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Abstract: Brain-Computer Interface Systems (BCIs) facilitate communication between the brain and machines, enabling 
applications such as diagnosis, understanding brain function, and cognitive augmentation. This study explores 
the classification of visual stimuli and visual imagery using electroencephalographic (EEG) data. The 
proposed method utilizes 3D EEG data generated by transforming 1D EEG data into 2D Spatiotemporal EEG 
image mappings for feature extraction and classification. Additionally, a multi-perspective 3D CNN-based 
hierarchical deep fusion learning network is employed to classify multi-dimensional spatiotemporal EEG data, 
decoding brain activity for visual and visual imagery stimulation. The findings show that the suggested multi-
perspective fusion method performs better than a standalone model, indicating promising progress in using 
BCIs to understand and utilize brain signals for visual and imagined stimulation. 

1 INTRODUCTION 

The brain-computer interface systems (BCIs) are one 
of the crucial technologies in recent years that aim to 
establish communication between the brain and 
machines. Besides the use of BCI systems in many 
scientific research areas, the main purpose of BCI 
systems is to enable people to develop applications 
where they can control various devices including 
computers, prosthetic limbs, robots, and even video 
games by using only power of human thought 
(Lebedev, 2017).  

BCI is a system that deals with the brain activities 
of a living thing (human or animal) and turns these 
activities into meaningful information about the 
cognitive, perceptual, or motor processes associated 
with neural activity patterns. This process is also 
known as brain decoding. Meaningful knowledge 
obtained thanks to brain decoding can be used for 
studies such as developing brain-computer interfaces, 
diagnosing disorders, understanding human brain 
function, and even augmenting cognition (Tan, 2010). 

In recent years, BCI technologies have started to 
show their presence in fields such as medicine, 
neuroscience, and gaming and are used for 
revolutionary innovations in these fields. Especially 

thanks to the BCI innovations made in the medical 
world, many people with disabilities and limited 
mobility have started to meet their needs without the 
need for any physical activity (Miralles, 2015). 

With many applications developed so far, this 
field frequently updates itself and is very open to 
developments. Therefore, it has the potential to 
understand the brain and its working principles, 
which is increasing day by day. This potential has 
attracted the attention of scientists and it has recently 
become a hot topic in the world of science and 
technology. 

We can give examples of these applications; 
communication devices for people with disabilities 
(Millán, 2010), controlling devices in hazardous 
environments (Douibi, 2021), enhancing cognitive 
performance (Papanastasiou, 2020), prosthetic limbs 
that can be controlled by the user's thoughts (Vilela, 
2020), and even brain-controlled video games 
(Nijholt, 2009). In addition to many detailed and 
successful studies conducted in this area, developing 
reliable and robust decoding algorithms, and 
obtaining consistent neural activity patterns by brain 
decoding is still a challenge today due to some 
reasons related to the brain such as the complexity of 
the brain signals due to its nature, its dynamic 

Emanet, F. and Sekeroglu, K.
Decoding Visual Stimuli and Visual Imagery Information from EEG Signals Utilizing Multi-Perspective 3D-CNN Based Hierarchical Deep-Fusion Learning Network.
DOI: 10.5220/0012568500003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 4: VISAPP, pages
381-388
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

381



structure, and being affected by environmental 
factors. 

Brain decoding can be used for visual stimuli 
classification. Visual stimuli classification refers to 
the process of identifying the category or features of 
a visual stimulus such as an image or video clip. It 
uses the response of the brain which is the patterns of 
neural activity that stimuli evoke in the brain for 
identifying the category of a visual stimulus (Bigdely-
Shamlo, 2008).  

Using various machine learning techniques, 
models with high performance can be created and 
successful results can be obtained to classify visual 
stimuli. These models can predict the category of a 
new, unseen visual stimulus based on the feature map 
which is most relevant for the cognitive task at hand 
by training the algorithm with known categories of 
visual stimuli, such as images of faces, letters, or 
simple shapes (Aggarwal, 2022). 

This study aims to develop a model that utilizes 
brain decoding for the purpose of classifying not only 
visual stimuli but also visual imagery. Specifically, 
EEG data collected from participants in an 
experimental setup designed for this study will be 
utilized for classification purposes. 

Brain-computer interfaces are known for their 
potential to provide solutions to a wide range of issues 
in both scientific and everyday contexts. The primary 
objective of this project was to address a research-
based problem related to the classification of EEG 
signals within the context of brain-computer 
interfaces. While this project was focused on 
addressing this specific issue, the insights and 
findings obtained through this work could be applied 
to a broader range of problems in various domains. 
This study contributes by analyzing EEG signals 
generated by visual stimuli and visual imagery. This 
involves using a 2D spatiotemporal EEG image 
representation, investigating 3D EEG data for feature 
extraction, and classifying based on 2D 
spatiotemporal EEG (ST-EEG) maps. The approach 
also incorporates a 3D convolutional neural network 
(CNN) based multi-perspective hierarchical deep 
fusion model for the classification of 3D EEG 
representations of visually evoked and visual imagery 
signals. 

1.1 Literature Review 

Brain-computer interface has been a hot topic in the 
world of science and technology in recent years. 
Although it is a topic that is widely talked about 
today, it is known that studies on BCI were first 
studied with animals in the 1970s (Kawala-Sterniuk, 

2021). The latest studies in BCI have concentrated on 
how to improve the accuracy and speed of brain 
signal decoding. With many machine learning 
methods, particularly deep learning, brain signals are 
analyzed and examined. As seen in a study by Zhang 
et al., the use of deep learning has noticeably 
increased the accuracy in classifying different types 
of brain signals (Sun, 2020).  

Another option provided by BCI systems is the 
classification of brain signals obtained using visual 
stimuli. Allison, B. Z., et al. (Jin, 2012) focused on 
the use of a BCI system to change frequency bands in 
EEG signals via visual stimuli. The scientists 
discovered that, with their claimed approach, 
participants were able to effectively change their 
brain signals. In another study that used visual 
stimuli, Kavasidis et al. (Kavasidis, 2017) studied the 
translation of visually evoked EEG signals into 
meaningful images. The approach they proposed is 
based on generating images using visually evoked 
brain signals recorded through an 
electroencephalograph (EEG). They implemented a 
deep learning framework consisting of an LSTM 
stacked with a generative method. They pointed out 
that GAN, in general, outperforms VAE and 
recommended that the study should continue by 
combining these two. They also recommended 
acquiring fMRI data to complement EEG data.  

Similarly, Hayashi and Kawata (Hayashi, 2018) 
proposed a methodology to reconstruct the images 
which had been recorded from the monkey brain. 
They implemented a linear decoder that predicts 
visual features of viewed images at a higher-order 
layer of a deep convolutional neural network, so 
called CaffeNet (Jia, 2014). They refined the images 
to photorealistic images through a deep generator 
network (Dosovitskiy, 2016). Their approach lacks 
efficient choosing critical visual features for the 
subject for image reconstruction within a reasonable 
time frame.  

Liu, Shuang, et al. (Liu, 2014) explored the 
individual identification through the extraction of 
features from both resting EEG and visual evoked 
potential signals. The features in this identification 
consisted of fourth-order AR parameters, power 
spectrum in the time and frequency domain, and 
phase locking value. For the classification, the 
extracted features were fed into an SVM. Thanks to 
this study, as a result of the identifications made with 
features, they come with the result that visually 
evoked tasks show better results in identifying 
individuals compared to relax tasks. Tirupattur and 
Rawat (Tirupattur, 2018) introduced a GAN 
architecture to generate class-specific images from 
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brain activities, achieving good results with small 
datasets and they emphasize the potential for 
visualizing brain signals as a video stream. 
Additionally, Zhang et al. (Zhang, 2019) also used 
GANs to reconstruct shapes evoked by EEG signals, 
focusing on simple geometrical shapes and 
suggesting future exploration of more complex 
shapes. They also performed a feature extraction from 
EEG data using CNN. 

In another GAN-based study, Fares and Zhong 
(Fares, 2020) proposed a novel DCLS-GAN 
framework to integrate brain and visual features, 
transforming EEG descriptions into class-relevant 
images. Similarly, Wang et al. (Wang, 2021)  
introduce the α-GAN approach that combines 
standard GAN structure with variational auto-
encoder to reconstruct images from the EEG 
framework and the fMRI framework. Rashkov et al. 
(Rashkov, 2019) offered closed-loop BCI system that 
reconstructs the observed or imagined stimuli images 
from the co-occurring brain wave parameters. This 
paradigm contains the visual-based cognitive test for 
individual stimuli set selection as well as state-of- art 
deep learning-based image reconstruction model for 
native feedback presentation. Additionally, Qu et al. 
(Qu, 2021) suggested an algorithmic idea of 
extracting, selecting, and decoding the EEG features 
related with the stimuli based on the supervision of 
the decoding feature of the original stimulus image. 
In this study, they pointed out the lack of clear 
evidence to prove that humans are in visual 
processing tasks.  

Similarly, Palazzo et al. (Palazzo, 2020) proposes 
a model, EEG-ChannelNet, to learn a brain manifold 
for EEG classification. And that, they introduce a 
multimodal approach that uses deep mage and EEG 
encoders, trained in a Siamese configuration, to learn 
a joint feature space for images and EEG signals 
recorded while users look at pictures on a screen. 
They trained two encoders in a siamese configuration 
and maximize the compatibility score between the 
corresponding images and EEGs. They also pointed 
out that identifying different responses in brain 
activity corresponding to different objects, patterns, 
or categories is a field for future study in their study.  

For EEG-based brain imaging classification, 
Jiang et al. (Jiang, 2019) proposed a novel deep 
framework. The proposed framework provides 
multimodal brain imaging classification by using not 
only the strength of integrated multiple modalities but 
also the advantages of the added consistency test. 
Additionally, Spampinato et al. (Spampinato, 2017) 
introduce a deep learning approach to classify EEG 
data as well as propose the first automated 

classification approach employing visual descriptors 
extracted directly from human neural processes 
involved in visual scene analysis. They emphasize 
that there will be a greater need for very complex deep 
learning networks in the future and that the studies 
conducted in this direction will be used to distinguish 
brain signals produced from many image classes. 
Fares et al. (Fares, 2019) create a novel region-level 
stacked bi-directional deep learning framework for 
visual object classification. In this framework, there 
are 3 stages including the region-level information 
extraction stage, the feature encoding stage, and the 
classification stage. In their study, they predict that 
multimedia content information can be reconstructed 
through the proposed EEG representations for future 
studies.  

2 METHODOLOGY 

2.1 Dataset 

In this study, EEG was used to capture brain activity 
patterns. A new dataset was created by collecting 
EEG data from seven volunteer participants using 
"Enobio 32" device by "NEUROELECTRICS," a 
medical company specializing in non-invasive brain 
stimulation ((n.d.), 2023). This device offers 32 
electrodes and the option of dry electrodes for quick 
setup. The sampling rate is fixed at 500. A 10-10 
international electrode placement system is used in 
the device (Krol, 2020).  

For data collection, we gathered data from 7 
participants, following a specific data collection 
procedure. Participants were seated in a well-lit, quiet 
room, ensuring minimal distractions. Positioned 
approximately 50 cm away from an LCD computer 
screen, the participants were instructed to remain 
seated throughout the duration of the experiment, 
with an EEG cap placed on their heads to record brain 
waves. The experiment encompassed two sections 
conducted on the same day. During each section, the 
EEG recorder captured the participants' brain waves 
while a slideshow randomly displayed stimulus. 
Throughout the experiment, the EEG cap remained 
on the participants' heads for consistency between the 
two sections. The stimuli presented in both sections 
consisted of the letters A, B, and C displayed in 
random order. In the first section, participants were 
directed to focus on the computer screen with their 
eyes open for 30 seconds, followed by 30 seconds of 
eyes-closed rest. Subsequently, the letters A, B, and 
C appeared on the screen for 10 seconds each, 
preceded by a 1.5-second interval of a black screen to 
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minimize the influence of the previous letter. This 
sequence was repeated 20 times for each letter in 
random order. In the second section, participants were 
presented with a blank white screen throughout. An 
auditory cue prompted participants to mentally 
visualize a specific letter, which they maintained for 
10 seconds. They were then instructed to imagine 
another randomly selected letter for another 10 
seconds. This process was repeated 20 times for each 
of the letters, A, B, and C, resulting in multiple 
instances of imagined letters for each participant. The 
process of each experiment section is depicted in Fig. 
1 and Fig. 2. 

 
Figure 1: The First Experiment Section-Visual Stimuli 
Phase. 

 
Figure 2: The Second Experiment Section-Visual Imagery 
Phase. 

2.2 Data Transformation 

The raw EEG data comprises one-dimensional time 
series data for each channel, which reflects the 
electrical activity in specific locations (referred to as 
channels) of the brain over time. The recording device 
utilized for gathering brain signals features 32 distinct 
electrodes, making the complete raw data manifest as 
a 2D matrix. This matrix encompasses 1D time series 
data encapsulating the electrical activities for 32 
different locations. Refer to Fig. 5 for visual 
representation. In this context, the matrix 'S' 
constitutes a two-dimensional array that encompasses 
all the EEG data collected from 'n' channels over a 
duration of 't+N' time. Each row within the matrix 
corresponds to a specific channel for the entire 
duration, while the columns signify the EEG data 
recorded from all channels at a specific time, denoted 
as 't'.  

In this proposed method, we took into 
consideration the potential impact of channel 
proximity and neighbourhood relations on the 
spatiotemporal plane. To achieve this, we 
transformed the data shape into 2D spatiotemporal 
  

 
Figure 3: Creation of 2D Spatiotemporal EEG image 
sequence. 

EEG mappings. This transformation essentially 
depicts each signal as if a top-down image of the brain 
was captured. Consequently, 2D spatiotemporal EEG 
maps were generated for each signal, effectively 
producing a three-dimensional data set. This was 
achieved by arranging these generated maps 
consecutively along the temporal plane. In essence, 
the altered EEG data is now represented as 2D 
spatiotemporal EEG maps, culminating in a 3D 
dataset with two dimensions in the spatial domain and 
one dimension in the time domain. Refer to Fig. 3 for 
a visual depiction of this representation. EEG data 
from all channels was mapped to a 9x9 matrix based 
on the precise locations of the electrodes on the scalp 
where the data were recorded. Channel locations in 
the 9X9 matrix are illustrated in Fig. 4 below. 

 
Figure 4: Channel Locations in the 9X9 Matrix. 

The parts shown as nan in the 9x9 matrix 
represent the places where the electrodes don’t exist. 
In order to capture the neighborhood relation, cubic 
interpolation was made for the empty ones between 
the neighboring electrodes, except for the corners. 
This transformation process and the transformed 2D 
ST-EEG map I at time stamp t, It, are illustrated in 
Fig. 5 below. 

2.3 Proposed Model 

All 3 different perspectives of 3D EEG data were 
taken into consideration and a 3D CNN model was 
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Figure 5: Transformation Process of 1D Temporal EEG 
Data into 2D Spatiotemporal Image. 

created for each perspective. As given in Fig. 3, two 
dimensions of 3D EEG data correspond to the spatial 
domain, and the third dimension pertains to the 
temporal domain. The SxSy plane view offers 
insights into the collected data from all channels at 
time t, while the TSx and TSy planes provide 
information regarding the collected data from specific 
channels over a time period. Hence, this study 
explores three distinct views: the main view based on 
the SxSy plane, the second view based on the TSx 
plane, and the third view based on the TSy plane. 

In the initial phase of the proposed fusion 
architecture, 3D CNN networks are employed to 
identify patterns from the specific viewpoint of the 
multidimensional spatiotemporal EEG data. 
Subsequently, at the second stage of the architecture, 
the identified patterns from the 3D CNN networks for 
the second and third viewpoints are merged and 
forwarded to the subsequent layer for further fusion. 
The central concept is to integrate the patterns of EEG 
data that share temporal information derived from the 
second and third viewpoints. Finally, at the 
concluding layer of the fusion architecture, the 
extracted pattern from the primary perspective and 
the temporal fusion layer are consolidated and 
merged via the output layer to achieve the final 
spatiotemporal fusion. Fig. 6 below provides a block 
diagram of the proposed multi-view hierarchical deep 
learning model. 

As seen in Fig. 6 above, there are three 3D CNN 
models in the first layer of the proposed hierarchical 
model: main view, side view-1 and side view-2. 
Detailed architecture of the 3D CNN model used in 
main view and side views are shown in Fig. 7 below. 
Whereas Fig. 8 shows the architecture of the temporal 
fusion model and spatiotemporal fusion model. In this 
study, we used multi-layer perceptron for the temporal 
and spatiotemporal fusion, However, different 
supervised machine learning models such as Support 
Vector Machine, Bayesian Network, Decision Tree, or 
a multidimensional classification model can be used.  

 
 
 

 
Figure 6: Block diagram of the proposed multi-perspective 
hierarchical deep learning model. 

 
Figure 7: Main view and Side view model blog diagram. 
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Figure 8: Temporal Fusion Model (left), Spatiotemporal 
Fusion Model (right). 

 
Figure 9: Performance measures of Hierarchical Model for 
Visual Stimuli Data. 

 
Figure 10: Performance measures of Hierarchical Model for 
Visual Imagery Data. 

 

3 RESULTS AND DISCUSSION 

In our initial experimentation, we evaluated the 
proposed modular fusion learning architecture, 
employing a 3D CNN-based network to extract 
patterns from 3D spatiotemporal EEG data. The 
outcomes of our assessment are depicted in Figure 9 
which presents the classification results for visual 
stimuli, and Figure 10, illustrating the classification 
outcomes for the imagined visual stimuli. For the 
visual stimuli classification, we utilized simple 
geometric representations of the letters A, B, and C, 
while for the imagined visual stimuli, we instructed 
the subjects to mentally visualize the corresponding 
letters. As evident from the results, the Multi-
perspective and hierarchical fusion learning approach 
substantially enhanced the classification accuracy. 

In our preliminary findings, the utilization of the 
main view alone yielded an accuracy of 85.29% for 
visual stimuli and 87.79% for the imagined visual 
stimuli. However, the integration of the multi-
perspective and hierarchical fusion model led to a 
notable increase in accuracy, reaching 90.7% for 
visual stimuli and 92.4% for the imagined visual 
stimuli. These results suggest that the proposed model 
is proficient in extracting patterns from 
multidimensional spatiotemporal EEG data, making 
it suitable for classification purposes and the 
generation of both provided and imagined visual 
information from EEG data.  

4 CONCLUSION AND FUTURE 
WORK 

The current research introduces hierarchical deep 
learning models that were trained to recognize 
patterns in 2D spatiotemporal EEG images, for the 
purpose of classifying visual stimuli and visual 
imagery data. The results of the study show that the 
proposed model achieved strong performance in 
multi-class classification of 3D EEG data.  

The investigation placed a significant emphasis on 
analyzing visually evoked EEG signals and visual 
imagery EEG signals, utilizing a 2D spatiotemporal 
EEG image representation, and aimed to extract 
features and perform classification based on these 
representations.  

The study also aimed to explore the benefits of a 
fusion architecture and a multi-view approach in 
learning the 2D ST-EEG maps. The experimental 
results indicate that, in general, a fusion architecture 
outperforms a stand-alone model.  
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While BCI technology has gained a lot of attention 
in recent years, there are still many unanswered 
questions and areas that require further research. This 
study can be seen as a preliminary study for many 
potential studies to be conducted in the future. By 
addressing the gaps in the current literature, 
researchers can build upon the findings of this study 
and expand our knowledge of BCI technology, 
potentially leading to new and innovative 
applications in the future.  

Initially, the focus of this study was on identifying 
four specific classes, namely A, B, C, and Rest. 
However, in future studies, the potential exists to 
expand the number of classes to encompass the 
entirety of the alphabet.  

Moreover, we employed a common dataset that 
was divided into training and testing sets in our study. 
However, there is potential for further exploration on 
how to improve the detection performance of models 
trained on data collected at different times when 
tested on data gathered at a later point. By doing so, 
real-time applications can be developed, particularly 
for individuals with communication difficulties who 
may lack the ability to speak and could benefit from 
a system that allows them to communicate their 
words through BCI technology.  
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