
A Type of EEG-ITNet for Motor Imagery EEG Signal Classification 

Maryam Khoshkhooy Titkanlou1 a, Ehsan Monjezi2 b and Roman Mouček3 c 
1Department of Computer Science and Engineering, University of West Bohemia, 306 14 Plzen, Czech Republic 

2Department of Electrical Engineering, Shahid Chamran University, Golestan Blvd. Ahvaz, Iran 
3Department of Computer Science and Engineering, University of West Bohemia, 306 14 Plzen, Czech Republic 

Keywords: Electroencephalography, Brain-Computer Interface, ERD/ERS, Deep Neural Network, Motor Imagery, 
Inception Module. 

Abstract: The brain-computer interface (BCI) is an emerging technology that has the potential to revolutionize the 
world, with numerous applications ranging from healthcare to human augmentation. Electroencephalogram 
(EEG) motor imagery (MI) is among the most common BCI paradigms used extensively in healthcare 
applications such as rehabilitation. Recently, neural networks, particularly deep architectures, have received 
substantial attention for analyzing EEG signals (BCI applications). EEG-ITNet is a classification algorithm 
proposed to improve the classification accuracy of motor imagery EEG signals in a noninvasive brain-
computer interface. The resulting EEG-ITNet classification accuracy and precision were 75.45% and 
76.43%, using a motor imagery dataset of 29 healthy subjects, including males aged 21-26 and females aged 
18-23. Three different methods have also been implemented to augment this dataset. 
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1 INTRODUCTION 

A brain-computer interface system (BCI) is a control 
pathway created through a form of communication 
between the neural activity of the human brain and 
the outside world via brain signal recording and 
decoding techniques. The application of BCI 
systems has gone in two main directions. The first 
direction is studying brain activity to explore a 
feedforward pathway that controls the external 
devices without the rehabilitation intention. The other 
main direction is using closed-loop BCI systems 
during neurorehabilitation, with the feedback loop 
playing an essential role in recovering the neural 
plasticity training or controlling brain activities 
(Lebedev & Nicolelis, 2017). The methods for 
recording brain activity are categorized into invasive 
and noninvasive groups. 

While some noninvasive technologies offer 
superior spatial resolution, such as fMRI, EEG has 
proved to be the most popular method for its ability 
to directly measure neural activity, cost- 
effectiveness, and portability for clinical applications 

(Wolpaw et al., 2002). EEG signals have been used to 
control assistive and rehabilitation devices (Meng et 
al., 2016). 

Motor imagery involves the brain’s imagination 
without actual physical movement. The contralateral 
sensorimotor cortical EEG signals in the alpha band 
(8–12 Hz) and beta band (13–30 Hz) (Mu Li & Bao- 
Liang Lu, 2009) exhibit a decrease in amplitude 
during unimanual preparation and execution of a 
movement. This phenomenon is known as event- 
related desynchronization (ERD), which represents a 
decrease in the amplitude of the activated cortical 
EEG signals. Simultaneously, there is an increase in 
the amplitude of the ipsilateral sensorimotor cortical 
EEG signals in the alpha and beta frequency bands, 
which is called event-related synchronization (ERS) 
and represents an increase in the amplitude of the 
corresponding cortical signals in the resting state (Liu 
et al., 2019). The ERD/ERS observed in the μ and β 
frequency bands of the brain motor-sensory cortices 
indicates the activation or deactivation state of the 
central region of the brain. 

Deep neural networks, which can extract complex 
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features from raw data automatically, have received 
significant attention in motor imagery signal 
classification (LeCun et al., 2015) (Altaheri et al., 
2023). Convolutional neural networks have proposed 
neural network models with various architectures to 
classify motor imagery signals. For example, 
Schirrmeiste et al. (Schirrmeister et al., 2017) studied 
deep and shallow convolutional neural networks 
called DeepConvNet and ShallowConvNet, among 
the first models used to decode motor imagery tasks 
from raw EEG signals. Later, Lawhern et al. 
(Lawhern et al., 2018) introduced EEGNet, a more 
compact and efficient CNN architecture with fewer 
parameters than ShallowNet and DeepConvNet. Dai 
et al. (Dai et al., 2020) proposed a hybrid-scale CNN 
architecture with a data augmentation method to 
improve the accuracy of EEG motor imagery 
classification. Borra et al. (Borra et al., 2020) 
proposed a lightweight and interpretable shallow 
CNN (Sinc-ShallowNet) architecture for EEG motor 
decoding. Santamaría-Vázquez et al. (Santamaria- 
Vazquez et al., 2020) studied a novel CNN, called 
EEG-Inception, that improves the accuracy and 
calibration time of assistive ERP-based BCIs, but the 
network lacked interpretability. Mirzabagherian et al. 
(Mirzabagherian et al., 2023), based on convolutional 
layers with temporal-spatial, Separable and 
Depthwise structures, developed (Temporal-Spatial 
Convolutional Residual Network)TSCR-Net and 
(Temporal-Spatial Convolutional Iterative Residual 
Network)TSCIR-Net models which decoded 
distinctive characteristics of different movement 
efforts and obtained higher classification accuracy 
than previous deep neural networks. Amin et al. 
(Amin et al., 2022) introduced an attention inception 
approach that combines CNN and LSTM networks 
for motor imagery task classification, which extracts 
spatial features by CNN and temporal features by 
LSTM and then merges all features into a fully 
connected layer. However, because of their 
exploding/vanishing gradient or lack of memory 
issues, RNNs (e.g., LSTM) are less common in this 
field. By including TCN in their structure, Ingolfsson 
et al. (Ingolfsson et al., 2020) and Musallam et al. 
(Altuwaijri & Muhammad, 2022) have reported better 
results for the classification of motor imagery signals 
in response to the slow training essence of RNNs. 
TCNs have been shown promising outcomes for 
temporal analysis of EEG time series with faster 
computation. In this paper, we introduce EEG-ITNet 
(Salami et al., 2022), which can extract rich spectral, 
spatial, and temporal information from multi-channel 
EEG signals with less complexity by using inception 
modules and causal convolutions with dilation. 

The subsequent sections of this paper are arranged 
as follows. Section 2 provides the material and 
methods used in this research. Following that, our 
result is presented in section 3. In section 4, we finally 
conclude and provide some suggestions for the future. 

2 MATERIAL AND METHODS 

2.1 Data Acquisition 

Four cycles in the entire EEG scenario are used for 
measurement, with a resting and a stimulating phase 
in each cycle. Every cycle begins with the subject 
resting for one minute, during which they are required 
to sit motionless and at complete rest. If their eyes are 
open, this includes minimizing their blinking. 
Following the resting phase, the participant moves 
their wrists with either their left or right hand for two 
minutes during the stimulation phase. Following a 
five-second break, the subject completes the assigned 
task during the stimulation phase. A green LED 
positioned in front of the subject alerts them to the 
phase shift. The subject completes the task and enters 
the stimulation phase when the LED is on, and the 
subject is in the resting phase when the LED is off. 
The phases are then alternated this way, and each of 
them is repeated three times. This means that each 
cycle lasts exactly 9 minutes. The cycles differ from 
each other by the task performed by the subject in the 
stimulation phase, which is optionally combined with 
alternating open or closed eyes. 

The dataset was gathered at the University of 
West Bohemia in the Czech Republic. 29 healthy 
people were measured (men aged 21-26 and women 
aged 18- 23) (Kodera et al., 2023). Each subject 
received instructions on completing the measurement 
before it began, and the procedure for each cycle was 
specified before it began. In the meantime, the nurse 
placed an EEG cap with Ag/AgCl electrodes on the 
subject's head using a 10–20 system. Afterward, she 
attached two electrodes to the subject's hand and one 
ground electrode below the elbow because the 
distance to the bone is smallest there. Lastly, a 
reference electrode of the EEG cap was attached to 
the earlobe. Fz, Cz, Pz, F3, F4, P3, P4, C3 and C4 
were used for the measurement. Following 
preparation, the subject was put in a dark, sound-
proof chamber to prevent background noise from the 
surroundings during measurement. 

The EEG data were captured using the BrainAmp 
DC amplifier in conjunction with BrainVision 
recorder software. For EMG recording, the 
microcontroller STM324F429I-DISCO board and 
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the EKG/EMG shield from Olimex company were 
employed to generate synchronization pulses and 
implement the stimulation scenario, as illustrated in 
Figure 1. 

 

Figure 1: Microcontroller board STM324F429I-DISCO 
and EKG/EMG shield from company Olimex. 

2.2 Our Proposed Method 

The four primary blocks that comprise the general 
architecture of EEG-ITNet are the inception block, 
temporal convolution (TC) block, dimension 
reduction (DR) block, and classification block, as 
shown in Figure 2. 

 
Figure 2: Details of different blocks in EEG-ITNet 
architecture. 

 

• Inception Block 

Four parallel sets of layers are used to begin the 
learning process, each comprising a 2D 
convolutional layer along the temporal axis serving 
as frequency filtering, followed by a 2D depthwise 
convolutional layer functioning as spatial filtering. 
Adding inception modules with different 
convolutional kernel sizes eliminates the need for a 
fixed-length kernel (Santamaria-Vazquez et al., 
2020). It allows the network to learn filters that 
represent various frequency sub-bands. In order to 
prevent overfitting and enable the network to learn 
more complex nonlinear spatial information, this 
block ends with a nonlinear activation function and 
dropout. 

• Temporal Convolution (TC) Block 

The discriminative temporal features are extracted 
using the TCN architecture, which considers the 
time series history, following the extraction of 
sources in various informative frequency sub-bands. 
The TC block comprises multiple residual blocks, 
each composed of depthwise causal convolutional 
layers with leading zero padding, followed by 
activation function and dropout. Using depthwise 
causal convolution followed by batch normalization 
instead of weight normalization made this model 
more robust and performed better than the 
conventional TCN. This block is also preceded by an 
average pooling layer, which reduces the data 
dimensions and prevents overfitting. 

• Dimension Reduction (DR) Block 

The output of the TC block fundamentally contains 
temporal information retrieved from sources with 
various frequency spectrums. To control the number 
of final features used for the classification task, we 
combined these temporal features using a 1 × 1 
convolutional layer. This block also includes an 
average pooling layer at the end, an activation 
function, and a dropout layer to reduce the tensor 
dimension further. 

• Classification Block 

The last component of the EEG-ITNet has a fully 
connected layer with a "softmax" activation function 
that comes after a flattened layer. Even though we 
call it the classification layer, it is easily adjustable 
based on the problem set and desired output. 

We first used 10-fold cross-validation with 100 
epochs. Before classification, 20% of the samples 
were separated for testing purposes, and the 
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remaining 80% was utilized for training. The 
learning rate value was 0.001. The model was 
implemented in Keras. 

It is worth mentioning that, since our dataset is 
not large enough to obtain better results, we try to 
implement three data augmentation approaches 
(noise injection (NI), conditional variational 
autoencoder (cVAE), and conditional GAN with 
wasserstein price function and gradient penalty 
(cWGAN-GP)) in order to expand the training set of 
input data with newly created artificial samples. 

3 RESULTS 

Table 1 summarises the classification accuracy, 
precision, recall, F1 score, and AUC for the EEG- 
ITNet model and the combination of this model with 
the augmentation methods implemented in this 
research. The accuracy of EEG-ITNet and NI EEG- 
ITNet is 75.45 % and 75.86 %, respectively. The 
accuracy and loss graphs of these two models are 
shown in figure 3 and Figure 4. 

 
Figure 3: Accuracy and loss curve of EEG-ITNet. 

 
Figure 4: Accuracy and loss curve of NI EEG-ITNet. 

Based on the results, only the noise injection 
augmen-tation method improves the accuracy of 
motor image-ry classification from 75.45% to 
75.86% (0.41%). So, data augmentation does not 
affect the result for this dataset. Unfortunately, there 
is no English paper related to this dataset to compare 
our results. 

Table 1: Results of four models used in this study. 

Method Accuracy Precision Recall F1 Score AUC 
EEG-ITNet 75.45 

±1.43
76.43 
±0.96

75.50 
±1.40 

75.23 
±1.58 

0.755 
±0.01

NI  
EEG-ITNet

75.86 
±1.21 

76.31 
±1.06 

75.89 
±1.21 

75.77 
±1.27 

0.759 
±0.01 

cVAE  
EEG-ITNet

74.25 
±1.28 

74.54 
±1.29 

74.28 
±1.28 

74.18 
±1.29 

0.743 
±0.01 

cWGAN-GP 
EEG-ITNet

73.18 
±2.04 

74.42 
±1.17 

73.25 
±2.01 

72.84 
±2.43 

0.732 
±0.02 

4 CONCLUSIONS 

The suggested method has proven to be suitable for 
classifying hand movements in EEG. Our proposed 
architecture includes four blocks, inception block, 
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temporal convolution (TC) block, dimension 
reduction (DR) block, and classification block. The 
dataset used in this paper consists of 29 healthy 
people who move their hands with open or closed 
eyes. Alternatively, one of the limitations of this 
dataset is that it is not large enough for EEG-ITNet 
to prove its advantages, so data augmentation could 
be an appropriate technique to solve this problem. 

After adjusting the hyperparameters, our model's 
accuracy and precision were 75.45% and 76.43%. 
Furthermore, the best result with data augmentation 
was related to the noise injection method, NI EEG- 
ITNet, and its accuracy and precision were 75.86% 
and 76.31%, respectively. 

Since few models have been implemented on this 
dataset, other researchers can try other deep networks 
or combine our proposed method with other 
algorithms to improve accuracy. The proposed data is 
available in (Kodera et al., 2023). 
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