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Abstract: Face recognition (FR) has been significantly enhanced by the advent and continuous improvement of deep
learning algorithms and accessibility of large datasets. However, privacy concerns raised by using and dis-
tributing face image datasets have emerged as a significant barrier to the deployment of centralized machine
learning algorithms. Recently, federated learning (FL) has gained popularity since the private data at edge
devices (clients) does not need to be shared to train a model. FL also continues to drive FR research toward
decentralization. In this paper, we propose novel data-based and client-based curriculum learning (CL) ap-
proaches for federated FR intending to improve the performance of generic and client-specific personalized
models. The data-based curriculum utilizes head pose angles as the difficulty measure and feeds the images
from “easy” to “difficult” during training, which resembles the way humans learn. Client-based curriculum
chooses “easy clients” based on performance during the initial rounds of training and includes more “difficult
clients” at later rounds. To the best of our knowledge, this is the first paper to explore CL for FR in a FL
setting. We evaluate the proposed algorithm on MS-Celeb-1M and IJB-C datasets and the results show an
improved performance when CL is utilized during training.

1 INTRODUCTION

The utilization of face recognition (FR) technology
has experienced a significant increase in the past
few years, with most common uses in smartphones
(Baqeel and Saeed, 2019), security (Kumar et al.,
2019), access control (Kortli et al., 2020), surveil-
lance (Jose et al., 2019), and border control (Damer
et al., 2020). The fundamental concept behind FR is
the identification of distinctive patterns in the facial
features of an individual. These features include the
distance between the eyes, nose, and mouth, as well
as the structure of the cheekbones and jawline (Meena
and Sharan, 2016; Elmahmudi and Ugail, 2018;
Oloyede et al., 2020). Deep learning frameworks,
particularly those based on convolutional neural net-
works (CNNs) have proven to be capable of learning
these essential features from massive amounts of data
with high generalization capability (Almabdy and El-
refaei, 2019). Hence, they dominate the state of the art
techniques as shown in comprehensive surveys (Guo
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and Zhang, 2019; Taskiran et al., 2020).
Curriculum learning (CL) is a machine learning

technique that resembles the learning steps used by
humans which is based on beginning the learning
process with easier data (or concepts) and gradu-
ally progressing to harder concepts (Soviany et al.,
2022). In (Wang et al., 2021), the authors investi-
gated whether all machine learning algorithms can re-
ally benefit from CL. They argued that although some
applications may experience improved performance,
the benefits of CL are not universal. Nonetheless, in
some applications including computer vision and nat-
ural language processing, it has been shown that CL
can improve the generalization ability of the models
and also enhances the convergence rate (Jiang et al.,
2014; Platanios et al., 2019; Nagatsuka et al., 2023;
Sinha et al., 2020). In (Büyüktaş et al., 2021; Yang
et al., 2023), CL algorithms for FR have been pro-
posed and the results show that CL provides signif-
icant improvements in performance. However, their
approaches suffer from privacy concerns arising from
the use of centralized models.

Privacy concerns, coupled with power limitations,
and network latency due to constant data transfer be-
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tween the central server and local device led to the in-
ception of federated learning (FL) by Google in 2016
(AbdulRahman et al., 2020; Li et al., 2020a). FL is a
machine learning technique that utilizes data stored
on edge devices to train a model and shares only
the model parameters with the server for aggregation
(Li et al., 2020b; McMahan et al., 2017). In nat-
ural language processing, FL has been employed in
mobile phones for next-word prediction (Hard et al.,
2018; Stremmel and Singh, 2021), keyboard search
suggestion (Yang et al., 2018), and emoji prediction
(Ramaswamy et al., 2019). FL has garnered signif-
icant attention for its potential to revolutionize the
healthcare sector because of the privacy requirement
of medical records (Antunes et al., 2022). Brisimi et
al. (Brisimi et al., 2018) utilize FL for hospitalization
prediction using cardiovascular data and they con-
clude that their distributed technique provides faster
convergence compared to centralized methods.

In computer vision, several decentralized FL tech-
niques have been proposed (He et al., 2021; Kairouz
et al., 2021; McMahan et al., 2017). However, these
methods cannot be directly applied to FR because
local clients have distinct classes, which calls for a
model architecture with different parameters across
the clients. To address this problem, Aggarwal et
al. (Aggarwal et al., 2021) proposed FedFace, a FL
model for FR. They only considered the scenario with
a single identity (ID) per client, but in real situa-
tions, local devices could contain several IDs. Fur-
thermore, edge devices share their ID proxies with
the central server, resulting in privacy concerns as this
information could be used to reconstruct the original
images (Liu et al., 2022).

Recently, Vahidian et al. (Vahidian et al., 2023)
performed a study of the benefits of ordered learn-
ing in a federated environment. They performed ex-
tensive experiments using object recognition datasets
and concluded that CL can provide performance im-
provement on the global model. However, they did
not perform evaluation on local models to investigate
the impact of CL on local training. Also, as previous
studies in (Wang et al., 2021) have shown that the ad-
vantages of CL cannot be generalized, the impact of
CL across different fields has to be investigated. In
our study, we seek to bridge the gap by analyzing the
efficacy of CL on local models and by introducing CL
to federated FR.

Liu et al. (Liu et al., 2022) presented FedFR
framework, a FL based approach to address the draw-
backs of prior research in federated FR. Their main
objective was to enhance user privacy while improv-
ing both personalized and generic FR. Personalized
FR is performed on the local clients whereas generic

FR is performed on the global data. They introduced
a decoupled feature customization module to collab-
oratively optimize personalized models. This module
helps in obtaining an optimal personalized FR model
for each of the local clients. However, since the face
images in the datasets are randomly arranged, opti-
mizing the objective function during training may not
result in optimal convergence.

In this work, we combine the advantages of CL
(Büyüktaş et al., 2021) and FL (Liu et al., 2022) for
FR to further improve both the generic and personal-
ized FR performance. We can summarize the contri-
butions of this paper as follows:

• We introduce data-based CL to the FedFR frame-
work based on head pose angles.

• We propose to apply client-based CL to FedFR
during training.

• We also show that combining data-based and
client-based curricula provides better generic FR
performance than just using client-based CL.

2 BACKGROUND: FedFR

In this section, basic information about the FedFR
framework (Liu et al., 2022) is provided, which is im-
proved by using the proposed CL approaches as de-
scribed in the next section.

In FedFR framework, there are C clients and a
central server with the initial global FR model Θ0

g
and the global class embeddings trained using a large
global (public) dataset Dg, which contains Ng images
from Kg IDs. This dataset is used to pretrain the ini-
tial global model and part of it is shared to the lo-
cal clients during training to prevent overfitting and
address the problems of heterogeneous clients as ex-
plained in (Zhao et al., 2018). Each client i initializes
its local model as Θ0

l(i) = Θ0
g and has a local dataset

containing Nl(i) images from Kl(i) distinct IDs, which
is neither shared with other clients nor with the server.
The goal is to optimize both the model Θg for generic
face representation and Θl(i) for personalized client
customization while preserving the privacy of the lo-
cal client IDs.

Note that the ID distributions on each client are
different, that is, the data is not independent and iden-
tically distributed (non-IID). At client i, the frame-
work uses: i) a hard negative sampling stage to se-
lect the most critical data from the global dataset to
reduce the computations, ii) contrastive regulariza-
tion to limit the deviation of the local model from the
global model, and iii) decoupled feature customiza-
tion to learn a customized feature space optimized for
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Pitch 4.07° 9.74° 18.51° 19.13° 19.94° 10.71°
Yaw 1.89° 9.28° 18.85° 30.31° 49.10° 55.29°
Roll 0.52° 0.92° 1.43° 1.55° 4.18° 34.95°
Sum 6.48° 19.94° 38.79° 50.99° 73.22° 100.95°

Easy samples Hard samples 

Figure 1: Face image samples from the MS-Celeb-1M
dataset with their respective absolute head pose angles and
the sum estimated using Openface 2.2.0 toolkit.
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Figure 2: Histograms of absolute pitch, yaw, roll angles,
and their sum for images in the selected subset of the MS-
Celeb-1M dataset.

recognizing the IDs at the client.
At each communication round t, not only the

model parameters, Θt
l(i) but also the learned class em-

beddings Φt
l(i) related to the Kg global IDs are sent to

the server. It is important to note that the local class
embeddings are not shared with the server as this in-
formation can be used to reconstruct the images, re-
sulting in privacy concerns.

3 METHODOLOGY

In this section, we provide the details of the proposed
data and client-based CL approaches for federated FR
(CL-FedFR). We also give the details of the overall
algorithm.

3.1 Data-Based Curriculum Design
Based on Head Pose Angles

Face image datasets contain numerous images with
diverse factors such as head pose, illumination, and
resolution which affect the FR performance. Within
this scope, Dutta et al. (Dutta et al., 2012) investigated
the importance of image quality using a view based
FR technique. They observed that the head pose had
the most impact on the FR performance. Furthermore,
they found out that the head pose determines the im-
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Inputs: C clients each with Nl(i) images from
Kl(i) disjoint identities; Number of local
epochs E; Pre-trained global model Θ0

g and
class embeddings Φ0

g.
Each client orders its own dataset into n
subsets of increasing difficulty
Dl(i) =

{
D j

l(i)

}n

j=1
Output: Optimal global model Θ∗g
Server executes:
for each round t = 0, . . . ,T −1

share Θt
g and Φt

g with clients

Client training:
for each client i in parallel do

Θt
l(i),Φ

t
l(i)←ModelUpdateWithCL(

i,Θt
g,Φ

t
g)

Θt+1
g =

1
N ∑

i∈[C]

Nl(i) ·Θt
l(i)

Φt+1
g =

1
N ∑

i∈[C]

Nl(i) ·Φt
l(i)

def ModelUpdateWithCL
(

i,Θt
l(i),Φ

t
l(i)

)
:

Dtrain
l(i) = /0

for j = 1 : n do

Dtrain
l(i) = Dtrain

l(i) ∪D j
l(i)

for e = 1 : E do

fine-tune
(

Θt
l(i),Φ

t
l(i),D

train
l(i)

)

end
return Θt

l(i),Φ
t
l(i) to server

end
Algorithm 1: Proposed data-based curriculum learningAlgorithm 1: Proposed data-based curriculum learning for

federated face recognition.

pact that other image quality factors have on the FR
performance. Therefore, recent works in CL for FR
have used the head pose as their difficulty measure
(Büyüktaş et al., 2021; Yang et al., 2023). Accord-
ingly, we use the sum of absolute pitch, yaw, and roll
head pose angles to order the data from easy to hard
as shown in Figure 1.

We utilize a subset of the MS-Celeb-1M (Guo
et al., 2016) dataset for training our model. For each
ID, we use Openface 2.2.0 toolkit, an updated version
of Openface 2.0 (Baltrusaitis et al., 2018), to estimate
the head pose angles. Figure 2 shows the histograms
of the absolute head pose angles and the sum. The
absolute yaw angles show the most diversity whereas
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Figure 3: Proposed curriculum learning for federated face recognition framework. At each client, the first training is conducted
with just the easy subsets of local datasets. Then, the experiments are repeated with the easy subset augmented with more
difficult subsets using the optimal model of the previous training as the initial model for the subsequent training stages.

almost all absolute roll angles are below 10°. Just
above 1% of the images have a sum of absolute head
pose angles greater than 50°. We split the images at
each client into different subsets of difficulty ranging
from easy to hard based on the absolute sum of head
pose angles. We experiment with different splitting
strategies which are explained in Section 4.

3.2 Client-Based Curriculum Design
Based on Performance

We further investigate the effect of a client-based split
on the model performance. Firstly, we train the model
for a few communication rounds and then perform
personalized evaluation. The clients are then ordered
based on their personalized evaluation results and fed
to the FedFR model starting with the “easy” high per-
forming top half and gradually introducing the “diffi-
cult” low performing ones.

3.3 Proposed Algorithm

In our setup, we propose to employ CL to train the
FedFR model (Liu et al., 2022) as shown in Fig-
ure 3. The advantages of CL, such as the capability
to enhance convergence and improve performance in
particular scenarios, served as the inspiration to this
approach. In the first part of the training process,
the model is fine-tuned using only the easy subsets
from all the local clients for the data-based curricu-
lum and/or only the easy clients for the client-based
curriculum. Then, the easy subset is augmented with

the medium difficulty subset for the second part of the
training. The optimal global model obtained from the
first part of the training is used as the initial backbone
model for the second part of the training. The train-
ing is repeated for each of the curriculum sets with
gradual increase in difficulty until the entire dataset is
used. The summary of our proposed data-based CL-
FedFR approach is presented in Algorithm 1. Simi-
lar steps are followed for the client-based CL-FedFR
approach but with clients as the difficulty measure in-
stead of the images.

4 EXPERIMENTS

4.1 Experimental Setup

Similar to (Liu et al., 2022), we use a subset of the
MS-Celeb-1M (Guo et al., 2016) dataset which con-
sists of 10,000 IDs for training and evaluating the
personalized models. We employ a 64-layer CNN
architecture in (Liu et al., 2017) as the initial global
model. In our FL setup, the number of communica-
tion rounds is T = 20, the number of local epochs is
E = 10, and the learning rate is 0.001. The rest of the
hyper-parameter settings are the same as in FedFR.

In order to make our experimental results com-
parable with FedFR, we similarly select 6,000 IDs
from the MS-Celeb-1M subset and use it as the global
dataset for pretraining the initial global model. Part
of this global dataset is also shared with the local
clients using the aforementioned hard negative sam-
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pling strategy. The global dataset consists of between
60 and 80 images per ID to give a total of 420,671 im-
ages. For local training, we distribute the remaining
4,000 IDs to C = 40 clients each with Kl = 100 dis-
tinct IDs. Each of these IDs contain between 50 and
60 images to give a total of 215,144 images. In each
local client, 40 images per ID are reserved for person-
alized evaluation in the final training stage, and the
remaining images, together with the shared images
from the global dataset are used for training the local
models. We perform all the experiments on a server
with Intel® Xeon(R) W-2255 CPU @ 3.70GHz × 20
and NVIDIA RTX A6000 graphics card.

We perform experiments under 5 different settings
using the same MS-Celeb-1M subset for the final
training stage. For example, in setting CL-FedFR-P2
defined in section 4.1.1, each local model is trained
with the easy local dataset first. The model is then
further trained on all the local images and the im-
ages obtained from the global dataset, starting with
the global model obtained from the training with the
easy subset as the initial model. Then, the reserved
40 images per ID are used for personalized evalua-
tion after all the training stages have been completed.
For generic evaluation, we use the IJB-C (Maze et al.,
2018) dataset, an extension of the IJB-A, which con-
tains 3,531 IDs with about 138,000 face images and
11,000 face videos.

For the data-based curriculum, we first estimate
the pitch, yaw, and roll angles using OpenFace 2.2.0
and then sort the images with respect to the sum of
the absolute values of these angles in ascending or-
der. Next, we segment this ordered dataset into differ-
ent numbers of subsets of increasing difficulty. The
aim of the various number of difficulty levels is to
investigate the impact of a splitting criterion on the
model performance. We first employ CL on just the
local dataset and then apply CL on both the local and
global datasets. Moreover, we perform a client-based
split considering the performance of the clients after
training for a few communication rounds. Finally, we
combine data-based and client-based curricula. The
description of the curriculum sets and their respective
subsets are given in the following sections.

4.1.1 Applying CL on Local Dataset

We apply three different curriculum settings on the
local dataset as described below:

• CL-FedFR-P2: CL-FedFR based on dual
percentage-wise split.

– Easy subset: First 50% of ordered local images.
– Hard subset: Last 50% of ordered local images.

• CL-FedFR-P3: CL-FedFR based on ternary
percentage-wise split.
– Easy subset: First 33% of ordered local images.
– Medium subset: Images in rank between 33%

and 67%.
– Hard subset: Last 33% of ordered local images.

• CL-FedFR-P4: CL-FedFR based on quadrant
percentage-wise split.
– Easy subset: First 25% of ordered local images.
– Medium subset 1: Images in rank between 25%

and 50%.
– Medium subset 2: Images in rank between 50%

and 75%.
– Hard subset: Last 25% of ordered local images.

4.1.2 Applying CL on Local and Global Datasets

• CL-FedFR-P3-G: CL-FedFR based on ternary
percentage-wise split of both local and global
datasets.
– Easy subset: First 33% of the ordered images

per dataset.
– Medium subset: Images in rank between 33%

and 67%.
– Hard subset: Last 33% of the ordered images

per dataset.

4.1.3 Client-Based Curriculum

• CL-FedFR-C: CL-FedFR based on client perfor-
mance. The model is trained for the first 5 rounds.
Then, it is evaluated and the clients are sorted
in descending order based on their personalized
evaluation results. Thereafter, it is trained for 15
rounds using the easy subset. Finally, the easy
subset is augmented with the hard subset and the
model is trained for 20 rounds.
– Easy subset: Top performing 20 clients.
– Hard subset: Bottom performing 20 clients.

4.1.4 Client-Based Curriculum and CL on Local
Dataset

• CL-FedFR-P2-C: CL-FedFR based on dual
percentage-wise split of CL-FedFR-C subsets.
– Easy subset 1: First 50% of the images of the

ordered top performing 20 clients.
– Easy subset 2: Last 50% of the images of the

ordered top performing 20 clients.
– Hard subset 1: First 50% of the images of the

ordered bottom performing 20 clients.
– Hard subset 2: Last 50% of the images of the

ordered bottom performing 20 clients.
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Table 1: Personalized and generic face verification and identification results given in % using 40 clients, each with 100 IDs in
a federated setting. The best method and result for each evaluation protocol is in bold.

Personalized Evaluation Generic Evaluation
(MS-Celeb-1M) (IJB-C)

Method Verification Identification Verification Identification
1:1 TAR @ FAR 1:N TPIR @ FPIR 1:1 TAR @ FAR 1:N TPIR @ FPIR
1e−6 1e−5 1e−5 1e−4 1e−5 1e−4 1e−2 1e−1

FedFR (Liu et al., 2022) 88.32 95.46 95.17 97.94 77.60 85.21 73.60 81.27
Yu et al. (2020) 75.82 87.65 89.50 94.67 - - - -
CL-FedFR-P2 90.53 96.19 96.46 98.34 78.00 85.57 74.10 82.12
CL-FedFR-P3 90.40 96.15 96.77 98.51 77.84 85.56 73.94 82.00
CL-FedFR-P4 83.81 96.12 79.74 83.32 78.11 85.61 73.86 82.08

CL-FedFR-P3-G 90.48 96.20 96.90 98.52 78.01 85.48 73.85 81.77
CL-FedFR-C 90.65 96.31 96.65 98.52 77.54 85.16 73.48 81.66

CL-FedFR-P2-C 90.13 96.05 96.21 98.37 77.56 85.31 73.70 81.64
AntiCL-FedFR-P2 77.76 87.69 79.91 92.00 78.23 85.80 74.03 82.02

4.1.5 Anti-CL on Local Dataset

• AntiCL-FedFR-P2: CL-FedFR based on dual
percentage-wise split with training starting from
“hard” to “easy” subset.

– Hard subset: Last 50% of ordered local images.
– Easy subset: First 50% of ordered local images.

4.2 Evaluation Protocols

We perform generic and personalized evaluation of
the models, with the generic evaluation being done on
the global model in the server and the personalized
being performed on the local models in each of the
clients. We follow the commonly used IJB-C evalua-
tion protocol for generic face recognition by perform-
ing 1:1 face verification protocol and 1:N face iden-
tification protocol. We use the true acceptance rates
(TAR) at various false acceptance rates (FAR) for 1:1
face verification protocol and true positive identifica-
tion rates (TPIR) at different false positive identifica-
tion rates (FPIR) for 1:N face identification protocol.

For personalized evaluation, we follow similar
protocols as performed in FedFR for fair comparison.
For 1:1 face verification protocol, we first determine a
list of positive and negative pairs just as in the IJB-C
protocol. Then in each of the local clients, we for-
mulate authentic matches from local IDs and create
imposter matches by pairing one local ID with a ran-
dom ID from a different client. The reported TAR
values are the average TAR values from the 40 clients.
For 1:N face identification protocol, we simulate a lo-
gin experience on a local client. The images of each
ID are combined to form the gallery features and the
probe features are the images from all the clients.

4.3 Face Verification and Identification
Results

The personalized and generic FR results are presented
in Table 1. The personalized evaluation is performed
on each of the 40 local models, Θl(i) and the average
results are reported. The generic evaluation is per-
formed on the global model, Θg which is at the server.

We compare our personalized evaluation results
with FedFR (Liu et al., 2022) and a personalized
framework proposed by Yu et al. (Yu et al., 2020).
In (Yu et al., 2020), they evaluated three local adap-
tation techniques for federated models: fine-tuning,
multi-task learning, and knowledge distillation. Their
best results which are reported in this paper were ob-
tained using knowledge distillation technique. It can
be seen that our approach enhances the model per-
formance as all the best results were recorded after
applying CL. For generic evaluation, we compare our
approach with FedFR and similarly, a slight improve-
ment in performance is observed.

In our CL approach, the best personalized FR
results were generally obtained using CL-FedFR-C
whereas using CL-FedFR-P4 offers the worst results.
Despite a significant improvement on the person-
alized evaluation results, using CL-FedFR-C is not
beneficial for generic FR. CL-FedFR-P2-C improves
generic FR for CL-FedFR-C but provides slightly
lower personalized evaluation results. Similarly, us-
ing CL-FedFR-P4 offers a notable improvement on
the generic evaluation, however, a significant decrease
in personalized evaluation in comparison to FedFR.
This justifies the conclusion of Wang et al. (Wang
et al., 2021) that although CL offers analytical bene-
fits such as enhanced convergence, some curriculum
designs and applications may not necessarily provide
improved performance. Therefore, this shows that
improved personalized performance does not directly
imply improved generic performance.
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We also conduct anti-CL experiments to further
justify the benefits of CL-FedFR on both local and
global data. The results from AntiCL-FedFR-P2
show a significant reduction in personalized FR, how-
ever, an improvement in generic FR. These results
show a tradeoff between personalized and generic FR.
Nevertheless, since there is a major performance drop
in personalized FR, anti-CL cannot be selected as an
optimal design. Consequently, research is directed to-
ward designing a curriculum that offers optimal im-
provement on both local and global data.

CL-FedFR-P2, CL-FedFR-P3, and CL-FedFR-
P3-G produced an average performance increase of
1.16%, 1.24%, and 1.30% for personalized evalu-
ation, respectively, and 0.53%, 0.42%, and 0.36%
for generic evaluation, respectively, in comparison to
FedFR. The trend in these % increase values further
show a trade-off in performance between generic and
personalized performance.

CL-FedFR-P2 has two splits, CL-FedFR-P3-G
has three splits but uses CL on the global dataset, and
CL-FedFR-P3 has three splits and uses all the shared
images from the global dataset for each split during
training. Therefore, the training time of CL-FedFR-
P3 is inherently the longest amongst these three de-
signs and cannot be selected in favor of the other two
designs. Moreover, since most of the curricula pro-
vide a notable improvement in personalized evalua-
tion, the choice of the best curriculum design becomes
biased toward one that significantly improves generic
evaluation. As such, we choose CL-FedFR-P2 in fa-
vor of CL-FedFR-P3-G to be the optimal CL design
in our approach.

5 CONCLUSION

In this paper, we proposed a novel CL for federated
FR technique. We adopted the FedFR framework and
applied CL with the objective of improving the per-
sonalized and generic FR. In our approach, we used
a data-based curriculum based on head pose angles
and a client-based curriculum based on the FR per-
formance. In data-based CL, the training sets were
arranged so that images with easy-to-recognize head
poses were used first, followed by a gradual inclu-
sion of those with difficult-to-recognize head poses.
The experimental results using the MS-Celeb-1M and
IJB-C datasets show improved model performance.
While we can generally conclude that CL offers a no-
table benefit in federated FR, it is important to note
that the choice of the curriculum has an impact on the
performance. The future works in this research area
can be directed toward identifying more discrimina-

tive ways of creating client-based curricula.
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