 

corresponding values of their defects 𝛿𝐼�̅�(�⃗�𝑘)  and 

𝛿𝐼�̅�(�⃗�𝑙) are known. Having gone through all the pairs 

of fields in this way and connecting the nearest points 

found, we will obtain a broken zero-crossing line 

approximation of the required zero-crossings as 

shown in Figure 2. 

The second aspect of the implementation is 

related to the issues of reliably determining the 

corresponding ON- and OFF-fields, i.e. with 

questions of confident resolution of alternatives 

𝛿𝐼�̅�(�⃗�𝑖) ≶ 0. The problem here is that the recorded 

defects 𝛿𝐼�̅�(�⃗�𝑖) (6) are noisy data, which, with signal-

to-noise ratios 𝑆𝑁𝑅~1 , will often lead to false 

decisions. The solution here is to use threshold 

criteria of the type 𝛿𝐼�̅�(�⃗�𝑖) > 𝑇  or 𝛿𝐼�̅�(�⃗�𝑖) < −𝑇 

with some threshold 𝑇 . However, this also raises 

many questions like how to choose a threshold, 

should it depend on the location �⃗�𝑖 of the RF or on 

the RF data 𝐼(̅�⃗�𝑖), 𝐼�̅�(�⃗�𝑖) , etc. Some of the listed 

issues for the case of Poisson counts were considered 

in previous works, see for example, (Antsiperov, 

2023). Below we discuss the adaptation of the 

obtained results to current work.  

3 IMAGE NEUROMORPHIC 

ENCODING BY THE RF 

SYSTEM  

A statistical description of the image sampling 

representation in the form of multivariate distribution 

𝜌(𝑆𝑘|𝑛, 𝐼(�⃗�)), 𝑆𝑘 = (�⃗�1, … , �⃗�𝑘)  was obtained in 

previous works (see for example (Antsiperov, 

Kershner 2023) and looks as follows: 

𝜌(𝑆𝑘|𝑛, 𝐼(�⃗�)) = ∏ 𝜌(�⃗�𝑖|𝐼(�⃗�))𝑛
𝑖=1 ,

𝜌(�⃗�𝑖|𝐼(�⃗�)) =
𝐼(�⃗�𝑖)

∬ 𝐼(�⃗�)𝑑𝑠𝛺

,
  (10) 

As has been shown, approximation (10) is valid 

when sample size 𝑘 ≪ �̅�, where �̅� = 𝛼𝑇 ∬ 𝐼(�⃗�)𝑑𝑠
𝛺

 

is the average total number of counts registered 

during exposure time 𝑇 at light intensity 𝐼(�⃗�) . 

Parameter 𝛼 = 𝜂(ℎ�̅�)−1 characterizes the interaction 

of radiation with matter and depends on ℎ�̅�  – the 

average energy of the incident photon and on 

dimensionless coefficient 𝜂 – the quantum efficiency 

of detector material. It is noteworthy that distribution 

(10) has several useful properties giving it a universal 

character. (Antsiperov, Kershner 2023). 

One of the important properties of (10) is that the 

dependence of 𝜌(�⃗�𝑖| 𝐼(�⃗�))  on the intensity 𝐼(�⃗�)  is 

almost trivial – it simply coincides with the value of 

𝐼(�⃗�𝑖)  at the same point, up to the normalization 

constant. This makes it possible to illustrate a typical 

sampling representation, as well as its subsequent 

processing results, using ordinary bitmap images and 

considering their pixel values as an approximation of 

the recorded intensity, expressed in some arbitrary 

units.  

 

Figure 3: Illustration of the image sampling representation. 

On the left is the original, grayscale PNG image, on the 

right is its representation 𝑆𝑘  of the size 𝑘 = 1000000 

counts. 

To illustrate a typical sampling representation for 

a grayscale PNG image, we generated its 𝑆𝑘 using the 

Monte Carlo approach to sample from distribution of 
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its pixels. An image and sampling representation are 

shown in Figure 3. Grayscale PNG image is of size 

𝑠 × 𝑠, 𝑠 = 1000  pixels, color depth 𝜐 = 8  bits, 

corresponding 𝑆𝑘  is of size 𝑘 = 1000000  counts. 

The generation of random counts was carried out by 

using the Monte Carlo rejection/acceptance sampling 

method with a uniform auxiliary distribution 𝑢(�⃗� ) =
𝑠−2 and constant 𝑀 = 2𝜐. 

It is easy to pass from a statistical description in 

preset counts (10) to description in preset local 

regions form (Barrett, 1997). Since the latter 

description (preset regions) is more suitable for the 

subsequent description of data associated with 

receptive fields, we outline its brief conclusion here. 

Namely, let's take some small region 𝛥 ⊂ 𝛺 and 

consider the event of a count into it as a success, and 

the absence of count as a failure. According to (10), 

the probability of success is 𝑝 = ∬ 𝜌(�⃗�|𝐼(�⃗�))𝑑𝑠∆ , 

and of failure, respectively, 𝑞 = 1 − 𝑝 . Then, 

considering the registration of count as a test in the 

Bernoulli scheme, we find that the probability of 𝑙 out 

of 𝑘 successes – probability of 𝑙 counts of 𝑆𝑘 in Δ – is 

determined by the binomial distribution, in 

asymptotic 𝑘 ≫ 1 , 𝑝 → 0 , but 𝜆 = 𝑘𝑝 = 𝑐𝑜𝑛𝑠𝑡 , 

coinciding with Poissonian:   

𝑃Δ(𝑙 | 𝑘, 𝑝) =
𝑘!

𝑙!(𝑘−𝑙)!
𝑝𝑙𝑞𝑘−𝑙 ≈

𝜆𝑙

𝑙!
exp{−𝜆} ,

𝜆 = 𝑘𝑝 = 𝑘
∬ 𝐼(�⃗�)𝑑𝑠Δ

∬ 𝐼(�⃗�)𝑑𝑠𝛺

= 𝛽 ∬ 𝐼(�⃗�)𝑑𝑠
Δ

,
  (11) 

where 𝛽 =  𝛼𝑇 𝑘 �̅�⁄  is another parameter, however, 

unlike 𝛼 depending also on the ratio of the sampling 

representation 𝑆𝑘 size to �̅�. For further purposes, it is 

convenient to express the parameter 𝜆 of the Poisson 

distribution (2) not through the registered intensity 

𝐼(�⃗�), but through the intensity of counts generated by 

receptors 𝑖(�⃗�) , which is proportional to the first: 

𝑖(�⃗�) = 𝛽𝐼(�⃗�) . Considering this notation, the 

distribution of counts in 𝛥 (11) can be rewritten as  

𝑃Δ(𝑙 | 𝑖Δ) ≅
(𝜎𝑖Δ)𝑙

𝑙!
exp{−𝜎𝑖Δ} ,

𝑖Δ =
1

𝜎
∬ 𝑖(�⃗�)𝑑𝑠

Δ
=

𝛽

𝜎
∬ 𝐼(�⃗�)𝑑𝑠

Δ
,
  (12) 

where 𝜎 is the area of region 𝛥 and 𝑖Δ – the average 

value of intensity of counts 𝑖(�⃗�) per 𝛥. Note that the 

mean value of 𝑙, as well as its dispersion according to 

the Poisson distribution (12), is exactly 𝑙 ̅ = 𝜎𝑖Δ.  

Let us use the notations introduced above for a 

typical receptive field: 𝛥 ⊂ 𝛺 – the RF region of the 

area 𝜎 , 𝛥𝑐 𝛥𝑠⁄  – its centre / surround structure of 

areas 𝜎𝑐 𝜎𝑠⁄  respectively,  𝜎𝑐 + 𝜎𝑠 = 𝜎. Let us denote 

the numbers of counts in the centre and in the 

surround of RF by 𝑛𝑐 and 𝑛𝑠. From the condition that 

𝛥𝑐  and 𝛥𝑠  are the partition of 𝛥 it follows that 𝑛 =
𝑛𝑐 + 𝑛𝑠 is the total number of counts on the RF. By 

virtue of (12), the statistical models of 𝑛𝑐 and 𝑛𝑠 are 

Poisson probability distributions: 

𝑛𝑐 | 𝑖𝑐 ~ 𝑃𝑐(𝑛𝑐| 𝑖𝑐) =
(𝜎𝑐𝑖𝑐)𝑛𝑐

𝑛𝑐!
𝑒𝑥𝑝{−𝜎𝑐𝑖𝑐} ,

𝑛𝑠 | 𝑖𝑠  ~ 𝑃𝑠(𝑛𝑠| 𝑖𝑠 ) =
(𝜎𝑠𝑖𝑠)𝑛𝑠

𝑛𝑠!
𝑒𝑥𝑝{−𝜎𝑠𝑖𝑠} ,

  (13) 

where  𝑖𝑐 and  𝑖𝑠 are the average intensities of counts 

in the centre and in the surround of RF: 

𝑖𝑐 =
1

𝜎𝑐
∬ 𝑖(�⃗�)𝑑𝑠

𝛥𝑐
,   𝑖𝑠 =

1

𝜎𝑠
∫ 𝑖(𝑥)𝑑𝑥

𝛥𝑠
  (14) 

Note here that since the numbers 𝑛𝑐  and 𝑛𝑠  are 

unbiased estimates of their means �̅�𝑐 = 𝜎𝑐𝑖𝑐  and 

�̅�𝑠 = 𝜎𝑠𝑖𝑠, the values 𝑛𝑐 𝜎𝑐⁄  and 𝑛𝑠 𝜎𝑠⁄  are unbiased 

estimates of the average intensities 𝑖𝑐 and  𝑖𝑠. 

Since 𝑛𝑐  and 𝑛𝑠  are Poisson on the disjoint 

regions 𝛥𝑐 ∩ 𝛥𝑠 = ∅ , they are statistically 

independent, and their joint probability distribution 

can be written as:  

𝑃(𝑛𝑐 , 𝑛𝑠| 𝑖𝑐 , 𝑖𝑠) =  𝑃𝑐(𝑛𝑐| 𝑖𝑐)𝑃𝑠(𝑛𝑠| 𝑖𝑠) =

=
(𝜎𝑐 𝑖𝑐)𝑛𝑐(𝜎𝑠𝑖𝑠)𝑛𝑠

𝑛𝑐!𝑛𝑠!
𝑒𝑥𝑝{−[𝜎𝑐𝑖𝑐 + 𝜎𝑠𝑖𝑠]}

  (15) 

If we move from data 𝑛𝑐 and 𝑛𝑠 to random data 

𝑛𝑐 and 𝑛 = 𝑛𝑐 + 𝑛𝑠, then (15) turns into: 

𝑃(𝑛𝑐 , 𝑛| 𝑖𝑐 , 𝑖𝑠) = 𝐵(𝑛𝑐 | 𝑛, 𝑝) × 𝑃𝛥(𝑛 | 𝑖Δ)  (16) 

where 𝑃𝛥(𝑛 | 𝑖Δ)  as well as (12) is the Poisson 

probability distribution with the parameter 𝑖Δ =
[𝜎𝑐𝑖𝑐 + 𝜎𝑠𝑖𝑠] 𝜎⁄ , and 𝐵(𝑛𝑐 | 𝑛, 𝑝)  is the binomial 

distribution with parameters 𝑛 and 𝑝 = 𝜎𝑐 𝑖𝑐 𝜎𝑖Δ⁄ : 

𝐵(𝑛𝑐 | 𝑛, 𝑝) =
𝑛!

𝑛𝑐!(𝑛−𝑛𝑐)!
𝑝𝑛𝑐(1 − 𝑝)𝑛−𝑛𝑐 ,

𝑃Δ(𝑛 | 𝑖Δ) =
(𝜎𝑖Δ)𝑛

𝑛! 
exp{−𝜎𝑖Δ} .

  (17) 

For a complete statistical description of the RF 

data, it is necessary to select an a priori model of the 

intensities 𝑖𝑐 and  𝑖𝑠. In this regard, let us assume that 

the marginal distributions of both intensities are given 

by the same density ℘(𝑖) . As for their joint 

distribution, we will assume that two cases are 

possible. In the first case, both intensities are 

completely statistically dependent due to their 

coincidence 𝑖𝑐 = 𝑖𝑠 , so their joint distribution is 

𝛿(𝑖𝑐 − 𝑖𝑠)℘(𝑖𝑠) = 𝛿(𝑖𝑠 − 𝑖𝑐)℘(𝑖𝑐) , where 𝛿(𝑖)  is 

Dirac delta-function. In the second case, they are 

completely statistically independent, and their joint 

distribution is ℘(𝑖𝑐)℘(𝑖𝑠) . Formally, denoting the 

first case of complete dependence as the 0-hypothesis 

𝐻0, and the second one as its alternative 𝐻0
̅̅̅̅ , we can 
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write the a priori (conditional in relation to 𝐻 ∈
{𝐻0, 𝐻0

̅̅̅̅ }) distribution of 𝑖𝑐 and  𝑖𝑠 in the form: 

𝜌𝑎(𝑖𝑐 , 𝑖𝑠 |𝐻) = {
𝛿(𝑖𝑠 − 𝑖𝑐)℘(𝑖𝑐), 𝐻 = 𝐻0,

   ℘(𝑖𝑐)℘(𝑖𝑠),     𝐻 = 𝐻0
̅̅̅̅  .

  (18) 

Combining (16) and (18), we obtain the following 

distributions for the full statistical (generative) model 

𝜌(𝑛𝑐 , 𝑛, 𝑖𝑐 , 𝑖𝑠| 𝐻) =

= 𝑃(𝑛𝑐 , 𝑛| 𝑖𝑐 , 𝑖𝑠)𝜌𝑎(𝑖𝑐 , 𝑖𝑠 | 𝐻) =

= {

𝐵(𝑛𝑐 | 𝑛, 𝑝0) 𝑃Δ(𝑛 | 𝑖𝑐)𝛿(𝑖𝑠 − 𝑖𝑐)℘(𝑖𝑐), ,
  𝐻 = 𝐻0;

𝑃с(𝑛𝑐| 𝑖𝑐)𝑃𝑠(𝑛𝑠| 𝑖𝑠)℘(𝑖𝑐)℘(𝑖𝑠), 𝐻 = 𝐻0
̅̅̅̅ ; ;  

  (19) 

where due to 𝑖Δ = 𝑖𝑠 = 𝑖𝑐 in the first line of the curly 

brace in (19) the parameter 𝑖Δ  in 𝑃Δ(𝑛 | 𝑖Δ)  (17) is 

replaced by 𝑖𝑐  and the parameter 𝑝  in 𝐵(𝑛𝑐 | 𝑛, 𝑝) 

(17) is replaced by 𝑝0 = 𝜎𝑐 𝜎⁄ . In the second line of 

the curly brace in (19) ) the original representation 

(15) is used for 𝑃(𝑛𝑐 , 𝑛| 𝑖𝑐 , 𝑖𝑠).  

Marginalizing (19) we can find the unconditional 

distribution 𝑃(𝑛𝑐 , 𝑛| 𝐻) of random 𝑛𝑐 and 𝑛. After a 

number of simplifications and approximations (see 

(Antsiperov, 2023)), it can be approximated by the 

following large-counts distribution: 

𝑃(𝑛𝑐 , 𝑛| 𝐻) ≈

≈ {
𝐵(𝑛𝑐 | 𝑛, 𝑝0)

1

𝜎
℘ (

𝑛

𝜎
) ,     𝐻 = 𝐻0,

   
1

𝜎𝑐
℘ (

𝑛𝑐

𝜎𝑐
)

1

𝜎𝑠
℘ (

𝑛−𝑛𝑐

𝜎𝑠
) ,     𝐻 = 𝐻0

̅̅̅̅  .

  (20) 

Using (20), we can introduce the likelihood ratio 

of the hypotheses 𝐻0 𝐻0
̅̅̅̅⁄  for given data 𝑛𝑐  , 𝑛: 

𝐿(𝑛𝑐 , 𝑛) =
𝑃(𝑛𝑐,𝑛 | 𝐻0)

𝑃(𝑛𝑐,𝑛 | 𝐻0̅̅ ̅̅ )
=

=
𝜎𝑐𝜎𝑠

𝜎

℘(
𝑛

𝜎
)

℘(
𝑛𝑐
𝜎𝑐

)℘(
𝑛−𝑛𝑐

𝜎𝑠
)

𝐵(𝑛𝑐 | 𝑛, 𝑝0)
  (21) 

The likelihood ratio 𝐿(𝑛𝑐 , 𝑛)  (21) can be made 

more interpretable by moving from the variables 

𝑛𝑐 , 𝑛 to 𝛿 = 𝑛 𝜎⁄ − 𝑛𝑐 𝜎𝑐⁄  and 𝑛. For these variables 

the binomial distribution admits a Gaussian 

approximation (for large 𝑛 ). Also replacing 

℘(𝑛𝑐 𝜎𝑐⁄ ) and ℘((𝑛 − 𝑛𝑐) 𝜎𝑠⁄ ) = ℘(𝑛𝑠 𝜎𝑠⁄ ) in (21) 

by ℘(𝑛 𝜎⁄ ), we get a simplified expression for the 

likelihood ratio:  

𝐿(𝛿, 𝑛) =

=
1

√2𝜋𝑛
√

𝜎𝑐𝜎𝑠

𝜎2

1
1

𝜎
℘(

𝑛

𝜎
)

exp {−
𝜎2𝛿2

2𝑛𝜎𝑠 𝜎𝑐⁄
}
 . (22)) 

Basing on the likelihood ratio (22), one can use 

the uniformly most powerful unbiased test (Young, 

2005) to compare the degree of agreement between 

hypotheses 𝐻0 𝐻0
̅̅̅̅⁄  to the available data 𝛿, 𝑛. Namely, 

according to the Neyman–Pearson criterion, one 

should accept 𝐻0 – the hypothesis of the coincidence 

𝑖Δ = 𝑖𝑠 = 𝑖𝑐, if 𝐿(𝛿, 𝑛) > 𝐾𝛼 and reject 𝐻0, implying 

𝐻0
̅̅̅̅ – the hypothesis of a significant difference 

between 𝑖Δ  and 𝑖𝑐 , otherwise. The threshold 𝐾𝛼 

clearly indicates its dependence on 𝛼 – the size of the 

test. The test size, in its turn, can be defined as the 

probability of 𝛿, 𝑛 falling into the critical region 𝐶𝛼 =
{𝛿, 𝑛 | 𝐿(𝛿, 𝑛 ) < 𝐾𝛼} , or 𝛼 = ∑ 𝜌(𝛿, 𝑛 | 𝐻0)𝛿,𝑛∈𝐶𝛼

, 

where 𝜌(𝛿, 𝑛 | 𝐻0) is given by the first line of the 

curly brace (20). Having performed all the 

summations (integrations), one can arrive at the 

following explicit form of the the critical region 𝐶𝛼: 

𝐶𝛼 :  
𝜎2𝛿2

2𝑛𝜎𝑠 𝜎𝑐⁄
> ln (√

𝜎𝑐𝜎𝑠

2𝜋𝑛𝜎2 𝐾𝛼
1

𝜎
℘ (

𝑛

𝜎
)⁄ ) . (23)) 

The right side of (23) can be simplified if we 

approximate a priori distribution ℘(𝑖) by the value 

ℛ−1  on its characteristic scale ℛ . As the a priori 

average of the number of counts on the RF is 

approximately 𝑛~𝜎ℛ , we can replace ℘(𝑛 𝜎⁄ )  by 

ℛ−1 and 𝑛 by 𝜎ℛ in the right-hand side of (23). Thus 

it will turn into a constant, which we denote by 𝐷𝛼
2:  

𝐷𝛼
2 = ln (

1

𝐾𝛼
√

𝜎𝑐𝜎𝑠

𝜋𝜎2 √2�̅�𝑎) =

=
1

2
ln (

𝜎𝑐𝜎𝑠

2𝜋 𝜎2) +
1

2
ln(𝜎ℛ) − ln(𝐾𝛼)

. (24)) 

From (23,24) the size of the test 𝛼 takes the form: 

𝛼 =
2

√𝜋
∫ exp{−𝜉2} 𝑑𝜉

∞

𝐷𝛼

∑
1

𝜎
℘ (

𝑛

𝜎
)

∞

𝑛=0

= erfc(𝐷𝛼)   ) (25)) 

where it is taken into account that ∑
1

𝜎
℘ (

𝑛

𝜎
)∞

𝑛=0 ≈

∫ ℘(𝑖)𝑑𝑖
∞

0
= 1  and the standard complementary 

error function erfc(𝑥)  is used. Relation (25) 

implicitly relates 𝛼 and 𝐷𝛼 and thus there is no need 

to find the threshold 𝐾𝛼 , when 𝛼  is given. In 

accordance with (25), 𝐷𝛼  can be calculated directly 

from 𝛼  as an inverse error function erf −1(1 − 𝛼) . 

After 𝐷𝛼  is fixed, the criterion for rejecting the 

hypothesis 𝐻0  – the hypothesis of the coincidence 

𝑖Δ = 𝑖𝑠 = 𝑖𝑐 (i.e. accepting alternative 𝐻0
̅̅̅̅  of intensity 

jump of on RF) takes the following final form: 

𝛿2 >
2𝑛𝜎𝑠 𝜎𝑐⁄

𝜎2 𝐷𝛼
2      ↔   |𝛿| > √2

𝜎𝑠

𝜎𝑐

𝐷𝛼

𝜎
√𝑛. (26)) 

Returning to the original formulation of our 

method for detecting edges using zero-crossing lines, 

set out in the first section, we note the following here. 

The unbiased estimates of the average intensities 𝑖𝑐, 

 𝑖𝑠 (14) and  𝑖Δ (16) can be given by the RF registered 

data 𝑛𝑐 𝜎𝑐⁄ , 𝑛𝑠 𝜎𝑠⁄  and 𝑛 𝜎⁄ . By definition of a 
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random variable 𝛿 = 𝑛 𝜎⁄ − 𝑛𝑐 𝜎𝑐⁄  specifies an 

unbiased estimate of the value 𝑖𝛥 − 𝑖𝑐. But, in view of 

the proportionality 𝑖(�⃗�) = 𝛽𝐼(�⃗�), we have relations 

𝑖𝑐 = 𝛽𝐼�̅� , 𝑖𝑠 = 𝛽𝐼�̅�  and 𝑖𝛥 = 𝛽𝐼̅ . Therefore, 𝛿  is an 

unbiased estimate of 𝛽(𝐼 ̅ − 𝐼�̅�) = 𝛽𝛿𝐼 ̅. Thus, zero-

crossing lines of 𝛿𝐼  ̅will also be zero-crossing lines 

also of 𝛿  and the edge detection algorithm can 

literally be reformulated in terms of the data {𝛿(�⃗�𝑖)} 

over all receptive fields. In this case, ON-fields are 

determined by the positive condition on the right side 

of (30), and OFF-fields by the negative. Moreover, 

since the thresholds in these conditions depend on 

√𝑛, data {𝑛(�⃗�𝑖)} are also needed for all fields.  

Finally, the formulation of the proposed edge 

detection method in terms of RF data {𝛿𝑖 , 𝑛𝑖}, 𝛿𝑖 =

𝛿(�⃗�𝑖), 𝑛𝑖 = 𝑛(�⃗�𝑖) has the form: 

Step 1. For all receptive fields in positions {�⃗�𝑖} find, 

basing on sampling representation 𝑆𝑘 = {�⃗�𝑗} , the 

numbers of counts 𝑛𝑐𝑖  in the centres, 𝑛𝑠𝑖  – in the 

surrounds and 𝑛𝑖 = 𝑛𝑐𝑖 + 𝑛𝑠𝑖  in the RF regions. 

Using them, generate sufficient data {𝛿𝑖 , 𝑛𝑖}: 

𝛿𝑖 = 𝑛𝑖 𝜎𝑖⁄ − 𝑛𝑐𝑖 𝜎𝑐𝑖⁄   and  𝑛𝑖 . 

Step 2. Basing on the data {𝛿𝑖 , 𝑛𝑖} build the classes of 

ON- and OFF-fields: 

𝛿𝑖 > √2
𝜎𝑠𝑖

𝜎𝑐𝑖

𝐷𝛼

𝜎𝑖
√𝑛𝑖       →    ON − field;

𝛿𝑖 < −√2
𝜎𝑠𝑖

𝜎𝑐𝑖

𝐷𝛼

𝜎𝑖
√𝑛𝑖    →   OFF − field;

 . 

Step 3. For all pairs of nearest ON- and OFF-fields 

find on the connecting their centres segments �⃗�𝑘 ↔

�⃗�𝑙, using 𝛿𝑘 ↔ 𝛿𝑙 interpolation, zero-points �⃗�𝑘𝑙, see 

Figure 2.   

Step 4. Connect all found nearest zero points {�⃗�𝑘𝑙} 

with a broken line, thereby obtaining an 

approximation of the desired zero-crossing line, see 

Figure 2. 

Note that in Step 2, not all the fields will be 

classified as ON- or OFF-fields. Moreover, practice 

shows that usually their number is noticeably less 

than the number of all fields. This, by the way, gives 

reason to call the method proposed an algorithm for 

encoding a sample representation 𝑆𝑘 = {�⃗�𝑗}, see in 

this regard (Antsiperov, 2023). Moreover, if the 

factor 2𝜎𝑠 𝜎𝑐⁄  in the test thresholds of Step 2 is of the 

order of one, the tests can be reformulated as 𝜈𝑖 >

𝐷𝛼√𝑛𝑖  and 𝜈𝑖 < −𝐷𝛼√𝑛𝑖 , where the counts 

difference 𝜈𝑖 = 𝜎𝑖𝛿𝑖 = 𝑛𝑖 − �̂�𝑖 , and �̂�𝑖 = 𝜎𝑖 𝑛𝑐𝑖 𝜎𝑐𝑖⁄  

represents centre-corrected estimates of the total 

number of counts on the RF. 

4 NEUROMORPHIC DECODING 

(INTERPOLATION) OF RF 

ENCODED DATA 

To illustrate the capabilities of the method proposed, 

we present below the results of image edge-directed 

interpolation, based on the data {𝛿𝑖 , 𝑛𝑖} generated by 

Figure 3 (right) sampling representation. To restore 

(decoding) encoded images, the reconstruction area, 

like the area of the original image 𝛺, is covered with 

a similar (in number, shape, and arrangement of 

fields) RF system. For example, a RF system 

consisting of 900 square fields, shown in Figure 4, 

was used for encoding / restoration of the image and 

its sampling representation, presented in Figure 3.  

 

Figure 4: The result of RF encoding of image sampling 

representation shown in Figure 3. On the left is a sampling 

representation with a grid of 30×30 receptive fields, on the 

right are RFs with a censored code 𝜈𝑖: white – ON-RFs with 

𝜈𝑖 > 𝐷𝛼√𝑛𝑖, black– OFF-RFs with 𝜈𝑖 < −𝐷𝛼√𝑛𝑖. 

Using this auxiliary RF system, a grid dual to it is 

constructed, the nodes of which are the centres of the 

corresponding RFs, and the edges are the segments 

connecting the nearest nodes. To each 𝑖-th node the 

data (code) {𝜈𝑖, 𝑛𝑖} of the 𝑖-th RF is also assigned. 

Classical bilinear image interpolation can be 

constructed only from the “smooth” part of the code 

{𝑛𝑖} . Namely, the 𝑛𝑖  values are first interpolated 

along the vertical edges of the grid, and then linearly 

along all rows of all cells based on the already 

interpolated vertical edges. The interpolation we 

propose also uses two-pass reconstruction. During the 

first pass, the 𝑛𝑖 values are also interpolated along the 

grid edges, not only vertical, but also horizontal. 

What's important here is that this interpolation is not 

necessarily linear. If at the nodes of a given edge the 

values 𝜈𝑖 and 𝜈𝑗 are nonzero and have different signs, 

then such an edge is considered as intersecting the 

zero-crossing line – the line of contrast difference, 

and the middle of the edge is taken as the intersection 

(zero-) point. The interpolation in this case is 

piecewise constant on both sides of this edge. In the 
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second pass, the values in the grid cells are linearly 

interpolated from the values on their edges. 

Moreover, if a pair of cell edges intersects with the 

zero-crossing line, then interpolation is carried out 

along a segment connecting the zero-points. If not, 

then interpolation is performed along the rows of 

cells, as in classical interpolation. The results of both 

types of interpolation are presented in Figure 5. 

 

Figure 5: Interpolation based on the codes of Figure 4, 

generated from the image of Figure 3. On the left – bilinear 

interpolation of the image based only on the “smooth” part 

{𝑛𝑖} of the code, on the right – interpolation of the image 

along the zero-crossing line segments, specified also by the 

“details” {𝜈𝑖}. 

5 CONCLUSIONS 

A special feature of the proposed method is the 

concept of receptive fields, widely used in its context. 

The use of the RF structure allows one to effectively 

overcome the known difficulties of numerical 

algorithms that process mixtures with a large number 

of components. This conclusion follows, among other 

things, from the existing experience in computer 

implementation of the method: all illustrative 

materials presented in the work were obtained as part 

of computational experiments. Experiments 

confirmed the effectiveness of the method in terms of 

memory resources / computation time. For example, 

the encoding / reconstruction of 1000x1000 pixels, 8 

bits colour depth image, presented in this work as an 

illustration (see Figures 3, 4, 5), required a calculation 

time of only a few milliseconds even in the case of 

the densest grid of 150x150 nodes (22500 

components). 

In general, based on the results obtained, it seems 

reasonable to express the hope that the approach 

proposed in the work will find soon both further 

theoretical development and fruitful use in applied 

problems. 
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