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Abstract: Low-precision fine-tuning of language models has gained prominence as a cost-effective and energy-efficient
approach to deploying large-scale models in various applications. However, this approach is susceptible to
the existence of outlier values in activation. The outlier values in the activation can negatively affect the
performance of fine-tuning language models in the low-precision regime since they affect the scaling factor
and thus make representing smaller values harder. This paper investigates techniques for mitigating outlier
activation in low-precision integer fine-tuning of the language models. Our proposed novel approach enables
us to represent the outlier activation values in 8-bit integers instead of floating-point (FP16) values. The benefit
of using integers for outlier values is that it enables us to use operator tiling to avoid performing 16-bit integer
matrix multiplication to address this problem effectively. We provide theoretical analysis and supporting
experiments to demonstrate the effectiveness of our approach in improving the robustness and performance of
low-precision fine-tuned language models.

1 INTRODUCTION

Language models have achieved remarkable success
in various NLP tasks, owing to their ability to capture
the intricacies of text data. Fine-tuning large language
models, however, often requires substantial computa-
tional resources and memory bandwidth that hinder
its accessibility to users with limited computational
resources. To make large language models accessible
and efficient for real-world applications, researchers
have explored various techniques for making fine-
tuning pre-trained models more efficient on devices
with lower computational power. To mitigate these
challenges, low-precision fine-tuning has emerged as
a promising approach.

Low-precision fine-tuning involves representing
the model’s weights, activations, and also gradients
to lower bit-width representations, such as 8-bit inte-
ger or floating-point numbers. This approach reduces
memory and computational requirements, making it
feasible to fine-tune and deploy large-scale models on
resource-constrained devices. However, both in fine-
tuning and inference, this approach introduces the
problem of outlier activation, where a small number
of activations exhibit extreme values, causing numer-

Figure 1: Computation flow of proposed linear layers for
forward and backward propagation. Integer computation
significantly reduces the computational cost of compute-
intensive linear layers.

ical instability and degradation in model performance.
In this paper, we delve into the problem of outlier

activation in low-precision fine-tuning of language
models. In our proposed approach, weights, activa-
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tions, and gradients of all compute-intensive linear
layers are represented using integer number formats.
Instead of quantization approaches used in the litera-
ture, we propose a comprehensive approach that uses
various hardware design techniques to address this is-
sue effectively. Our contributions are as follows.

• We analyze the causes and consequences of out-
lier activation in low-precision fine-tuning. We
find that outlier activations are more important in
the forward pass. Thus, we keep all the gradients
in the back-propagation of linear layers in 8-bit
integers.

• Instead of quantizing the floating point values, we
switch the number format of weights, activations,
and gradients to an adaptive-integer number for-
mat which considers different integer lengths (e.g.
INT12 or INT16) for activation outliers (less than
5% of all parameters) and keeps all the other pa-
rameters in INT8 format.

• Using the advantage of integer number formats,
we present a tiling strategy that enables the pos-
sibility of using int8 GEMM for all the compu-
tation of linear layers. Note that such tiling strat-
egy is not easily possible for floating-point num-
ber formats such as (FP16 and FP8)

• We provide theoretical analysis on how treating
outliers separately helps to preserve the informa-
tion in low-precision regime.

In Figure 1, we present an overview of our novel
linear layers, highlighting the innovative handling of
outlier activations in an integer number format while
maintaining gradient computation in low-precision
integer format. Notably, to the best of our knowl-
edge, this is the first fully INT8 linear layer designed
to manage outlier features in integer format, while si-
multaneously preserving gradient calculations in low-
precision integer format.

2 RELATED WORKS

The emergence of Large Language Models (LLMs)
has revolutionized natural language processing, yet
their formidable size poses significant computational
challenges for training, fine-tuning, and deployment.
To address these challenges, intensive research has
focused on quantization techniques, low-precision
arithmetic, and compression methods. This Sec-
tion investigates these approaches and their efficacy
in mitigating outlier activation during inference and
back-propagation, offering insights into the evolv-
ing landscape of techniques designed to make LLMs

more efficient and accessible in resource-constrained
environments.

2.1 Handling Outliers in Low-Precision
Inference

Most of the research efforts in the literature are fo-
cused on studying the effect of outlier activations in
the forward propagation i.e. inference. For instance,
LLM.int8() proposed by (Dettmers et al., 2022) de-
compose the outlier activations and their correspond-
ing weights to a separate matrix multiplication that
is performed in FP16 format while keeping the val-
ues that are not outlier in INT8 format. They also
show that using a threshold is enough for detecting the
outlier features. GPTQ presented by (Frantar et al.,
2022) is a one-shot post-training quantization (PTQ)
scheme that is based on approximate second-order in-
formation. GPTQ quantizes the weights while keep-
ing the activations in floating point format. AWQ pro-
posed by (Lin et al., 2023) is another PTQ scheme
that focuses on protecting salient activations by ap-
plying normalizing scales for weights and activa-
tion tensors. These scales are determined by only
analyzing activation tensors. (Dettmers and Zettle-
moyer, 2023) proposed an outlier-dependent quanti-
zation scheme called proxy quantization which quan-
tizes the weights corresponding to the outliers into a
higher precision number format. Proxy quantization
exploits the standard deviation of each layer’s hidden
unit weights as a proxy for which dimensions have
outlier features. Outlier channel splitting (OCS) pro-
posed by (Zhao et al., 2019) tackle the problem of out-
lier features by duplicating channels containing out-
liers, then halves the channel values. Morover, norm
tweaking is proposed by (Li et al., 2023) to reverse
the magnification of outliers by normalization layers
i.e. LayerNorm as discovered by (Wei et al., 2022).
SmoothQuant proposed by (Xiao et al., 2023) offers
an 8-bit quantization scheme for weights and activa-
tion. SmoothQuant deals with outlier features by mi-
grating the quantization difficulty from activation to
weights using scaling factors for weights and activa-
tions. Furthermore, (Dettmers et al., 2023) proposed
SpQR that isolates outlier weights, which may cause
large quantization errors, and stores them in higher
precision, an then compresses all other weights to in-
teger format. (Yuan et al., 2023) suggested RPTQ
method which reorders the channels with outliers and
group them in order to reduce the quantization error.
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Figure 2: Inference operations in an integer-only linear layer. The bottom panel shows the linear fixed-point mapping for the
input tensors, which can adapt different bit-widths for activation outliers and other parameters in the layer.

2.2 Handling Outliers in Low-Precision
Back-Propagation

Over the past few years, low-precision training of
deep learning models has gained popularity in reduc-
ing the training cost. For instance, FP16 mixed preci-
sion training (Micikevicius et al., 2017) is nowadays
a commonplace methodology to fine-tune language
models. Integer data type has also been extensively
studied for back-propagation computations by (Zhang
et al., 2020; Zhao et al., 2021; Zhu et al., 2020; Ghaf-
fari et al., 2022). Moreover, using higher-bit integer
formats such as INT12 for both back-propagation and
forward propagation is proposed by (Tayaranian et al.,
2023).

Nonetheless, the majority of literature pertinent to
low-precision back-propagation and training does not
address the emergence of outliers in language mod-
els. As a result, our paper is dedicated to investigating
the impact of outliers in low-precision integer training
of language models. In the remainder of the paper,
we demonstrate the significance of outlier features in
the forward pass. Additionally, we establish that the
forward pass can be entirely computed using integer
arithmetic. Finally, we emphasize that handling out-
lier separately is only important in the forward pass.
As for the back-propagation, all the parameters can
remain in INT8 format.

3 METHODOLOGY

This section delves into our proposed methodology
for mitigating outlier values in the low-precision
training of language models. We consider keeping
all the parameters in the back-propagation in INT8
format while treating the outlier activation separately

in the forward pass. We found that the outlier ac-
tivation does not need to be treated differently (i.e.
representing outliers in higher precision) in the back-
propagation.

3.1 Number Representation

We employ the dynamic fixed-point format, also re-
ferred to as block floating-point (Williamson, 1991),
to convert floating-point numbers into integer data
types. In this format, floating-point numbers are
mapped into blocks of integer values, each assigned
a unique scale.

To perform this conversion, we utilize a lin-
ear fixed-point mapping function, which transforms
a floating-point tensor F into a tensor of integers
along with a single scale factor. The integer val-
ues are derived by rounding the floating-point man-
tissas, while the scale is determined as the maximum
of the floating-point exponents within F. The oper-
ational details of the linear fixed-point mapping are
illustrated in the lower section of Figure 2.

To convert the fixed-point integers back into
floating-point representation, we employ a non-
linear inverse mapping function. This inverse map-
ping function converts integer values into normal-
ized floating-point mantissas, associating each integer
with its respective scale before packaging them into a
floating-point number.

For a more comprehensive insight into the rep-
resentation mapping functions, readers can refer to
(Ghaffari et al., 2022). It is worth noting that our
approach deviates from existing methods by intro-
ducing various bit-widths for outlier activations in
the fine-tuning of transformer-based language mod-
els. This strategy enables us to explore different bit-
width configurations for handling outlier activations,
ultimately facilitating the determination of the min-
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imum memory band-width required for fine-tuning
language models both in forward and backward prop-
agations.

3.2 Proposed Methods

In this subsection, we present two approaches de-
signed to mitigate the impact of outliers in the con-
text of low-precision language model fine-tuning. The
first approach, the unified scale for outliers, seeks to
provide a consistent scaling mechanism for outlier ac-
tivations. The second approach, splitting outlier ac-
tivations (Tiling), explores a novel strategy to iso-
late and manage outlier activations effectively, taking
advantage of having two scaling factors for outliers.
Also note that in both approaches, we used a thresh-
old γ = 5 to isolate the outlier activations for all the
linear layers.

3.2.1 Approach 1. Unified Scale for Outliers

In this approach, we completely isolate the outlier ac-
tivations and their corresponding weights and quan-
tize them to INT12 while the rest are quantized to
INT8. Let us assume X denotes the activation tensor,
and Q() is the quantization function, then

Q(X) = SxXINT8+SoutlierXINT12
outlier. (1)

3.2.2 Approach 2. Splitting Outlier Activations
(Tiling)

In the second approach, the value of outliers are split
into two values X̂INT8

outlier SP1 and XINT8
outlier SP2 and the

quantization scheme is as follows

Q(X) = (2)

Sx(XINT8+XINT8
outlier SP1)+SoutlierXINT8

outlier SP2.

In this quantization scheme, we extract floating-
point outlier activations Xoutlier from original floating-
point activations X using threshold γ and then, split
them as shown in the following equations,

Xoutlier SP2 = ⌊Xoutlier + γ

2γ
⌋×2γ (3)

Xoutlier SP1 = Xoutlier −Xoutlier SP2.

and then we quantize them to get XINT8
outlier SP1 and

XINT8
outlier SP2. The benefit of this method is that we can

keep the computation of forward pass completely in
INT8 format while treating the outlier separately from
the no-outlier activation values.

4 THEORETICAL ANALYSIS

In this section, we delve into the implications of low-
precision number formats on information preserva-
tion. The utilization of reduced bit-width represen-
tations in deep learning, while advantageous for ef-
ficiency and resource conservation, inevitably intro-
duces the issue of information loss. We explore the
nuances of this phenomenon and employ sensitivity
analysis to quantify the extent to which information
is altered or discarded in the transition from high pre-
cision to low precision.

Furthermore, we extend our investigation to con-
sider distribution distances, such as the χ2-divergence
and the Hammersley–Chapman–Robbins bound.

4.1 Information Loss in Low-Precision
Number Formats

The concept of sample informativeness is a well-
established notion within the field of statistics. For
example, (Tukey, 1965) introduced a dimensionless
metric for measuring informativeness, which proves
particularly valuable for our analysis. To measure the
informativeness, (Tukey, 1965) defines the concept of
leverage and linear sensitivity as

levθ(X) =
∂

∂θ
Eθ(X)

sensθ(X) =
(levθ(X))2

V(X)
, (4)

where θ is the parameters of X distribution.
Thus, we can re-write the equation (4) in the low-

precision number formats X̂ if we consider a low pre-
cision number has a rounding error of δ in a way that
X̂ = X +δ. Note that we assume δ and X are indepen-
dent random variables and E(δ) = ε ≃ 0.

levθ(X̂)

levθ(X)
≃ 1 s.t E(δ)≃ 0

sensθ(X̂)

sensθ(X)
=

V(X)

V(X̂)
=

V(X)

V(X)+V(δ)
≤ 1. (5)

Inequality (5) shows that in the case of unbi-
ased rounding, low-precision representation always
increases the variance and therefore decreases the in-
formativeness of the sample.

It is noteworthy to mention that the sensitivity
measure defined in equation (4) is closely related to
Hammersley-Chapman-Robbins lower-bound (Chap-
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man and Robbins, 1951),(
E(X)−E(X̂)

)2

V(X̂)
≤(

E(X)−E(X̂)
)2

V(X)
≤ χ

2( fX || fX̂ ), (6)

which provides a lower-bound for χ2-divergence of
X and X̂ distributions. Note that χ2-divergence is a
measure to quantify the divergence between two dis-
tributions and for distributions P and Q is defined as,

χ
2(P||Q) =

∫
(

dP
dQ

−1)2dQ. (7)

4.2 Analysing Outlier Activations as a
Mixture Distribution

Treating outlier activations separately as explained in
Section 3.2 closely resembles having a mixture distri-
bution as shown in Figure 3. This means that we con-
sider the outlier activations are samples that are drawn
from a different distribution function than non-outlier
activations. Let us assume the original distribution of
X as fX and a threshold γ that separates outliers fX2
from the rest of activations fX1 . define FX as the coef-
ficients of X such that

fX (x) = p fX1(x)+(1− p) fX2(x),
p = FX (γ),

fX1(x) =
fX (x)I{X≤γ}

FX (γ)
,

fX2(x) =
fX (x)I{X>γ}
1−FX (γ)

. (8)

Let us further assume Y = I{X≤γ}, then

E(X) = E(E(X |Y ))
= pE fX1

(X)+(1− p)E fX2
(X), (9)

and,

E(X2) = pE fX1
(X2)+(1− p)E fX2

(X2). (10)

Furthermore, by subtracting the pE2
fX1

(X)+ (1−
p)E2

fX2
(X) from (10) and using Jensen’s inequality we

have

V(X)≥ pV fX1
(X)+(1− p)V fX2

(X). (11)

Figure 3: Outliers modeled as a mixture distribution.

Remark 1. The inequality (11) shows that weighted
average of variances of distibutions is less than total
variance of a mixture distribution. Therefore, treating
outlier separately reduces the variance and hence it in-
creases the informativeness i.e. sensitivity according
to equation (4).

4.3 Informativeness of Mixture
Distribution in Low-Precision
Number Formats

In this section, we try to re-establish the results of
Section 4.2 for low-precision number formats. To do
so, we need to show equation (8) holds in the low-
precision number format.

Let us consider the following low-precision repre-
sentations, X̂ = X + δ, X̂1 = X1 + δ and X̂2 = X2 + δ,
where δ is the rounding error and is independent from
X . The moment generating function mX̂ is

mX̂ (t) = E(etX̂ ) = E(etX )E(etδ)

= mX (t)mδ(t). (12)

Now,

mX (t) =
∫

∞

−∞

etX fX (x)

= p
∫

∞

−∞

etX1 fX1(x)

+(1− p)
∫

∞

−∞

etX2 fX2(x)

= pmX1(t)+(1− p)mX2(t). (13)

and thus, using equations (12) and (13),

mX̂ (t) = mX (t)mδ(t)
= pmX1(t)mδ(t)+(1− p)mX2(t)mδ(t)
= pmX̂1

(t)+(1− p)mX̂2
(t). (14)

which means,

fX̂ (x) = p fX̂1
(x)+(1− p) fX̂2

(x). (15)

Remark 2. Establishing equation (15) confirms that
inequality (11) holds for the low-precision regime and
thus, treating outlier activations separately in low-
precision reduces the quantization variance (i.e. quan-
tization noise) and increases the informativeness.
Remark 3. The equation (15) holds if the moement
generative functions exist. This is a valid assumption
since the distribution of activation has bounded sup-
port.
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Table 1: Metric performance of integer fine-tuning of BERT on selected GLUE tasks. The reported metric for MRPC is
accuracy and F1 score, for QNLI, MNLI, RTE, and SST-2 is accuracy, for STSB is the Pearson-Spearman correlation, and for
CoLA is the Matthews correlation.

STSB QNLI MNLI SST-2 RTE MRPC CoLA
FP32 87.6 89.9 83.5 91.9 61.7 78.7/85.3 55.3
FP16 88.6 90.1 83.2 91.7 59.6 77.7/85.1 56.0

Proposed Approach 1 85.2 89.9 82.6 91.5 55.6 75.2/83.7 53.4
Proposed Approach 2 81.6 89.6 82.6 91.5 59.2 74.3/83.5 52.2

INT8 Untreated Outliers 80.9 86.4 80.9 91.8 58.5 69.9/81.9 43.5

Table 2: Metric performance of fine-tuning BERT on
SQuAD v1.1 and v2.0 datasets. For both datasets, the exact
match metrics and F1 scores are reported.

SQuAD v1.1 SQuAD v2
FP32 79.6/87.5 71.5/74.8
FP16 79.6/87.5 69.1/72.2

Proposed Approach 1 76.2/85.2 67.7/71.2
Proposed Approach 2 74.9/84.1 65.5/69.0

INT8 Untreated Outliers 69.8/80.2 60.9/64.6

5 EXPERIMENTAL RESULTS

5.1 Experiment Setup

We conducted fine-tuning on the BERT base model
across a series of downstream tasks to facilitate a
performance comparison between our integer fine-
tuning method and the FP16 and FP32 fine-tuning ap-
proaches. The fine-tuning process encompassed spe-
cific tasks selected from the GLUE benchmark (Wang
et al., 2018), in addition to the Stanford Question
Answering Datasets, specifically SQuAD v1.1 and
SQuAD v2.0 (Rajpurkar et al., 2016).

Each fine-tuning setup was standardized with
identical hyper-parameters and an equivalent number
of training epochs. To ensure result stability, reported
metrics represent the average of five runs, each ini-
tialized with a different random seed to mitigate the
impact of random variations.

Our fine-tuning experiments were executed using
the fine-tuning scripts provided by the Hugging Face
library (Wolf et al., 2019). In the case of GLUE exper-
iments, fine-tuning spanned five epochs, with a learn-
ing rate set to 2× 10−5, and a per-device fine-tuning
batch size of 32. Meanwhile, the fine-tuning of BERT
on the SQuAD datasets comprised two epochs, with a
learning rate of 5×10−5 and a per-device fine-tuning
batch size of 12. Notably, all experiments were con-
ducted on a computational infrastructure consisting of
eight NVIDIA V100 GPUs, each equipped with 32
gigabytes of VRAM.

5.2 Results

The results of fine-tuning BERT base on GLUE
benchmark and SQuAD datasets are presented in
Table 1 and Table 2 respectively. Our proposed
solution significantly improves the robustness of
low-precision fine-tuning for BERT on GLUE and
SQuAD datasets. Comparing the results of the pro-
posed approaches with INT8 fine-tuning with un-
treated outliers shows that representing outliers sep-
arately almost always improves the fine-tuning per-
formance of the model. Additionally, we emphasize
again that, the results presented in this paper com-
prise of having both back-propagation and forward-
propagation in low-precision number formats and
show that low-precision arithmetic are promising av-
enue to reduce the computational complexity of lan-
guage models.

6 CONCLUSION

This paper explored means to mitigate the outlier acti-
vations in low-precision language model fine-tuning.
We have introduced a novel methodology for miti-
gating the challenges posed by outlier activations, of-
fering effective approaches as effective approaches to
enhance the stability of the fine-tuning phase in low
precision number format where gradients, weights,
and activations are in INT8 format. Additionally, we
provided a theoretical analysis to understand the in-
tricacies of information loss in low-precision num-
ber formats. Our sensitivity analysis has unveiled
the trade-offs between variance and informativeness
while considering distribution distances like the χ2-
divergence and the Hammersley–Chapman–Robbins
bound has deepened our insights into these trans-
formations. In a landscape where the deployment
of large language models is increasingly resource-
constrained, our work contributes to the ongoing ef-
forts to make these models more accessible and ef-
ficient. By addressing the challenges of outliers and
information loss, we pave the way for the continued
evolution of low-precision back-propagation in lan-
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guage model fine-tuning. Our findings not only have
implications for natural language processing but also
hold relevance for broader applications across data
analysis and machine learning.
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