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Hand pose estimation undergoes a significant advancement with the evolution of Convolutional Neural Net-
works (CNNs) in the field of computer vision. However, existing CNNs fail in many scenarios in learning
the unknown transformations and geometrical constraints along with the other existing challenges for accu-
rate estimation of hand keypoints. To tackle these issues we proposed a multi-stage deformable convolutional
network for accurate 2D hand pose estimation from monocular RGB images while considering the computa-
tional complexity. We utilized EfficientNet as a backbone due to its powerful feature extraction capability, and
deformable convolution to learn about the geometrical constraints. Our proposed model called Deformable
Pose Network (DPN) outperforms in predicting the 2D keypoints in complex scenarios. Our analysis on the
Panoptic studio hand dataset shows that our proposed model improves the accuracy by 2.36% and 7.29% as

compared to existing methods i.e., OCPM and CPM respectively.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have under-
gone considerable advancements and achieved sub-
stantial success in several applications such as visual
recognition tasks such as pose estimation (Salman
et al.,, 2023c; Salman et al., 2023b; Simon et al.,
2017a; Kong et al., 2020; Zakir et al., 2024), ob-
ject detection (Girshick et al., 2014) semantic seg-
mentation (Long et al., 2015), and image classifica-
tion (Krizhevsky et al., 2017). Their capability of
modeling geometric transformation comes from ex-
tensive data augmentation, the large model capacity,
and some hand-crafted modules (e.g., max pooling
(Boureau et al., 2010)). Despite the merits, CNNs
underperform in terms of modeling geometric trans-
formations in object pose, viewpoint, scale, and part
deformation. First, they are assumed to be known and
fixed the data augmentation, features, and algorithms
were designed on these assumptions which prevent
generalization of a new task processing the unknown
geometric transformation, which is not properly mod-
eled. Second, even when the transformations are un-
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known, hand-crafted designs of invariant features and
algorithms are not feasible and it’s difficult to overlay
these transformations.

However, CNNs are limited to unknown transfor-
mations and large models and the origination of these
limitations is from the fixed geometric structures of
the CNN modules. Specifically, the convolution unit
samples information from distinct points in the in-
put feature maps, while reducing spatial resolution
by a fixed ratio using pooling layers. Similarly, a
Rol (region-of-interest) pooling layer segments a Rol
into a set of spatial bins. There the model fails to
handle the geometric transformations causing a no-
ticeable problem i.e., the field sizes of the activation
units of the same CNN layers are the same, which
is quite undesirable for the high-level layers that en-
code the semantic over spatial locations. These differ-
ent locations may correspond to the object with dif-
ferent scales or deformations, for visual recognition
with fine localization adaptive determination of scales
is favorable (Long et al., 2015). In object detection
(Girshick et al., 2014), they rely on the features that
are extracted based on the primitive bounding boxes,
and in pose estimation (Zakir et al., 2024; Zakir et al.,
2023) the geometric constraints of the keypoints.
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In pose estimation, Hand Pose Estimation (HPE)
is one of the prominent areas of CV with several
real-world applications such as Virtual/Augmented
Reality (VR/AR), sign language recognition, remote
surgery, and so on. In addition to the aforemen-
tioned challenges of CNNs, HPE poses some new
challenges such as self/object occlusion, size variabil-
ity, high dexterity, and depth ambiguity. As a re-
sult, researchers turned their attention to resolving the
above-mentioned issues, the model complexity in 2D
HPE is also one of the issues causing trouble in mak-
ing it more applicable in the real world. Despite these,
numerous HPE approaches were proposed, including
2D and 3D HPE based on RGB (Wang et al., 2018;
Chen et al., 2020; Pan et al., 2022), video (Khaleghi
et al., 2022; Ren et al., 2022), and depth(Ren et al.,
2022; Cheng et al., 2021) but still struggling to over-
come these issues.

In this research, we proposed a multi-stage de-
formable convolution network named Deformable
Pose Network (DPN) for 2D HPE keeping in mind the
above challenges, the deformable convolution (Dai
et al.,, 2017; Chen et al., 2021) especially focuses
on incorporating the geometrical constraints into the
convolutional operation and the backbone deals with
the hidden information overcoming the other issues.
This approach consists of two modules one is the
backbone and the other is the Deformable Convolu-
tion Block (DCB), we utilized the EfficientNet (EN)
BO as a backbone for feature extraction, to strike
the balance between the computational cost and the
model efficiency. As a DCB, we used the concept
of Convolutional Pose Machine (CPM) (Wei et al.,
2016) that utilizes a six-stage Convolutional Block
(CB) for information processing, instead of the CB to
deal with the geometrical constraints we replaced the
six-stage CB with a four-stage DCB. These changes
make our proposed model computationally efficient
and enhance the model’s capability to learn the un-
known hidden information including the geometrical
constraints, resulting in accurate 2D HPE.

The proposed approach is summarized below:

o We utilized the customized EfficientNet BO ver-
sion as a backbone by removing the fully con-
nected layer for feature extraction, which is one
of the best models striking the balance between
computation efficiency and accuracy.

e The multi-stage deformable convolution network
deals with the geometrical constraints and helps
the model to be more generalized to learn the ge-
ometrical transformations.

The article consists of the following sections, Sec-
tion 2 includes the related work on 2D HPE, the de-
tailed network flow is explained in Section 3, exper-

imental setups are explained in Section 4, Section 5
presents the experimental results and analysis, and
the conclusion and the future work are summarized
in Section 6.

2 RELATED WORK

Hand Pose Estimation (HPE) is a CV task that in-
volves localizing and identifying the hand keypoints
(joints) of a hand in a video or an image. As CNNs
(Schniirer et al., 2019; Charco et al., 2022) play a
crucial role in CV, researchers have actively proposed
different approaches to tackle the challenges in HPE,
to address the problem of self/object occlusion multi-
view RGB models (Simon et al., 2017a; Joo et al.,
2015; Panteleris and Argyros, 2017) were proposed,
but still constrained with a requirement of specific
camera setups. On the other hand, depth-based pose
estimation models (Schniirer et al., 2019; Cheng et al.,
2021) achieve better accuracy based on depth values,
resulting in a fast process. However, these models can
be sensitive to the environment (i.e., noise, lightning
conditions, and so on). Widespread adoption of RGB
cameras in recent years for HPE tasks due to their af-
fordability, anti-inference capabilities, and portability
many approaches were proposed based on CNNs us-
ing RGB images. CPM (Wei et al., 2016), enforces
CNNss to generate heatmaps indicating the location of
each keypoints. Although CNNs tackle some of the
key challenges but still struggle to deal with the geo-
metrical constraints, self/object occlusion, and high-
dexterity, to resolve these we utilized the idea of de-
formable convolutional (Chen et al., 2021) in our net-
work to make it more generalized.

In recent days, researchers tried to reduce the
computational complexity of 2D HPE models, while
striking the balance between accuracy and computa-
tional cost (Salman et al., 2023a). CPM (Wei et al.,
2016) was one of the state-of-the-art lightweight
base models a few years back. Yifei Chen et al.
(Chen et al., 2020) proposed an architecture based
on cascade structure regularization, consisting of
two lightweight modules Limb Deterministic Mask
(LDM) and Limb Probabilistic Mask (LPM), and
each module can be utilized separately for 2D HPE.
Hinqging Yang et al. tried to improve those modules in
terms of accuracy and computational efficiency and
somehow succeeded in this. In (Pan et al., 2022)
Tianhong Pan et al. optimized the CPM reducing the
complexity of the models and improving the accuracy.
However, the above-mentioned methods are state-of-
the-art lightweight models but still not applicable in
many cases because of the computational complex-
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Figure 1: Detailed overview of Deformable Pose Network.

ity and high energy consumption. To tackle this we
utilize the stages idea of CPM and reduce the num-
ber of stages to reduce the model complexity without
affecting the accuracy (balancing the computational
cost and accuracy).

3 DEFORMABLE POSE
NETWORK

Generally, 2D HPE using heatmaps involves the key-
points detection to get the actual hand pose P, from
an RGB image or a video frame /. Consider, K as
a set of keypoints, wherein each keypoint k; repre-
sents a distinct region on the hand such as joints or
fingertips. These keypoint k; are symbolized by indi-
vidual heatmaps H, forming the objective to predict
the heatmaps of each keypoint {Hy,.,.,H;}. Conse-
quently’ the pose P = {(xlayl); (x2>Y2), AR (xk7yk)}
denotes the coordinates with the highest probability
in each heatmap. The count of keypoints K varies
across the datasets, commonly comprising 21 key-
points. Therefore, for the given input we seek to esti-
mate the pose P, expressed as the set of keypoints as
described in Algorithm 1.

We proposed a new approach named Deformable
Pose Network (DPN) for efficient and accurate 2D
HPE. A multi-stage deformable convolution is uti-
lized in our work inspired by the workflow of CPM
stages, combining the power of EN as a backbone for
feature extraction. Figure 1 shows the detailed archi-
tecture of our proposed method.

3.1 Modified EfficientNet Version B0
for Enhanced Feature Extraction

EN, a state-of-the-art network is utilized as a back-

bone of our proposed approach for feature extraction.
EN is known for its ability to balance the model accu-
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Data: RGB image or video frame /
Result: Estimated hand pose P represented as
keypoints
Initialize P = @ (Set to store keypoints);
Detect keypoints K representing distinct hand
regions in [;
fori=11t K do
Generate heatmap H; for k; in I
Extract coordinates (x;,y;) with highest
probability from H;;
Add (x;,y;) to P as a keypoint;
end
Return P as the estimated hand pose;
Algorithm 1: 2D Hand Pose Estimation using Heatmaps.

racy and computational cost, based on this there are
many versions of EN (B0-B7) each version varies in
depth, and BO the lightest version is utilized in our
framework. Figure 2 shows the architecture of the
modified EN acting as a backbone in our network. We
employed the BO version of EN to reduce the com-
plexity in comparison with its variants and the other
feature extraction networks (i.e. RestNet, VGG, and
more). The modified BO consists of seven blocks,
containing varying numbers of MBConvs which are
the structure of MobileNetv2, it further includes the
removal of final fully connected convolution layers,
reducing the model’s parameters and enabling it for
feature extraction. The input data goes through sev-
eral layers in a sequential process, the input is sub-
jected to a 3 x 3Conv, followed by the MBConvs op-
erations. The final layer of the EN outputs 64 feature
maps and passes to the deformable convolution block
for further processing as shown in Figure 2.

3.2 Information Processing DCB

The CPM is one of the baseline CNN-based pose
estimation models, which deals with the complexi-
ties involved in HPE. However, it encounters lim-
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Figure 2: Overall architecture of modified EfficientNet BO.

itations in HPE due to unknown geometrical con-
straints and other mentioned challenges. To address
these issue within the CNN-based models we inte-
grated the DC, which focus on managing geometrical
constraints and enhancing the model’s adaptability in
learning the unknown features during the information
processing. Our proposed approach is a four-stage
network, The initial stage consists of two 3 x 3 DCBs
with a channel count of 256. Subsequent stages con-
sist of seven 3 x 3 DCBs, each with 128 channels.
The detailed overview of this information processing
DCB is shown in Figure 3.

The output feature maps generated by the back-
bone are directed to the DCB initial stage of our net-
work for subsequent information processing. Within
each stage, the DC, comprising two Convolutional
Layers (CL)layers offset CL and a modulator CL, and
a DC operation which is discussed in detail below:

3.2.1 Offset CL

It computes spatial offsets through learnable param-
eterization from the input feature map x which is the
output feature map of the backbone, denoted by OF.
It can be mathematically represented as Eq 1.

OF = OFC(x) (1)

Where OFC denotes the convolutional operation on
the input x for the computation of the offsets. Which
helps to determine the sampling location in x, making
it flexible to receptive fields.

3.2.2 Modulator CL

It governs the significance or modulation of sampled
regions generating modulation weights by leveraging

the output of a sigmoid function as shown in Eq 2:
M =2xo(MC(x)) ()

Here, M represents the modulator, 6, and MC denotes
the sigmoid function and the convolutional operation
respectively. This factor helps in adaptive feature ad-
justments according to their importance.

3.2.3 DC Operation

After the first two CLs, DC operations play the role
that is the core of DC, integrating the offset and mod-
ulator with the regular CL. Mathematically this oper-
ation can be expressed as in Eq 3:

x=deform2d(x,OF,w,b,M) 3)

Here, x denotes the input feature map, OF signifies
the spatial offsets, w, b, and M represents the con-
volutional weights, bias, and the modulating factor
respectively. The incorporation dynamically adjusts
the receptive fields, enabling the model’s capabilities
to learn adaptive features and geometrical constraints,
and the final output from the initial stage progresses
to the second stage.

The sequence iterates across all four stages and in
the final stage we got the 21 final keypoints. Along
with the DC, we reduced the number of stages and
channels in contrast to CPM, enhancing the over-
all adaptability and computational efficiency of our
model.
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Figure 3: Detailed overview of stages of deformable convolution block.

4 EXPERIMENTAL SETUP

4.1 Dataset

In our research, we utilized a publicly available data
set The Carnegie Mellon University Panoptic Hand
Dataset (CMU) (Simon et al., 2017b) from Panoptic
Studio to evaluate our proposed model. The dataset
includes 14,817 annotations of the right hand of in-
dividuals captured at the studio, the distribution is
shown in Table 1. As our research is HPE to achieve
this objective the annotated image patches were ex-
tracted from the full image using a box size of 2.2
times larger than the hand. The dataset is randomly
divided into three subgroups by a random sampling
technique for training, validation, and testing com-
prised of 80%, 10%, and 10% of the dataset respec-
tively.

Table 1: CMU panoptic hand dataset distribution.

Dataset Training | Validation | Test
CMU Panoptic | 11,853 1482 1482

4.2 Implementation Details

We implemented our model using the PyTorch frame-
work, with a batch size of 64 and a learning
rate of 0.0001. The model is trained up to 100
epochs. The input images were scaled to [0,1]
and normalized using a mean and standard deviation
of (0.485,0.456,0.406) and (0.229,0.224,0.225) re-
spectively. The Mean Squared Error (MSE) is utilized
as a loss function. To prevent the loss from decreas-
ing to an extremely low value, the loss function is ad-
justed using a scaling factor of 35.
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4.3 Activation Function and Model
Optimizer

To incorporate nonlinear aspects into the network,
various activation functions were proposed such as
ReLU (Banerjee et al., 2019), Softmax (Sharma et al.,
2017), and, Mish (Misra, 2020). However, Mish out-
performs others notably, due to its nonlinear nature,
its mathematical representation is as follows:

f(x) = xtanh(In(1 + €%)) (@))

Experimental results highlight Mish’s superior ef-
ficiency over other activation functions.

The model optimizers aim to decrease the loss
function and enhance network performance by find-
ing the best parameter values. We adopted a newly
derived version of the Adam optimizer called AdamW
can significantly bolster model optimization tech-
niques. In contrast to the Adam optimizer, the
AdamW algorithm separates the weight decay com-
ponent from the learning rate, enabling individual-
ized optimization of each component. This feature
effectively addresses the issue of excessive overfit-
ting. The results indicate that the model optimized
with AdamW demonstrates better generalization per-
formance. The AdamW optimizer was employed in
the training of our proposed approach.

4.4 Evaluation Metric

As an evaluation metric commonly used for pose es-
timation Percentage of Correct Keypoints (PCK) was
utilized in this study. It measures the probability that
the predicted keypoints fall in a specified threshold
distance, represented as ¢ from the ground truth. ¢
was uniformly distributed in a range of 0.04 to 0.12,
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Table 2: Numerical comparison of DPM with other models on CMU panoptic hand dataset.

Threshold ¢ 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | Average | Improvement
CPM(Wei et al., 2016) 56.76 | 74.66 | 82.50 | 86.67 | 89.45 | 78.01 -
LDM-6(Chen et al., 2020) | 59.51 | 76.19 | 83.77 | 87.83 | 90.27 | 79.51 1.50
LPM-6(Chen et al., 2020) | 60.71 | 77.60 | 84.93 | 88.76 | 91.10 | 80.62 2.61
OCPM(Pan et al., 2022) | 63.67 | 80.26 | 87.10 | 90.65 | 93.01 82.94 4.93
DPN 67.19 | 82.81 | 89.27 | 92.63 | 94.48 | 85.30 7.29
it isformulated as:
| H ot gd| ‘2 o Performance on test set
k Py — Px I
PCK; = D] = ;,1 < max(w, h) < G) 4) 0.9 ”/,::::::______
0.8 L=
Here pfd represents the keypoints ground truth, 1 is o //:://
the indicator function, p,’C" denotes the predicted key- v iz
points, k for the number of keypoints, D refers to the g CPM(Wei et al., 2016)
number of test or validation sample, and w and # indi- 03 —:— LPM-6(Chen et al., 2020)
cates the height and width of the input image respec- 0.4 LDM-6(Chen et al., 2020)
tively. sl (SI(DZEM(Pan et al., 2022)

S RESULTS AND ANALYSIS

In this section, we discuss the performance analysis
of our proposed network and compare it with various
HPE methodologies.

5.1 Quantitative Results

The results presented in Table 2 are the quantita-
tive analysis of our proposed model numerically and
graphically. The results indicate that our proposed
model achieves an improvement of 5.13 % at ¢ 0.12
and an average improvement of 7.29 % in comparison
to CPM (Wei et al., 2016). Against OCPM (Pan et al.,
2022) it achieves 1.57 % at ¢ 0.12 and 2.36 % on an
average. Figure 4 depicts a PCK comparison of DPM
with CPM, LDM-6, LPM-6, and OCPM, demonstrat-
ing its superior performance over existing lightweight
methods.

To compare the computational complexity we did
a parameter comparison, excluding LDM-6 and LPM-
6 due to the absence of parameters. Table 3 indi-
cates that our proposed architecture has fewer param-
eters in comparison with CPM and OCPM, signifying
the reduction of the computational complexity of our
methodology.

Table 3: Parameters comparison.

0.2

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Normalized threshold, o

0.11 0.12

Figure 4: PCK comparison with other lightweight 2D HPE
models.

5.2 Qualitative Results

To evaluate the effectiveness of DPN visually, we ran-
domly select the images from the test set as input for
the visualization. Figure 5 illustrates that our pro-
posed network shows effective results the model’s ef-
ficiency on low light and blurred images is notewor-
thy. The findings suggested that our proposed DPM
tends to perform better than the other lightweight
state-of-the-art models.

5.3 Ablation Study

To demonstrate the effectiveness of DC in the stages
we perform an ablation study by training the network
without DC, the results reveal that DC performs bet-
ter in comparison with the convolution even the model
we trained without is a six-stage network with more
parameters. The numerical results in Table 4 show the
incorporation of DC promisingly improves the net-
work performance in terms of accuracy.

Table 4: Comparison of six-stages without DC and four-
stage with DC.

Threshold ¢ 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | Average
Model Parameters(M) Flops(G) Six-stage withput DC | 62.09 | 78.82 | 85.64 | 90.27 | 92.42 | 81.85
CPM(Wei et al., 2016) 36.80 103.23 Four-stage with DC | 67.19 | 82.81 | 89.27 | 92.63 | 94.48 | 85.30
OCPM(Pan et al., 2022) 29.28 80.53
DPN 8.55 16.38

819



VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

;

.

T—\

e

(a) CPM (b) LDM

(c) LPM

)x

=

(d) OCPM (d) DPN

Figure 5: Visual illustration of predicted hand keypoints.

6 CONCLUSIONS

In this paper, we proposed a lightweight multi-stage
deformable convolutional network for 2D hand pose
estimation. To learn the hidden information Efficient-
Net was used as a backbone for enhanced feature ex-
traction. To deal with the geometrical constraints we
utilized deformable convolution in each stage instead
of traditional convolutions. Evaluation on a publicly
available CMU hand dataset, our proposed approach
outperformed the state-of-the-art networks in terms of
accuracy and computational complexity. With the po-
tential of real-world application of hand pose estima-
tion in AR, VR, HCI and so on we will extend our
work to 3D HPE.
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